Posts Tagged 'mesocosms'



Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification

Ocean warming and acidification are among the greatest threats to coral reefs. Massive coral bleaching events are becoming increasingly common and are predicted to be more severe and frequent in the near future, putting corals reefs in danger of ecological collapse. This study quantified the abundance, size, and survival of the coral Pocillopora acuta under future projections of ocean warming and acidification. Flow-through mesocosms were exposed to current and future projections of ocean warming and acidification in a factorial design for 22 months. Neither ocean warming or acidification, nor their combination, influenced the size or abundance of P. acuta recruits, but heating impacted subsequent health and survival of the recruits. During annual maximum temperatures, coral recruits in heated tanks experienced higher levels of bleaching and subsequent mortality. Results of this study indicate that P. acuta is able to recruit under projected levels of ocean warming and acidification but are susceptible to bleaching and mortality during the warmest months.

Continue reading ‘Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification’

Polar opposites; bacterioplankton susceptibility and mycoplankton resistance to ocean acidification

Microorganisms form the basis of ocean ecosystems yet the effects of perturbations such as decreasing pH on microbial community structure, interactions and functionality remain compared to multicellular organisms. Using an experimental manipulation of Southern Ocean seawater, we subjected bacterioplankton and mycoplankton to artificial pH decreases, which are predicted to occur in the future. We show that acidification led to substantial increases of bacterioplankton diversity, while in contrast it had no effect on mycoplankton diversity. Our analyses revealed a loss of putative keystone taxa and a decrease in predicted community interactions as a response to lower pH levels. Bacterioplankton shifted from generalist to specialist community members, suggesting a specific stress response to unfavourable conditions. In addition, enzyme activities involved in nitrogen acquisition were lower at reduced pH levels, suggesting altered organic matter cycling in a more acidic ocean. Our findings suggest that bacterioplankton and mycoplankton may respond differentially to future ocean acidification, with potentially negative impacts on community structure and biogeochemical cycling in the Southern Ocean.

Continue reading ‘Polar opposites; bacterioplankton susceptibility and mycoplankton resistance to ocean acidification’

The effects of ocean acidification, warming and enhanced nutrients on a Wadden Sea community – examined with mesocosm experiments

Ocean acidification and global warming are known as two of the most crucial factors impacting marine ecosystems worldwide. While most investigations tested short-term impacts of single environmental drivers (e.g. temperature, salintiy) on single species, studies on the combined effect of multiple drivers on a multi-species assemblage in different seasons, which is much more realistic and relevant, are still scarce. Therefore, an experimental mesocosm facility was built to gain information on community changes under the impacts from multiple drivers. In three consecutive experiments, in spring, summer and autumn 2014, compartments of an intertidal macroalgae-mussel community from the Wadden Sea were incubated for 8 to 11 weeks within a large-scale mesocosm facility (Sylt Benthic Mesocosm). In the experiments four different treatments were applied: Ambient, nutrient enrichment (N; doubled natural summer nutrient concentration), warming in combination with acidification (OAW; ambient + 5°C and 1000ppm), and a combination of all three drivers (OAW+N). To find seasonal effects, we compared the responses of (OAW) to that of the ambient treatment in spring, summer and autumn. Carbon flows within the food web of the enclosed species assemblage were analysed by a holistic, static modelling approach (Ecological Network Analysis, ENA). The combined effects of ocean warming and acidification decreased the biomass of the main grazers and the macrophyte Fucus vesiculosus, while epiphytes massively increased due to an altered top-down control during summer. This creates a bottle neck within the energy flow between the first two trophic levels and let less energy pass to higher trophic levels. Enriched nutrients alone did not affect the system substantially, but especially grazers seem to benefit from enriched nutrient concentrations. The effects of climate change on the investigated Wadden Sea community strongly depends on the investigated season. In spring and autumn, OAW affected less or even promoted the system by increased energy flows between the trophic levels. In summer the opposite was found, with decreased energy flow, hampered top-down control and a reduced trophic efficiency, that could propagate through the whole food web and alter the structure and functioning of the investigated community. The Analysis ENA showed a lower relative ascendancy and the trend to an increasing flow diversity, as the result of a high number of multiple pathways between the system components. Theoretically, the resilience of the system shows a tendency to increase and the capability of withstanding external disturbances under OAW as compared to an unstressed system.

Continue reading ‘The effects of ocean acidification, warming and enhanced nutrients on a Wadden Sea community – examined with mesocosm experiments’

Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification

Previous studies have found that calcification in coral reefs is generally stronger during the day, whereas dissolution is prevalent at night. On the basis of these contrasting patterns, the diel variations of net community calcification (NCC) were monitored to examine the relative sensitivity of CaCO3 production (calcification) and dissolution in coral reefs to ocean acidification (OA), using two mesocosms that replicated a typical subtropical coral reef ecosystem in southern Taiwan. The results revealed that the daytime NCC remained unchanged, whereas the nighttime NCC decreased between the control (ambient) and treatment (OA) conditions, suggesting that carbonate dissolution could be more sensitive to OA than coral calcification. The average sensitivity of the integrated daily NCC to changes in the seawater saturation state (Ωa) was estimated to be a reduction of 54% in NCC per unit change in Ωa, which is consistent with the global average. In summary, our results support the prevailing anticipation that OA would lead to a reduction in the overall accretion of coral reef ecosystems. However, increased CaCO3 dissolution rather than decreased coral calcification could be the dominant driving force responsible for this OA-induced reduction in NCC.

Continue reading ‘Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification’

Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum

Highlights

• Monoculture of oysters produces excess CO2, affecting carbon fluxes.

• Seaweed can eliminate CO2 released by oysters.

• Multi-trophic culture of oysters and seaweed can mitigate oysters monoculture negative impacts.

Abstract

The physiological responses of aquaculture organisms (e.g., oyster and seaweed) have the potential to affect seawater carbon fluxes and subsequently are affected by these seawater changes. In this study, a laboratory experiment and a field mesocosm experiment were carried out in Daya Bay, southern China. In the laboratory experiment, Portuguese oyster Magallana angulata and the brown seaweed Sargassum hemiphyllum were mono-cultured in 20-L transparent glass bottles for 24 h. Water sample were collected at four incubation time points (i.e. 0 h, 4 h, 12 h and 24 h) to examine their physiological responses across the incubation period. The results showed that the oyster calcification rate was not significantly changed among 4 h, 12 h and 24 h. On the other hand, during the 24 h incubation time, the oyster respiration rate, seawater pH, dissolved oxygen (DO), and CO32– concentration were significantly declined, but the seawater CO2 concentration was increased. For the seaweed, from 0 h to 12 h, seawater CO2 and HCO3– concentrations were significantly declined. However, the seawater pH and DO concentration were increased. In the field experiment, oyster and seaweed were cultured in mesocosm bags. The effects of different culture models of M. angulata and S. hemiphyllum (i.e. oyster monoculture, seaweed monoculture and oyster-seaweed co-culture) on seawater CO2‑carbonate system and air-sea CO2 flux (FCO2) were investigated after 24 h incubation. The results showed that DIC, HCO3– and CO2 concentrations and the partial pressure of CO2 in co-culture bags were significantly lower than the control bags (without any culture organisms) and oyster bags, indicated that S. hemiphyllum can effectively absorb the CO2 released by the oysters. The negative values of air-sea FCO2 in the co-culture bags represent a CO2 sink from the atmosphere to the sea. These results demonstrated that aquaculture organism monoculture could result in a stress for itself, and there could be an interspecies mutual benefit for both M. angulata and S. hemiphyllum in the co-culture system. The negative environmental impacts of mono-trophic oyster aquaculture in this view could be mediated with the multi-trophic inclusion of seaweed.

Continue reading ‘Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum’

High heritability of coral calcification rates and evolutionary potential under ocean acidification

Estimates of heritability inform evolutionary potential and the likely outcome of many management actions, but such estimates remain scarce for marine organisms. Here, we report high heritability of calcification rate among the eight most dominant Hawaiian coral species under reduced pH simulating future ocean conditions. Coral colonies were sampled from up to six locations across a natural mosaic in seawater chemistry throughout Hawaiʻi and fragmented into clonal replicates maintained under both ambient and high pCO2 conditions. Broad sense heritability of calcification rates was high among all eight species, ranging from a low of 0.32 in Porites evermanni to a high of 0.61 in Porites compressa. The overall results were inconsistent with short-term acclimatization to the local environment or adaptation to the mean or ideal conditions. Similarly, in ‘local vs. foreign’ and ‘home vs. away’ tests there was no clear signature of local adaptation. Instead, the data are most consistent with a protected polymorphism as the mechanism which maintains differential pH tolerance within the populations. Substantial individual variation, coupled with high heritability and large population sizes, imply considerable scope for natural selection and adaptive capacity, which has major implications for evolutionary potential and management of corals in response to climate change.

Continue reading ‘High heritability of coral calcification rates and evolutionary potential under ocean acidification’

The effect of elevated CO2 on the production and respiration of a Sargassum thunbergii community: a mesocosm study

Approximately one‐third of anthropogenic carbon dioxide is absorbed into the ocean and causes it to become more acidic. The Intergovernmental Panel on Climate Change (IPCC) suggested that the surface ocean pH, by the year 2100, would drop by a further 0.3 and 0.4 pH units under RCP (Representative Concentration Pathway) 6.0 and 8.5 climate scenarios. The macroalgae communities that consisted of Sargassum thunbergii and naturally attached epibionts were exposed to fluctuations of ambient and manipulated pH (0.3–0.4 units below ambient pH). The production and respiration in S. thunbergii communities were calculated from dissolved oxygen time‐series recorded with optical dissolved oxygen sensors. The pH, irradiance, and dissolved oxygen occurred in parallel with diurnal (day/night) patterns. According to net mesocosm production – photosynthetically active radiation (PAR) model, the saturation and compensation PAR, the mean maximum gross mesocosm production (GMP), and daily mesocosm respiration were higher in the CO2 enrichment, than in the ambient condition, while the mean of photosynthetic coefficient was similar. In conclusion, elevated CO2 stimulated oxygen production and consumption of S. thunbergii communities in the mesocosm. Furthermore, the sensitivity of the GMP of the S. thunbergii community to irradiance was reduced, and achieved maximum production rate at higher PAR. These positive responses to CO2 enrichment suggest that S. thunbergii communities may thrive in under high CO2 conditions.

Continue reading ‘The effect of elevated CO2 on the production and respiration of a Sargassum thunbergii community: a mesocosm study’

Parental acclimation to future ocean conditions increases development rates but decreases survival in sea urchin larvae

Environmental conditions experienced by parents can have lasting effects on offspring. For some marine organisms, parental acclimation may attenuate the negative effects observed in offspring exposed to the same conditions. Here, development of the coral reef sea urchin Echinometra sp. A was examined in larvae derived from parents acclimated for 20 months in either present-day conditions or those predicted for the year 2100 (+ 2 °C/pH 7.8). Egg size was measured, and larval morphology, survival and respiration were quantified in larvae raised in present-day (26 °C/pH 8.1) and 2100 (28 °C/pH 7.8) treatments to near settlement to determine whether parental acclimation promotes greater resilience to climate change stressors. Although there was no difference in egg size, larvae from 2100 parents were generally larger and more developmentally advanced than those derived from present-day parents. However, negative carryover effects reduced survival in offspring of parents acclimated to 2100 conditions. At 15 days post-fertilization, survival of offspring derived from 2100 parents was 50.6% and 43.7% when raised in present-day and 2100 conditions, respectively, compared to 59.9% and 64.6% in offspring derived from present-day parents. When raised in 2100 conditions, respiration declined by 36.8% in larvae derived from present-day parents, while respiration rates of larvae from 2100 parents increased by 109%, suggesting that carryover effects may be associated with higher energy consumption and physiological stress in larvae from 2100 parents. Although parental acclimation enhanced growth of larvae in early development, overall, negative carryover effects outweighed potential benefits of parental acclimation to ocean warming and acidification in this species.

Continue reading ‘Parental acclimation to future ocean conditions increases development rates but decreases survival in sea urchin larvae’

Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community

The global phenomenon of mangrove encroachment into saltmarshes has been observed across five continents. It has been proposed that this encroachment is driven in part by rising atmospheric CO2 concentration and reduced salinity in saltmarshes resulting from rising sea levels enhancing the establishment success of mangrove seedlings. However, this theory is yet to be empirically tested at the community-level. In this study, we examined the effect of CO2 and salinity on seedling growth of two mangrove species, Aegiceras corniculatum and Avicennia marina, grown individually and in a model saltmarsh community in a glasshouse experiment. We found that the shoot (210%) and root (91%) biomass of the saltmarsh species was significantly greater under elevated CO2. As a result, both mangrove species experienced a stronger competitive effect from the saltmarsh species under elevated CO2. Nevertheless, A. marina seedlings produced on average 48% more biomass under elevated CO2 when grown in competition with the saltmarsh species. The seedlings tended to allocate this additional biomass to growing taller suggesting they were light limited. In contrast, A. corniculatum growth did not significantly differ between CO2 treatments. However, it had on average 36% greater growth under seawater salinity compared to hypersaline conditions. Avicennia marina seedlings were not affected by salinity. From these results, we suggest that although CO2 and salinity are not universal drivers determining saltmarsh–mangrove boundaries, it is likely that rising atmospheric CO2 concentration and reduced salinity associated with sea level rise will enhance the establishment success of mangrove seedlings in saltmarshes, which may facilitate mangrove encroachment in the future.

Continue reading ‘Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community’

Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton

Highlights

• Long term mesocosm study (∼100 d) with simulated ocean acidification conditions.

• Increased levels of domoic acid in CO2 enriched mesocosm towards the end of the study.

• Occurrence of several classes of phycotoxins in the Gullmar Fjord, Sweden.

Abstract

Enrichment of the oceans with CO2 may be beneficial for some marine phytoplankton, including harmful algae. Numerous laboratory experiments provided valuable insights into the effects of elevated pCO2 on the growth and physiology of harmful algal species, including the production of phycotoxins. Experiments close to natural conditions are the next step to improve predictions, as they consider the complex interplay between biotic and abiotic factors that can confound the direct effects of ocean acidification. We therefore investigated the effect of ocean acidification on the occurrence and abundance of phycotoxins in bulk plankton samples during a long-term mesocosm experiment in the Gullmar Fjord, Sweden, an area frequently experiencing harmful algal blooms. During the experimental period, a total of seven phycotoxin-producing harmful algal genera were identified in the fjord, and in accordance, six toxin classes were detected. However, within the mesocosms, only domoic acid and the corresponding producer Pseudo-nitzschia spp. was observed. Despite high variation within treatments, significantly higher particulate domoic acid contents were measured in the mesocosms with elevated pCO2. Higher particulate domoic acid contents were additionally associated with macronutrient limitation. The risks associated with potentially higher phycotoxin levels in the future ocean warrants attention and should be considered in prospective monitoring strategies for coastal marine waters.

Continue reading ‘Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,356,819 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book