Posts Tagged 'modeling'

Monitoring of offshore geological carbon storage integrity: implications of natural variability in the marine system and the assessment of anomaly detection criteria


  • Marine monitoring strategy for offshore geological storage integrity.
  • Baseline pH variability characterised for the North Sea.
  • Ability to distinguish anomalies of 0.01 pH from background variability.
  • Characterisation of distinct potential storage sites.
  • Identification of baseline characterisation strategy to support monitoring.

The design of efficient monitoring programmes required for the assurance of offshore geological storage requires an understanding of the variability and heterogeneity of marine carbonate chemistry. In the absence of sufficient observational data and for extrapolation both spatially and seasonally, models have a significant role to play. In this study a previously evaluated hydrodynamic-biogeochemical model is used to characterise carbonate chemistry, in particular pH heterogeneity in the vicinity of the sea floor. Using three contrasting regions, the seasonal and short term variability are analysed and criteria that could be considered as indicators of anomalous carbonate chemistry identified. These criteria are then tested by imposing a number of randomised DIC perturbations on the model data, representing a comprehensive range of leakage scenarios. In conclusion optimal criteria and general rules for developing monitoring strategies are identified. Detection criteria will be site specific and vary seasonally and monitoring may be more efficient at periods of low dynamics. Analysis suggests that by using high frequency, sub-hourly monitoring anomalies as small as 0.01 of a pH unit or less may be successfully discriminated from natural variability – thereby allowing detection of small leaks or at distance from a leakage source. Conversely assurance of no leakage would be profound. Detection at deeper sites is likely to be more efficient than at shallow sites where the near bed system is closely coupled to surface processes. Although this study is based on North Sea target sites for geological storage, the model and the general conclusions are relevant to the majority of offshore storage sites lying on the continental shelf.

Continue reading ‘Monitoring of offshore geological carbon storage integrity: implications of natural variability in the marine system and the assessment of anomaly detection criteria’

Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ωar  < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ωar conditions in the natural environment. Combining field observations, high-CO2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ωar < 1. Our results suggest that both exposure magnitude and duration affect pteropod responses in the natural environment. However, observed declines in calcification performance and survival probability under high CO2 experimental conditions do not show acclimatization capacity or physiological tolerance related to history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ωar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.

Continue reading ‘Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast’

Drivers and implications of change in global ocean health over the past five years

Growing international and national focus on quantitatively measuring and improving ocean health has increased the need for comprehensive, scientific, and repeated indicators to track progress towards achieving policy and societal goals. The Ocean Health Index (OHI) is one of the few indicators available for this purpose. Here we present results from five years of annual global assessment for 220 countries and territories, evaluating potential drivers and consequences of changes and presenting lessons learned about the challenges of using composite indicators to measure sustainability goals. Globally scores have shown little change, as would be expected. However, individual countries have seen notable increases or declines due in particular to improvements in the harvest and management of wild-caught fisheries, the creation of marine protected areas (MPAs), and decreases in natural product harvest. Rapid loss of sea ice and the consequent reduction of coastal protection from that sea ice was also responsible for declines in overall ocean health in many Arctic and sub-Arctic countries. The OHI performed reasonably well at predicting near-term future scores for many of the ten goals measured, but data gaps and limitations hindered these predictions for many other goals. Ultimately, all indicators face the substantial challenge of informing policy for progress toward broad goals and objectives with insufficient monitoring and assessment data. If countries and the global community hope to achieve and maintain healthy oceans, we will need to dedicate significant resources to measuring what we are trying to manage.

Continue reading ‘Drivers and implications of change in global ocean health over the past five years’

Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)

The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.

Continue reading ‘Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)’

The role of biological rates in the simulated warming effect on oceanic CO2 uptakel

Marine biology plays an important role in the ocean carbon cycle. However, the effect of warming-induced changes in biological rates on oceanic CO2 uptake has been largely overlooked. We use an Earth system model of intermediate complexity to investigate the effect of temperature-induced changes in biological rates on oceanic uptake of atmospheric CO2 and compare it with the effects from warming-induced changes in CO2 solubility and ocean mixing and circulation. Under the representative CO2 concentration pathway RCP 8.5 and its extension, by year 2500, relative to the simulation without warming effect on the ocean carbon cycle, CO2-induced warming reduces cumulative oceanic CO2 uptake by 469 Pg C, of which about 20% is associated with the warming-induced change in marine biological rates. In our simulations, the bulk effect of biological-mediated changes on CO2 uptake is smaller than that mediated by changes in CO2 solubility and ocean mixing and circulation. However, warming-induced changes in individual biological rates, including phytoplankton growth, phytoplankton mortality, and detritus remineralization, are found to affect oceanic CO2 uptake by an amount greater than or comparable to that caused by changes in CO2 solubility and ocean physics. Our simulations, which include only a few temperature-dependent biological processes, demonstrate the important role of biological rates in the oceanic CO2 uptake. In reality, many more complicated biological processes are sensitive to temperature change, and their responses to warming could substantially affect oceanic uptake of atmospheric CO2.

Continue reading ‘The role of biological rates in the simulated warming effect on oceanic CO2 uptakel’

Sensitivity of future ocean acidification to carbon climate feedbacks

Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future trajectory for ocean acidification. Here, we use the CO2 emissions scenarios from 4 Representative Concentration Pathways (RCPs) with an Earth System Model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of under-saturated aragonite conditions in the Southern and Arctic Oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under higher emission scenarios (RCP8.5 and RCP6.0), the carbon-climate feedbacks advance the onset of under-saturation conditions and the reduction in suitable coral reef habitat by a decade or more. The impact of the carbon-climate feedback is most significant for the medium (RCP4.5) and low emission (RCP2.6) scenarios. For RCP4.5 scenario by 2100, the carbon-climate feedbacks nearly double the area of surface water under-saturated respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For RCP2.6 scenario by 2100, the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of under-saturated surface water by 20 %. The high sensitivity of the impact of ocean acidification to the carbon-climate feedbacks in the low to medium emissions scenarios is important because our recent commitments to reduce CO2 emissions are trying to move us on to such an emissions scenario. The study highlights the need to better characterise the carbon-climate feedbacks to ensure we do not excessively stress the oceans by under-estimating the future impact of ocean acidification.

Continue reading ‘Sensitivity of future ocean acidification to carbon climate feedbacks’

Spatial patterns of Anchoveta (Engraulis ringens) eggs and larvae in relation to pCO2 in the Peruvian upwelling system

Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta (Engraulis ringens) constitute the world’s largest single-species fishery and live in one of the ocean’s highest pCO2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in pCO2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and pCO2 were collected during a cruise off Peru in 2013. pCO2 ranged from 167–1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6–10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) pCO2 waters, and larvae were collected in warmer, higher salinity, and moderate (400–600 µatm) pCO2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high pCO2 and these eggs had lower survival. Enhanced understanding of the influence of pCO2 on Anchoveta spawning and larva mortality, together with pCO2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.

Continue reading ‘Spatial patterns of Anchoveta (Engraulis ringens) eggs and larvae in relation to pCO2 in the Peruvian upwelling system’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,013,357 hits


Ocean acidification in the IPCC AR5 WG II

OUP book