Posts Tagged 'primary production'

Moving ocean acidification research beyond a simple science: investigating ecological change and their stabilizers

The response of complex ecological communities to ocean acidification reflects interactions among species that propagate or dampen ecological change. Yet, most studies have been based on short-term experiments with limited numbers of interacting species. Both limitations tend to exaggerate measured effects and when combined with our predisposition for investigating change, we reduce insight into pathways of stability, acclimation and adaptation. Here, we review accepted and emerging insights into processes that drive ecological change (top-down and bottom-up) and the stabilizing processes by which ecological complexity may dampen change. With an emphasis on kelp forest examples, we show that boosted primary productivity from enriched CO2 creates competitive imbalances that drive habitat change, but we also recognise intensifying herbivory on these habitats dampens this change. Foraging herbivores thrive on CO2 enriched plants and over successive generations their populations expand. When we consider such population level responses, we open new questions regarding density-effects (e.g. competition, susceptibility to predation and disease), as well as the bottom-up benefits to predators. Nevertheless, research on predators has lagged behind because their wide-ranging behaviour typically imposes logistical difficulties for observational and experimental research. We know that ocean warming imposes elevated metabolic costs on their foraging whilst acidification hampers navigation of their larvae towards suitable habitat and impairs their hunting and avoidance of predators as adults. Connecting such top-down with bottom-up responses is fundamental for progress, and is also contingent on understanding the mechanisms that dampen change. These stabilizers have the potential to keep pace with abiotic change and thereby influence the drivers of acclimation and adaption. Certainly, we acknowledge that investigating change is often simpler and associated bold messages appeal to citation impact. Yet, if we are to anticipate the ability of complex ecological communities to persist in changing environments, then understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels is central to this challenge.

Continue reading ‘Moving ocean acidification research beyond a simple science: investigating ecological change and their stabilizers’

High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi

Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.

Continue reading ‘High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi’

Nitrogen nutritional condition affects the response of energy metabolism in diatoms to elevated carbon dioxide

Marine phytoplankton are expected to benefit from enhanced carbon dioxide (CO2), attributable largely to down-regulation of the CO2 concentrating mechanism (CCM) which saves energy resources for other cellular processes. However, the nitrogen (N) nutritional condition (N-replete vs. N-limiting) of phytoplankton may affect the responses of their intracellular metabolic processes to elevated CO2. We cultured the model diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Thalassiosira weissflogii at ambient and elevated CO2 levels under N-replete and N-limiting conditions. Key metabolic processes, including light harvesting, C fixation, photorespiration, respiration, and N assimilation, were assessed systematically and then incorporated into an energy budget to compare the effects of CO2 on the metabolic pathways and the consequent changes in photosynthesis and C fixation as a result of energy reallocation under the different N nutritional conditions. Under the N-replete condition, down-regulation of the CCM at high CO2 was the primary contributor to increased photosynthesis rates of the diatoms. Under N-limiting conditions, elevated CO2 significantly affected the photosynthetic photon flux and respiration, in addition to CCM down-regulation and declines in photorespiration, resulting in an increase of the C:N ratio in all 3 diatom species. In T. pseudonana and T. weissflogii, the elevated C:N ratio was driven largely by an increased cellular C quota, whereas in P. tricornutum it resulted primarily from a decreased cellular N quota. The N-limited diatoms therefore could fix more C per unit of N in response to elevated CO2, which could potentially provide a negative feedback to the ongoing increase in atmospheric CO2.

Continue reading ‘Nitrogen nutritional condition affects the response of energy metabolism in diatoms to elevated carbon dioxide’

Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: Insights from an in situ mesocosm study

Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes – summarized by the term ocean acidification (OA) – can significantly affect marine food webs and biogeochemical cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather eutrophic environments, while less attention has been paid to oligotrophic systems such as the subtropical ocean gyres.

Here we report from a recent in situ mesocosm experiment off the coast of Gran Canaria in the eastern subtropical North Atlantic, where we investigated the influence of OA on the ecology and biogeochemistry of plankton communities in oligotrophic waters under close-to-natural conditions. This paper is the first in this Research Topic of Frontiers in Marine Biogeochemistry and provides (1) a detailed overview of the experimental design and important events during our mesocosm campaign, and (2) first insights into the ecological responses of plankton communities to simulated OA over the course of the 62-day experiment.

One particular scientific objective of our mesocosm experiment was to investigate how OA impacts might differ between oligotrophic conditions and phases of high biological productivity, which regularly occur in response to upwelling of nutrient-rich deep water in the study region. Therefore, we specifically developed a deep water collection system that allowed us to obtain ~85 m3 of seawater from ~650 m depth. Thereby, we replaced ~20% of each mesocosm’s volume with deep water, and thus successfully simulated a deep water upwelling event that induced a pronounced plankton bloom.

Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom that developed in response to deep water addition. Such CO2-related shifts in plankton community composition could have consequences for ecosystem productivity, biomass transfer to higher trophic levels, and biogeochemical element cycling of oligotrophic ocean regions.

Continue reading ‘Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: Insights from an in situ mesocosm study’

Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment

Effects of elevated pCO2 on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO2 to 760 ppmv whilst the other three enclosures were bubbled with air at ambient pCO2; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene (gpa) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated pCO2 treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high-pCO2 treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein (mcp) gene. EhV diversity was much lower in the high-pCO2 treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses.

Continue reading ‘Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment’

Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community

We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2) of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT) by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I) curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

Continue reading ‘Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community’

Elevated pCO2 enhances bacterioplankton removal of organic carbon

Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean.

Continue reading ‘Elevated pCO2 enhances bacterioplankton removal of organic carbon’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 991,916 hits


Ocean acidification in the IPCC AR5 WG II

OUP book