Posts Tagged 'modeling'

Dissolved inorganic carbon export from rivers of Great Britain: spatial distribution and potential catchment-scale controls

Highlights

  • A survey of DIC was carried out across 41 rivers in Great Britain.
  • Results were examined in relation to land cover and natural gradients across Great Britain.
  • Estimated average yield of DIC from the survey catchments to the sea was 8.13 t ha−1 yr−1.
  • Free CO2 concentrations were strongly linked to catchment macro-nutrient status.
  • Free CO2 yield at was estimated to be 0.56 t C km2 yr−1.

Abstract

Dissolved inorganic carbon (DIC) fluxes from the land to ocean have been quantified for many rivers globally. However, CO2 fluxes to the atmosphere from inland waters are quantitatively significant components of the global carbon cycle that are currently poorly constrained. Understanding, the relative contributions of natural and human-impacted processes on the DIC cycle within catchments may provide a basis for developing improved management strategies to mitigate free CO2 concentrations in rivers and subsequent evasion to the atmosphere. Here, a large, internally consistent dataset collected from 41 catchments across Great Britain (GB), accounting for ∼36% of land area (∼83,997 km2) and representative of national land cover, was used to investigate catchment controls on riverine dissolved inorganic carbon (DIC), bicarbonate (HCO3) and free CO2 concentrations, fluxes to the coastal sea and annual yields per unit area of catchment. Estimated DIC flux to sea for the survey catchments was 647 kt DIC yr−1 which represented 69% of the total dissolved carbon flux from these catchments. Generally, those catchments with large proportions of carbonate and sedimentary sandstone were found to deliver greater DIC and HCO3 to the ocean. The calculated mean free CO2 yield for survey catchments (i.e. potential CO2 emission to the atmosphere) was 0.56 t C km−2 yr−1. Regression models demonstrated that whilst river DIC (R2 = 0.77) and HCO3 (R2 = 0.77) concentrations are largely explained by the geology of the landmass, along with a negative correlation to annual precipitation, free CO2 concentrations were strongly linked to catchment macronutrient status. Overall, DIC dominates dissolved C inputs to coastal waters, meaning that estuarine carbon dynamics are sensitive to underlying geology and therefore are likely to be reasonably constant. In contrast, potential losses of carbon to the atmosphere via dissolved CO2, which likely constitute a significant fraction of net terrestrial ecosystem production and hence the national carbon budget, may be amenable to greater direct management via altering patterns of land use.

Continue reading ‘Dissolved inorganic carbon export from rivers of Great Britain: spatial distribution and potential catchment-scale controls’

Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep convection region

Deep convection plays a key role in the circulation, thermodynamics and biogeochemical cycles in the Mediterranean Sea, considered as a hotspot of biodiversity and climate change. In the framework of the DEWEX (Dense Water Experiment) project, the seasonal cycle and annual budget of dissolved inorganic carbon in the deep convection area of the northwestern Mediterranean Sea are investigated over the period September 2012–September 2013, using a 3-dimensional coupled physical-biogeochemical-chemical modeling approach. We estimate that the northwestern Mediterranean Sea deep convection region was a moderate sink of CO2 for the atmosphere over the study period. The model results show the reduction of CO2 uptake during deep convection, and its increase during the abrupt spring phytoplankton bloom following the deep convection events. We highlight the dominant role of both biological and physical flows in the annual dissolved inorganic carbon budget. The upper layer of the northwestern deep convection region gained dissolved inorganic carbon through vertical physical supplies and, to a lesser extent, air-sea flux, and lost dissolved inorganic carbon through lateral transport and biological fluxes. The region, covering 2.5 % of the Mediterranean, acted as a source of dissolved inorganic carbon for the surface and intermediate water masses of the western and southern Western Mediterranean Sea and could contribute up to 10 and 20 % to the CO2 exchanges with the Eastern Mediterranean Sea and the Atlantic Ocean.

Continue reading ‘Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep convection region’

Expert opinions on threats and impacts in the marine environment

We study expert opinions on global, marine threats and potential impacts to the environment and to society, using a survey dataset with more than 1500 respondents. The sample provides a panel of respondents across scientific disciplines, age groups, and institution types. We divide the respondents into two groups based on their main disciplinary background (science, technology, engineering, and mathematics [STEM] and social science and humanities [SSH]). We can thus analyze potential differences in the assessment of marine threats and impacts across disciplines. The two groups largely agree on which threats and impacts are the most important. Further, more or less the same issues are listed as both environmental and societal concerns. These issues include overfishing, climate change (global warming, ocean acidification), pollution (plastics), and habitat damage. We also find interesting differences across the two disciplinary groups, in particular regarding sea level rise, biodiversity loss, and invasive species. Similarities and differences between the disciplinary groups largely hold up when controlling for demographic variables such as age and institution type.

Continue reading ‘Expert opinions on threats and impacts in the marine environment’

Neural networks and the seawater CO2 system. From the global ocean to the Ría de Vigo

This doctoral dissertation is structured in six chapters and two appendices. From this point the reader is warned about the independent numbering in each chapter, both for sections and subsections as well as for figures and tables, that is, the numbering restarts at the beginning of each chapter. Chapter I is divided into two parts. On the one hand, the topic of the doctoral dissertation is introduced in a general way to put in context the different research studies that are part of it. This introduction presents the key concepts on climate change and ocean acidification necessary to approach the reading of the following chapters. On the other hand, the main and secondary objectives that are addressed in the next chapters are detailed. Chapter II develops the construction of a global and seasonal climatology of total alkalinity. The chapter details for the first time in the thesis the use of neural networks. This methodology is used throughout the manuscript, highlighting the peculiarities associated with each study in each of the chapters where it is applied. This chapter has been published in Earth System Science Data: https://doi.org/10.5194/essd-11-1109-2019 Chapter III describes the development of a total dissolved inorganic carbon climatology. In general terms, a methodology similar to that of chapter II is used, although with certain relevant nuances such as the inclusion of a new database. In this chapter, a pCO2 climatology is also generated in a secondary way to evaluate the consistency between the two climatologies previously generated in this thesis. This chapter has been published in Earth System Science Data: https://doi.org/10.5194/essd-12-1725-2020.


Chapter IV completely changes the scale of the previous two chapters and focuses on the study of sweater CO2 chemistry system on a regional scale. Specifically, neural networks are used to generate time series of total alkalinity and pH at various locations in the Ría de Vigo. From the time series, the magnitude of seasonal variability and interannual trends for these variables are analyzed. This chapter has been published in Biogeosciences Discussions: https://doi.org/10.5194/bg-2021-33, 2021 Chapter V contains an analysis of the variability of the hydrogen ion concentration and the aragonite saturation state in the Ría de Vigo. This analysis is carried out from the time series of these variables that are constructed thanks to the study developed in chapter IV. Chapters II to V are structured in the same way as a typical scientific article, thus containing an introduction, methodology, results, discussion and conclusions about each study. Finally, chapter VI summarizes the main conclusions derived from the complete work shown through this doctoral thesis. It is worth noting the inclusion of two appendices in the final part of the thesis. Appendix I details the meaning of each of the acronyms, abbreviations and symbols used throughout the manuscript. Appendix II contains a summary of the doctoral dissertation in Spanish

Continue reading ‘Neural networks and the seawater CO2 system. From the global ocean to the Ría de Vigo’

SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise

We present SURFER, a novel reduced model for estimating the impact of CO2 emissions and solar radiation modification options on sea level rise and ocean acidification over timescales of several thousands of years. SURFER has been designed for the analysis of CO2 emission and solar radiation modification policies, for supporting the computation of optimal (CO2 emission and solar radiation modification) policies and for the study of commitment and responsibility under uncertainty. The model is based on a combination of conservation laws for the masses of atmospheric and oceanic carbon and for the oceanic temperature anomalies, and of ad-hoc parameterisations for the different sea level rise contributors: ice sheets, glaciers and ocean thermal expansion. It consists of 9 loosely coupled ordinary differential equations, is understandable, fast and easy to modify and calibrate. It reproduces the results of more sophisticated, high-dimensional earth system models on timescales up to millennia.

Continue reading ‘SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise’

Assessing the future carbon budget through the lens of policy-driven acidification and temperature targets

Basing a future carbon budget on warming targets is subject to uncertainty due to uncertainty in the relationship between carbon emissions and warming, and may not prevent dangerous change throughout the entire climate system. Here, we use a climate emulator to constrain a future carbon budget that is more representative by using a combination of both warming and ocean acidification targets. The warming targets considered are the Paris Agreement targets of 1.5 and 2°C; the acidification targets are -0.17 and -0.21 pH units informed by aragonite saturation states. Considering acidification targets in conjunction with warming targets is found to narrow the uncertainty in the future carbon budget, especially in situations where the acidification target is more stringent than, or of similar stringency to, the warming target. Considering a strict combination of the two more stringent targets (both targets of 1.5°C warming and -0.17 acidification must be met), the carbon budget ranges from -74.0 to 129.8PgC. This reduces uncertainty in the carbon budget from 286.2PgC to 203.8PgC (29%). Assuming an emissions rate held constant since 2021 (which is a conservative assumption), the budget towards both targets was either spent by 2019, or will be spent by 2026.

Continue reading ‘Assessing the future carbon budget through the lens of policy-driven acidification and temperature targets’

Excess pCO2 and carbonate system geochemistry in surface seawater of the exclusive economic zone of Qatar (Arabian Gulf)

Highlights

  • pCO2 in surface seawater is supersaturated with respect to the atmosphere
  • pCO2 increases due to increases in T and S
  • Calcification, a source for CO2, occurs in corals not in the water column
  • The main sink for CO2 is loss by gas exchange
  • Net primary production is a minor control on pCO2

Abstract

Dissolved inorganic carbon (DIC) and total alkalinity (TA) were sampled in December 2018 and May 2019 in the Exclusive Economic Zone (EEZ) of Qatar in the Arabian Gulf. pCO2, pH and CO32− were calculated from DIC and TA. TA, DIC and salinity increase in the Gulf due to evaporation after entering through the Strait of Hormuz. Temperature also increases. The pCO2 in surface seawater averaged 458 ± 62 which was higher than the atmospheric value of 412 ppm. Hence, the Gulf was a source of CO2 to the atmosphere. pCO2 in seawater is controlled by TA relative to DIC as well as temperature and salinity. A hypothetical model calculation was used to estimate how much pCO2 could increase in surface seawater due to various processes after entering through the Strait of Hormuz. Increases in T and S, in the absence of biogeochemical processes, would increase pCO2 to 537 μatm, more than enough to explain the high pCO2 observed. CO2 is lost from the Gulf due to gas exchange, decreasing DIC, and reducing pCO2 to 464 μatm, similar to that observed. The impact of biological processes depends on the process: calcification increases pCO2 while net primary production decreases pCO2. Salinity-normalized (to S = 40) total alkalinity (NTA) and dissolved inorganic carbon (NDIC) in surface seawater decrease as waters flow north from Hormuz. The slope suggests that removal of C as CaCO3, organic matter (CH2O) or gas exchange (FCO2) is occurring with a ratio of ΔCaCO3/(ΔCH2O or FCO2) = 1:2.86. The tracer Alk*, defined as the deviation of potential alkalinity (AP) (where AP = TA + 1.26 [NO3]) from conservative potential alkalinity ((ApC), (ApC = S Ap′S′ where A’P and S′ are mean values for the whole surface ocean) has values primarily determined by CaCO3 precipitation and dissolution. Its values in the Gulf ranged from −50 to −310 μmol kg−1 implying CaCO3 precipitation. The average value of ΔAlk*, the difference in Alk* between specific locations in the Qatari EEZ and the surface water entering through the Strait of Hormuz, was −130 μmol kg−1 which corresponded to a calcification of 65 μmol kg−1. Our model calculations indicate that this would increase pCO2 to 577 μatm. Carbonate forming plankton have not been observed in the water column suggesting that calcification occurs in corals, even though they have been severely damaged by past bleaching events. The amount of DIC removed by net primary production is small, consistent with an oligotrophic food web dominated by remineralization. It appears that the role of biological production in the water column for the control of pCO2 is very small. The high observed pCO2 reflects a balance between sources due to the impact of increasing T and S on the carbonate system equilibrium constants and net calcification and sinks due to CO2 loss due to gas exchange and net primary production in surface seawater after it enters the Gulf through the Strait of Hormuz.

Continue reading ‘Excess pCO2 and carbonate system geochemistry in surface seawater of the exclusive economic zone of Qatar (Arabian Gulf)’

The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 ESMs and implications for the ocean carbon cycle

Ocean alkalinity is critical to the uptake of atmospheric carbon in surface waters and provides buffering capacity towards associated acidification. However, unlike dissolved inorganic carbon (DIC), alkalinity is not directly impacted by anthropogenic carbon emissions. Within the context of projections of future ocean carbon uptake and potential ecosystem impacts, especially through Coupled Model Intercomparison Projects (CMIPs), the representation of alkalinity and the main driver of its distribution in the ocean interior, the calcium carbonate cycle, have often been overlooked. Here we track the changes from CMIP5 to CMIP6 with respect to the Earth system model (ESM) representation of alkalinity and the carbonate pump which depletes the surface ocean in alkalinity through biological production of calcium carbonate, and releases it at depth through export and dissolution. We report a significant improvement in the representation of alkalinity in CMIP6 ESMs relative to those in CMIP5. This improvement can be explained in part by an increase in calcium carbonate (CaCO3) production for some ESMs, which redistributes alkalinity at the surface and strengthens its vertical gradient in the water column. We were able to constrain a PIC export estimate of 51–70 Tmol yr-1 at 100 m for the ESMs to match the observed vertical gradient of alkalinity. Biases in the vertical profile of DIC have also significantly decreased, especially with the enhancement of the carbonate pump, but the representation of the saturation horizons has slightly worsened in contrast. Reviewing the representation of the CaCO3 cycle across CMIP5/6, we find a substantial range of parameterizations. While all biogeochemical models currently represent pelagic calcification, they do so implicitly, and they do not represent benthic calcification. In addition, most models simulate marine calcite but not aragonite. In CMIP6 certain model groups have increased the complexity of simulated CaCO3 production, sinking, dissolution and sedimentation. However, this is insufficient to explain the overall improvement in the alkalinity representation, which is therefore likely a result of improved marine biogeochemistry model tuning or ad hoc parameterizations. We find differences in the way ocean alkalinity is initialized that lead to offsets of up to 1 % in the global alkalinity inventory of certain models. These initialization biases should be addressed in future CMIPs by adopting accurate unit conversions. Although modelers aim to balance the global alkalinity budget in ESMs in order to limit drift in ocean carbon uptake under preindustrial conditions, varying assumptions in the closure of the budget have the potential to influence projections of future carbon uptake. For instance, in many models, carbonate production, dissolution and burial are independent of the seawater saturation state, and when considered, the range of sensitivities is substantial. As such, the future impact of ocean acidification on the carbonate pump, and in turn ocean carbon uptake, is potentially underestimated in current ESMs and insufficiently constrained.

Continue reading ‘The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 ESMs and implications for the ocean carbon cycle’

Modified future diurnal variability of the global surface ocean CO2 system

Our understanding of how increasing atmospheric CO2 and climate change influences the marine CO2 system and in turn ecosystems, has increasingly focussed on perturbations to carbonate chemistry variability. This variability can affect ocean-climate feedbacks and has been shown to influence marine ecosystems. The seasonal variability of the ocean CO2 system has already changed, with enhanced seasonal variations in the surface ocean pCO2 over recent decades and further amplification projected by models over the 21st century. Mesocosm studies and CO2 vent sites indicate that diurnal variability of the CO2 system, the amplitude of which in extreme events can exceed that of mean seasonal variability, is also likely to be altered by climate change. Here we modified a global ocean biogeochemical model to resolve physically and biologically driven diurnal variability of the ocean CO2 system. Forcing the model with 3-hourly atmospheric outputs derived from an Earth system model, we explore how surface ocean diurnal variability responds to historical changes and project how it changes under two contrasting 21st century emissions scenarios. Compared to preindustrial values, the global mean diurnal amplitude of pCO2 increases by 4.8 μatm (+226 %) in the high-emissions scenario but only 1.2 μatm (+55 %) in the high-mitigation scenario. The probability of extreme diurnal amplitudes of pCO2 and [H+] is also affected, with 30- to 60-fold increases relative to the preindustrial under high twenty-first century emissions. The main driver of heightened pCO2 diurnal variability is the enhanced sensitivity of pCO2 to changes in temperature as the ocean absorbs atmospheric CO2. Our projections suggest that organisms in the future ocean will be exposed to enhanced diurnal variability in pCO2 and [H+], with likely increases in the associated metabolic cost that such variability imposes.

Continue reading ‘Modified future diurnal variability of the global surface ocean CO2 system’

Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model

Atmospheric and oceanic CO2 concentrations are rising at an unprecedented rate. Laboratory studies indicate a positive effect of rising CO2 on phytoplankton growth until an optimum is reached, after which the negative impact of accompanying acidification dominates. Here, we implemented carbonate system sensitivities of phytoplankton growth into our global biogeochemical model FESOM-REcoM and accounted explicitly for coccolithophores as the group most sensitive to CO2. In idealized simulations in which solely the atmospheric CO2 mixing ratio was modified, changes in competitive fitness and biomass are not only caused by the direct effects of CO2, but also by indirect effects via nutrient and light limitation as well as grazing. These cascading effects can both amplify or dampen phytoplankton responses to changing ocean pCO2 levels. For example, coccolithophore growth is negatively affected both directly by future pCO2 and indirectly by changes in light limitation, but these effects are compensated by a weakened nutrient limitation resulting from the decrease in small-phytoplankton biomass. In the Southern Ocean, future pCO2 decreases small-phytoplankton biomass and hereby the preferred prey of zooplankton, which reduces the grazing pressure on diatoms and allows them to proliferate more strongly. In simulations that encompass CO2-driven warming and acidification, our model reveals that recent observed changes in North Atlantic coccolithophore biomass are driven primarily by warming and not by CO2. Our results highlight that CO2 can change the effects of other environmental drivers on phytoplankton growth, and that cascading effects may play an important role in projections of future net primary production.

Continue reading ‘Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model’

Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium

Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.

Continue reading ‘Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium’

Crustacean decapods are models to describe the general trends of biodiversity according to ocean acidification

A remarkable lack of punctual and comparable data on the availability of trophic resources characterizes most studies relating biodiversity and food webs, but decapod crustaceans will help, in this study, finding some peculiar common trends of ecosystems. Structural properties of networks, as statistically investigated, affect their stability and food webs are ultimately considered as complex networks of biotic interactions. Fixed mathematical limits constrain the number of species naturally assembled in a community, even if species composition was progressively modified by climate changes: the biodiversity has space constraints. Consequently, since there is less space at higher latitudes than at lower ones, less species may be predicted to globally co-exist, as the planet warms up and the oceans acidify. Here, according to some key mathematical relationships of networks, we forecast an inverse relationship between connectance (a specific feature of food webs) and species diversity. In this chapter, we will apply these relationships to test a general model of biodiversity trends based on the responses of crustacean decapods to the abundance of feeding sources, in a range of environments variably impacted by O.A. The conclusions reached within this chapter will demonstrate consistent properties characterizing the assemblages of aquatic creatures, and extensible to various structural levels, from single cells to the largest ecosystems.

Continue reading ‘Crustacean decapods are models to describe the general trends of biodiversity according to ocean acidification’

Towards modelling cold-water coral reef-scale crumbling: including morphological variability in mechanical surrogate models

The structural complexity of cold-water corals is threatened by ocean acidification. Increased porosity and weakening of structurally critical parts of the reef framework may lead to rapid physical collapse on an ecosystem scale, reducing their potential for biodiversity support. We can use computational models to describe the mechanisms leading to reef-crumbling. How-ever, the implementation of such models into an efficient predictive tool that allows us to determine risk and timescales of reef collapse is missing. Here, we identified possible surrogate models to represent the branching architecture of the cold-water coral species Lophelia pertusa. For length scales greater than 13 cm, a continuum finite element mechanical approach can be used to analyse mechanical competence whereas at smaller length scales, mechanical surrogate models need to explicitly account for the statistical differences in the structure. We showed large morphological variations between L. pertusa colonies and branches, as well as dead and live skeletal structures, which need to be considered for the development of rapid monitoring tools for predicting risk of cold-water coral reefs crumbling. This will allow us to investigate timescales of changes, including the impact of exposure times to acidified waters on reef-crumbling.

Continue reading ‘Towards modelling cold-water coral reef-scale crumbling: including morphological variability in mechanical surrogate models’

Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink

The enhanced seasonal amplitude of atmospheric CO2 has been viewed so far primarily as a Northern Hemisphere phenomenon. Yet, analyses of atmospheric CO2 records from 49 stations between 1980 and 2018 reveal substantial trends and variations in this amplitude globally. While no significant trends can be discerned before 2000 in most places, strong positive trends emerge after 2000 in the southern high latitudes. Using factorial simulations with an atmospheric transport model and analyses of surface ocean Pco2 observations, we show that the increase is best explained by the onset of increasing seasonality of air-sea CO2 exchange over the Southern Ocean around 2000. Underlying these changes is the long-term ocean acidification trend that tends to enhance the seasonality of the air-sea fluxes, but this trend is modified by the decadal variability of the Southern Ocean carbon sink. The seasonal variations of atmospheric CO2 thus emerge as a sensitive recorder of the variations of the Southern Ocean carbon sink.

Continue reading ‘Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink’

Source-labeled anthropogenic carbon reveals a large shift of preindustrial carbon from the ocean to the atmosphere

Abstract

Two centuries of anthropogenic CO2 emissions have increased the CO2 concentration of the atmosphere and the dissolved inorganic carbon (DIC) concentration of the ocean compared to preindustrial times. These anthropogenic carbon perturbations are often equated to the amount of anthropogenically emitted carbon in the atmosphere or ocean, which ignores the possibility of a shift of natural carbon between the oceanic and atmospheric carbon reservoirs. Here we use a data-assimilated ocean circulation model and numerical tracers akin to ideal isotopes to label carbon when it is emitted by anthropogenic sources. We find that emitted carbon accounts for only about 45% of the atmospheric CO2 increase since preindustrial times, the remaining 55% being natural CO2 that outgassed from the ocean in response to anthropogenically emitted carbon invading the ocean. This outgassing is driven by the order-10 seawater carbonate buffer factor which causes increased leakage of natural CO2 as DIC concentrations increase. By 2020, the ocean had outgassed ∼159 Pg of natural carbon, which is counteracted by the ocean absorbing ∼347 Pg of emitted carbon, about 1.8 times more than the net increase in oceanic carbon storage of ∼188 PgC. These results do not challenge existing estimates of anthropogenically driven changes in atmospheric or oceanic carbon inventories, but they shed new light on the composition of these changes and the fate of anthropogenically emitted carbon in the Earth system.

Key Points

  • Anthropogenically emitted carbon accounts for about half of the atmospheric CO2 increase since preindustrial times
  • The remaining half of the atmospheric CO2 increase is due to outgassing of preindustrial carbon from the ocean
  • By 2020, the ocean had lost 1 preindustrial CO2 molecule for every 2.2 anthropogenically emitted CO2 molecules gained
Continue reading ‘Source-labeled anthropogenic carbon reveals a large shift of preindustrial carbon from the ocean to the atmosphere’

Environmental change impacts on shell formation in the muricid Nucella lapillus

Environmental change is a significant threat to marine ecosystems worldwide. Ocean acidification, global warming and long-term emissions of anthropogenic effluents are all negatively impacting aquatic life. Marine calcifying organisms, in particular, are expected to be severely affected by decreasing seawater pH, resulting in shell dissolution and retardations during the formation and repair of shells. Understanding the underlying biological and environmental factors driving species vulnerabilities to habitat alterations is thus crucial to our ability to faithfully predict impacts on marine ecosystems under an array of environmental change scenarios. So far, existing knowledge about organism responses mainly stems from short to medium term laboratory experiments of single species or over- simplified communities. Although these studies have provided important insights, results may not translate to organism responses in a complex natural system requiring a more holistic experimental approach. In this thesis, I investigated shell formation mechanisms and shape and elemental composition responses in the shell of the important intertidal predatory muricid Nucella lapillus both in situ and across heterogeneous environmental gradients. The aim was to identify potential coping mechanisms of N. lapillus to environmental change and provide a more coherent picture of shell formation responses along large ecological gradients in the spatial and temporal domain. To investigate shell formation mechanisms, I tested for the possibility of shell recycling as a function to reduce calcification costs during times of exceptional demand using a multi-treatment shell labelling experiment. Reports on calcification costs vary largely in the literature. Still, recent discoveries showed that costs might increase as a function of decreasing calcification substrate abundance, suggesting that shell formation becomes increasingly more costly under future environmental change scenarios. However, despite the anticipated costs, no evidence was found that would indicate the use of functional dissolution as a means to recycle shell material for a more cost-efficient shell formation in N. lapillus. To investigate shell formation responses, I combined morphometric and shell thickness analyses with novel statistical methods to identify natural shape and thickness response of N. lapillus to large scale variability in temperature, salinity, wind speed and the carbonate system across a wide geographic range (from Portugal to Iceland) and through time (over 130 years). I found that along geographical gradients, the state of the carbonate system and, more specifically, the substrate inhibitor ratio ([HCO3−][H+]−1) (SIR) was the main predictor for shape variations in N. lapillus. Populations in regions with a lower SIR tend to form narrower shells with a higher spire to body whorl ratio. In contrast, populations in regions with a higher SIR form wider shells with a much lower spire to body whorl ratio. The results suggest a widespread phenotypic response of N. lapillus to continuing ocean acidification could be expected, affecting its phenotypic response patterns to predator or wave exposure regimes with profound implications for North Atlantic rocky shore communities. On the contrary, investigations of shell shape and thickness changes over the last 130 years from adjacent sampling regions on the Southern North Sea coast revealed that contrary to global predictions, N. lapillus built continuously thicker shells while maintaining a consistent shell shape throughout the last century. Systematic modelling efforts suggested that the observed shell thickening resulted from higher annual temperatures, longer yearly calcification windows, nearshore eutrophication, and enhanced prey abundance, which mitigated the impact of other climate change factors. An investigation into the trace elemental composition of common pollutant metals in the same archival N. lapillus specimens revealed that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant throughout the last 130 years despite substantial shifts in the environmental concentration. However, Pb/Ca concentration ratios showed a definite trend closely aligned with leaded petrol emissions in Europe over the same period. Discussing physiological and environmental drivers for the observed shell bound heavy metal patterns, I argue that, unlike for Pb, constraints on environmental dissolved Cu species abundance and biologically mediated control on internal Zn levels were likely responsible for a decoupling of shell-bound to total ambient Cu and Zn concentrations. The results highlight the complexity of internal and external pathways that govern the uptake of heavy metals into the molluscan shell and suggest that the shell of N. lapillus could be a suitable archive for a targeted investigation of Pb pollution in the intertidal zone.

Continue reading ‘Environmental change impacts on shell formation in the muricid Nucella lapillus’

Co-occurring anthropogenic stressors reduce the timeframe of environmental viability for the world’s coral reefs

Anthropogenic disturbances are posing unprecedented challenges to the persistence of ecosystems worldwide. The speed at which these disturbances reach an ecosystem’s tolerance thresholds will determine the time available for adaptation and conservation. Here, we aim to calculate the year after which a given environmental stressor permanently exceeds the bounds of an ecosystem’s tolerance. Ecosystem thresholds are here defined as limits in a given stressor beyond which ecosystems have showed considerable changes in community assembly and functioning, becoming remnants of what they once were, but not necessarily leading to species extirpation or extinction. Using the world’s coral reefs as a case example, we show that the projected effects of marine heatwaves, ocean acidification, storms, land-based pollution, and local human stressors are being underestimated considerably by looking at disturbances independently. Given the spatial complementarity in which numerous disturbances impact the world’s coral reefs, we show that the timelines of environmental suitability are halved when all disturbances are analyzed simultaneously, as opposed to independently. Under business-as-usual scenarios, the median year after which environmental conditions become unsuitable for the world’s remaining coral reefs was, at worse, 2050 for any one disturbance alone (28 years left); but when analyzed concurrently, this date was shortened to 2035 (13 years left). When analyzed together, disturbances reduced the date of environmental suitability because areas that may remain suitable under one disturbance could become unsuitable by any of several other variables. The significance of co-occurring disturbances at reducing timeframes of environmental suitability was evident even under optimistic scenarios. The best-case scenario, characterized by strong mitigation of greenhouse gas emissions and optimistic human development, resulted in 41% of global coral reefs with unsuitable conditions by 2100 under any one disturbance independently; yet when analyzed in combination up to 64% of the world’s coral reefs could face unsuitable environmental conditions by one disturbance or another. Under the worst-case scenario, nearly all coral reef ecosystems worldwide (approximately 99%) will permanently face unsuitable conditions by 2055 in at least one of the disturbances analyzed. Prior studies have indicated the projected dire effects of climate change on coral reefs by mid-century; by analyzing a multitude of projected disturbances, our study reveals a much more severe prognosis for the world’s coral reefs as they have significantly less time to adapt while highlighting the urgent need to tackle available solutions to human disturbances.

Continue reading ‘Co-occurring anthropogenic stressors reduce the timeframe of environmental viability for the world’s coral reefs’

Tipping points of marine phytoplankton to multiple environmental stressors

Globally, anthropogenic climate change is threatening marine species. However, whether and how global marine phytoplankton, which represent the base of marine food webs, will exceed their tipping points under multiple climate factors remain unclear. Here, by establishing machine learning models, we identified the tipping points of global marine phytoplankton production and resistance under eight environmental stressors. Phytoplankton production and resistance are affected by multiple factors and the temperature and partial pressure of carbon dioxide dominate the risks for reaching their tipping points. If the current emission scenario continues, 50% (40–61% at 90% confidence) and 41% (2–80% at 90% confidence) of tropical areas would reach the tipping points of ongoing phytoplankton production and resistance decline, respectively, in 2100. Compared with single- or few-factor studies, machine learning (for example, ensemble machine learning) provides a powerful and realistic solution for policy-makers facing large-scale ecological responses to global climate changes under multiple environmental stressors.

Continue reading ‘Tipping points of marine phytoplankton to multiple environmental stressors’

A numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean

Coupled physical–biogeochemical models can fill the spatial and temporal gap in ocean carbon observations. Challenges of applying a coupled physical–biogeochemical model in the regional ocean include the reasonable prescription of carbon model boundary conditions, lack of in situ observations, and the oversimplification of certain biogeochemical processes. In this study, we applied a coupled physical–biogeochemical model (Regional Ocean Modelling System, ROMS) to the Gulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution (5 km, 1/22°) hindcast covering the period of 2000 to 2019. The biogeochemical model incorporated the dynamics of dissolved organic carbon (DOC) pools and the formation and dissolution of carbonate minerals. The biogeochemical boundaries were interpolated from NCAR’s CESM2-WACCM-FV2 solution after evaluating the performance of 17 GCMs in the GoM waters. Model outputs included carbon system variables of wide interest, such as pCO2, pH, aragonite saturation state (ΩArag), calcite saturation state (ΩCalc), CO2 air–sea flux, and carbon burial rate. The model’s robustness is evaluated via extensive model–data comparison against buoys, remote-sensing-based machine learning (ML) products, and ship-based measurements. A reassessment of air–sea CO2 flux with previous modeling and observational studies gives us confidence that our model provides a robust and updated CO2 flux estimation, and NGoM is a stronger carbon sink than previously reported. Model results reveal that the GoM water has been experiencing a ∼ 0.0016 yr−1 decrease in surface pH over the past 2 decades, accompanied by a ∼ 1.66 µatm yr−1 increase in sea surface pCO2. The air–sea CO2 exchange estimation confirms in accordance with several previous models and ocean surface pCO2 observations that the river-dominated northern GoM (NGoM) is a substantial carbon sink, and the open GoM is a carbon source during summer and a carbon sink for the rest of the year. Sensitivity experiments are conducted to evaluate the impacts of river inputs and the global ocean via model boundaries. The NGoM carbon system is directly modified by the enormous carbon inputs (∼ 15.5 Tg C yr−1 DIC and ∼ 2.3 Tg C yr−1 DOC) from the Mississippi–Atchafalaya River System (MARS). Additionally, nutrient-stimulated biological activities create a ∼ 105 times higher particulate organic matter burial rate in NGoM sediment than in the case without river-delivered nutrients. The carbon system condition of the open ocean is driven by inputs from the Caribbean Sea via the Yucatan Channel and is affected more by thermal effects than biological factors.

Continue reading ‘A numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean’

Arctic Ocean annual high in pCO2 could shift from winter to summer

Long-term stress on marine organisms from ocean acidification will differ between seasons. As atmospheric carbon dioxide (CO2) increases, so do seasonal variations of ocean CO2 partial pressure (pCO2), causing summer and winter long-term trends to diverge1,2,3,4,5. Trends may be further influenced by an unexplored factor—changes in the seasonal timing of pCO2. In Arctic Ocean surface waters, the observed timing is typified by a winter high and summer low6 because biological effects dominate thermal effects. Here we show that 27 Earth system models simulate similar timing under historical forcing but generally project that the summer low, relative to the annual mean, eventually becomes a high across much of the Arctic Ocean under mid-to-high-level CO2 emissions scenarios. Often the greater increase in summer pCO2, although gradual, abruptly inverses the chronological order of the annual high and low, a phenomenon not previously seen in climate-related variables. The main cause is the large summer sea surface warming7 from earlier retreat of seasonal sea ice8. Warming and changes in other drivers enhance this century’s increase in extreme summer pCO2 by 29 ± 9 per cent compared with no change in driver seasonalities. Thus the timing change worsens summer ocean acidification, which in turn may lower the tolerance of endemic marine organisms to increasing summer temperatures.

Continue reading ‘Arctic Ocean annual high in pCO2 could shift from winter to summer’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: