Posts Tagged 'physiology'

Investigating the effect of silicate and calcium based ocean alkalinity enhancement on diatom silicification

Gigatonne-scale atmospheric carbon dioxide removal (CDR) will almost certainly be needed to supplement the emission reductions required to keep global warming between 1.5–2 °C. Ocean alkalinity enhancement (OAE) is an emerging marine CDR method with the addition of pulverized minerals to the surface ocean being one widely considered approach. A concern of this approach is the potential for dissolution products released from minerals to impact phytoplankton communities. We conducted an experiment with 10 pelagic mesocosms (M1–M10) in Raunefjorden, Bergen, Norway to assess the implications of simulated silicate- and calcium-based mineral OAE on a coastal plankton community. Five mesocosms (M1, M3, M5, M7 and M9) were enriched with silicate (~75 µmol L-1 Na2SiO3), alkalinity along a gradient from 0 to ~600 µmol kg-1, and magnesium in proportion to alkalinity additions. The other five mesocosms (M2, M4, M6, M8, M10) were enriched with alkalinity along the same gradient and calcium in proportion to alkalinity additions. The experiment explored many components of the plankton community, from microbes to fish larvae, and here we report on the influence of mineral based OAE on diatom silicification. Macronutrients (nitrate and phosphate) limited silicification at the onset of the experiment until nutrient additions on day 26. Silicification was significantly greater in the silicate-based mineral treatments, with silicate concentrations limiting silicification in the calcium-based treatment. The degree of silicification varied significantly between genera, and genera specific silicification also varied significantly between alkalinity mineral sources, with the exception of CylindrothecaPseudo-nitzschia was the only genus affected by alkalinity, whereby silicification increased with increasing alkalinity during some periods of the experiment. No other genera displayed significant changes in silicification as a result of alkalinity increases between 0 and 600 µmol kg-1 above natural levels. Nor did we observe any indication of interactive effects between simulated mineral dissolution products and changes in carbonate chemistry. Previous experiments have provided evidence of alkalinity effects on diatoms underscoring the necessity for further studies under a range of boundary/environmental conditions to extract a more robust pattern of diatom responses to OAE. In summary, our findings suggest limited genus-specific impacts of alkalinity on diatoms, while also highlighting the importance of understanding the full breadth of different OAE approaches, their risks, co-benefits, and potential for interactive effects.

Continue reading ‘Investigating the effect of silicate and calcium based ocean alkalinity enhancement on diatom silicification’

Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats


  • Ocean acidification (OA) and warming (OW) alter algae-herbivore interactions
  • OA and OW modify biochemical composition of the kelp Lessonia spicata.
  • Changes in kelp biochemical composition affect snail’s feeding behaviour.
  • OW and OA conditions increased snail’s metabolic stress.
  • Nutritional quality of food plays a key role on grazers’ physiological energetics.


Anthropogenically induced global climate change has caused profound impacts in the world ocean. Climate change related stressors, like ocean acidification (OA) and warming (OW) can affect physiological performance of marine species. However, studies evaluating the impacts of these stressors on algae-herbivore interactions have been much more scarce. We approached this issue by assessing the combined impacts of OA and OW on the physiological energetics of the herbivorous snail Tegula atra, and whether this snail is affected indirectly by changes in biochemical composition of the kelp Lessonia spicata, in response to OA and OW. Our results show that OA and OW induce changes in kelp biochemical composition and palatability (organic matter, phenolic content), which in turn affect snails’ feeding behaviour and energy balance. Nutritional quality of food plays a key role on grazers’ physiological energetics and can define the stability of trophic interactions in rapidly changing environments such as intertidal communities.

Continue reading ‘Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats’

Hidden impacts of climate change on biological responses of marine life

Conflicting results remain on how climate change affects the biological performance of different marine taxa, hindering our capacity to predict the future state of marine ecosystems. Using a novel meta-analytical approach, we tested for directional changes and deviations across biological responses of fish and invertebrates from exposure to warming (OW), acidification (OA), and their combination. In addition to the established effects of climate change on calcification, survival and metabolism, we found deviations in the physiology, reproduction, behavior, and development of fish and invertebrates, resulting in a doubling of responses significantly affected when compared to directional changes. Widespread deviations of responses were detected even under moderate (IPCC RCP6-level) OW and OA for 2100, while directional changes were mostly limited to more severe (RCP 8.5) exposures. Because such deviations may result in ecological shifts impacting ecosystem structure and processes, our results suggest that OW and OA will likely have stronger impacts than those previously predicted based on directional changes alone.

Continue reading ‘Hidden impacts of climate change on biological responses of marine life’

Impact of ocean acidification on bioactive compounds production by marine phytoplankton, Off Visakhapatnam, Bay of Bengal

Shallow coastal regions face heightened vulnerability due to human development, making them susceptible to substantial influxes of human-caused inputs alongside waters with low pH levels. This research delved into a microcosm pH alteration experiment to explore the impact of pH reduction on the generation of bioactive substances by marine phytoplankton in the eutrophic coastal waters of the Bay of Bengal. Initially, the prevalent compounds in the surface seawater were fucoxanthin at 75%, zeaxanthin at 10%, and other bioactive elements like diadinoxanthin, diatoxanthin, and β-carotene collectively contributing to around 15%. Notably, all bioactive compounds and Chl-a concentrations significantly favored the control container (ranging from 35–70%), while the least growth occurred in the more acidified experimental containers (15–40%).

In alignment with the above findings, the nutrient uptake rates were comparably diminished in the acidified experimental containers compared to the control group. The ratio between protective bioactive compounds (Diato + Diadino + Zea + β-Car) and synthetic bioactive compounds (Fuco + Chl-a) varied from 0.03 to 0.8, with the control container exhibiting the lowest values, and the more acidified experimental containers displaying the highest values of significance. Similarly, the DT index (diatoxanthin / (diatoxanthin + diadinoxanthin)) ratios followed a parallel pattern, with the control container showing the lowest average ratios and the acidified experimental containers displaying the highest ratios. Furthermore, based on our current study, we postulated that acidified water stimulates the proliferation of carotenoid-based bioactive compounds in marine regions more prominently than their synthetic counterparts. Mainly, the production of bioactive compounds in these experiments could also be influenced by our acidification method.

Continue reading ‘Impact of ocean acidification on bioactive compounds production by marine phytoplankton, Off Visakhapatnam, Bay of Bengal’

Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai

Ocean acidification (OA) results from the absorption of anthropogenic CO2 emissions by the ocean and threatens the survival of many marine calcareous organisms including molluscs. We studied OA effects on adult shells of the abalone species Haliotis diversicolor and Haliotis discus hannai that were exposed to three pCO2 conditions (ambient, ∼880, and ∼1600 μatm) for 1 year. Shell periostracum corrosion under OA was observed for both species. OA reduced shell hardness and altered the nacre ultrastructure in H. diversicolor, making its shells more vulnerable to crushing force. OA exposure did not reduce the shell hardness of H. discus hannai and did not alter nacre ultrastructure. However, the reduced calcification also decreased its resistance to crushing force. Sr/Ca in the shell increased with rising calcification rate. Mg/Ca increased upon OA exposure could be due to a complimentary mechanism of preventing shell hardness further reduced. The Na/Ca distribution between the aragonite and calcite of abalone shells was also changed by OA. In general, both abalone species are at a greater risk in a more acidified ocean. Their shells may not provide sufficient protection from predators or to transportation stress in aquaculture.

Continue reading ‘Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai’

Impacts of ocean acidification on physiology and ecology of marine invertebrates: a comprehensive review

Ocean acidification (OA) arises as a consequence of excessive carbon dioxide (CO2) inputs into the ocean, a situation further exacerbated by anthropogenic gas emissions. Predictions indicate that seawater surface pH will decrease by 0.4 by the end of the twenty-first century. Notably, studies have observed significant alterations in molluscan assemblages due to OA, leading to a substantial decline of 43% in species richness and 61% in overall mollusc abundance. Moreover, OA has been associated with a 13 ± 3% reduction in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950, particularly affecting marine invertebrates. Given these impacts, this review aims to comprehensively assess the research status and main effects of OA on the physiology and ecology of marine invertebrates over the past two decades, employing bibliometric analysis. Additionally, this review aims to offer valuable insights into potential future research directions. The analysis reveals that research on OA and its influence on marine invertebrates is predominantly conducted in Europe, America, and Australia, reflecting the local extent of acidification and the characteristics of species in these regions. OA significantly affects various physiological aspects of marine invertebrates, encompassing the calcification process, oxidative stress, immunity, energy budget, metabolism, growth, development, and genetics, consequently impacting their behaviour and causing disruptions in the population structure and marine ecosystem. As a result, future research should aim to intimately connect the different physiological mechanisms of marine invertebrates with comprehensive ecosystem evaluation, such as investigating the relationships between food webs, abiotic factors, energy, and matter flow. Furthermore, it is crucial to explore the interactive effects of OA with other stressors, assess the potential for adaptation and acclimation in marine invertebrates, and evaluate the broader ecological implications of OA on entire marine ecosystems. Emphasizing these aspects in future studies will contribute significantly to our understanding of OA’s impact on marine invertebrates and facilitate effective conservation and management strategies for these vital biological communities within marine ecosystems.

Continue reading ‘Impacts of ocean acidification on physiology and ecology of marine invertebrates: a comprehensive review’

Transgenerational adaptation to ocean acidification determines the susceptibility of filter-feeding rotifers to nanoplastics

The adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO2 conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+). Adaptation of rotifers to elevated CO2 caused differences in ingestion and accumulation of NPs, resulting in a significantly different mode of action on in vivo endpoints between the ST+ and LT+ groups. Moreover, microRNA-mediated epigenetic regulation was strongly correlated with the varied adaptive responses between the ST+ and LT+ groups, revealing novel regulatory targets and pathways. Our results indicate that pre-exposure history to increased CO2 levels is an important factor in the susceptibility of rotifers to NPs.

Continue reading ‘Transgenerational adaptation to ocean acidification determines the susceptibility of filter-feeding rotifers to nanoplastics’

Influence of seagrass on juvenile Pacific oyster growth in two US west coast estuaries with different environmental gradients

Ocean acidification threatens many marine organisms, including oysters. Seagrass habitat has been suggested as a potential refuge for oysters because it may ameliorate stressful carbonate chemistry and augment food availability. We conducted an in situ study to investigate whether eelgrass Zostera marina habitat affects the growth of juvenile Pacific oysters Crassostrea gigas and influences local carbonate chemistry or food quantity at sites where we expected contrasting conditions in two US west coast estuaries. Juvenile oysters were out-planted in typical intertidal on-bottom (just above sediment) and off-bottom (45 cm above sediment) culture positions and in adjacent eelgrass and unvegetated habitats from June to September 2019. Water quality was measured with sondes for 24 h periods each month, and discrete water samples were collected in conjuncture. Results show that eelgrass habitat did not alter average local carbonate chemistry (pH, pCO2, Ωcalcite), but consistently reduced available food (relative chlorophyll a). Eelgrass habitat had little to no effect on the shell or tissue growth of juvenile oysters but may have influenced their energy allocation; oysters displayed a 16% higher ratio of shell to tissue growth in eelgrass compared to unvegetated habitat when cultured on-bottom. At the seascape scale, average site-level pH was negatively correlated with shell to tissue growth but not with shell growth alone. Overall, these findings suggest that juvenile oysters may display a compensatory response and allocate more energy to shell than tissue growth under stressful conditions like acidic water and/or altered food supply due to reduced immersion or eelgrass presence.

Continue reading ‘Influence of seagrass on juvenile Pacific oyster growth in two US west coast estuaries with different environmental gradients’

Energy metabolism of Mytilus galloprovincialis under low seawater pH (in Russian)

The problem of acidification of the World Ocean and predicting the consequences for its inhabitants is becoming more and more relevant every year. The effect of short-term pH fluctuations in coastal ecosystems on the physiology of calcifying organisms—bivalves—remains poorly understood. The energy metabolism of the Black Sea mussel Mytilus galloprovincialis was investigated for the marine environment in a wide pH range, from 8.2 to 6.65. Lowering the pH to 7.0–7.5 led to a 20–25 % reduction in oxygen consumption by molluscs. At lower pH (6.54–6.7), aerobic respiration sharply decreased by 85–90 %, down to the minimum values (2.12–2.62 µgO2 /g dry/h), and the organisms transitioned to anaerobic metabolism. The metabolic response of the mussels subjected to short-term pH changes (8.2→6.65→7.2) has been investigated. The oxygen consumption of molluscs exposed at the same pH of 7.2 depended on the direction of the change in pH. Thus, in the case of pH 6.65→7.2, the respiration intensity was 30 % higher compared to the values obtained under the acidification pH 8.2→7.2. The Black Sea mussel M. galloprovincialis is shown to have the capacity for survival in the marine environment characterized by the rapid fluctuations in pH that occur during the upwelling events in the coastal areas of the Black Sea.

Continue reading ‘Energy metabolism of Mytilus galloprovincialis under low seawater pH (in Russian)’

Early life physiological and energetic responses of Atlantic silversides (Menidia menidia) toocean acidification, warming, and hypoxia

Global environmental change caused by human actions is making the oceans warmer, deoxygenating coastal waters, and causing acidification through dissolution of atmospheric carbon dioxide (CO2). Understanding physiological mechanisms of fish responses to multiple co-occurring stressors is critical to conservation of marine ecosystems and the fish populations they support. In this dissertation I quantified physiological impacts of near-future levels of multiple stressors in the early life stages of the Atlantic silverside, Menidia menidia. In Chapter 1, I measured routine metabolic rates of embryos and larvae reared in combinations of temperature, CO2, and oxygen levels. An interactive effect of acidification and hypoxia in embryos prompted closer examination in Chapter 2, in which I characterized the relationship between metabolism and acute hypoxia in M. menidia offspring reared in different CO2 levels. In Chapter 3 I examined the density of skin surface ionocytes, cells used for acid-base balance, as an early life mechanism of high CO2 tolerance. The first three chapters highlighted how different CO2 effects could be depending on temperature, oxygen levels, and life stage. They also showed variable, but often high, tolerance of CO2 with stronger effects of temperature and hypoxia on physiology. Finally, in Chapter 4 I used a Dynamic Energy Budget model to identify the processes of energetic allocation responsible for previously observed experimental hypoxia effects on M. menidia hatching, growth, and survival. Energy budget modeling can enhance knowledge about stressor responses by providing the information to link organismal traits to life history and populations, making it more readily applicable to conservation and management. The findings presented here provide a foundation for a more comprehensive understanding of the highly variable effects of global change on M. menidia and should be applied to quantifying impacts on fitness and population growth in this ecologically important species.

Continue reading ‘Early life physiological and energetic responses of Atlantic silversides (Menidia menidia) toocean acidification, warming, and hypoxia’

Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics


  • In the northern Barents Sea there is a seasonal pattern of production and size distribution of planktonic foraminifers and pteropods, increasing from winter (March) to summer (July–August) and late autumn (December).
  • In general, pteropods dominate over planktonic foraminifera in the Arctic influenced stations.
  • In the study area, pteropods contribute the most (>80%) to carbon standing stocks and export production.
  • The highest values of carbon standing stocks and export production were found in the seasonal ice zone during all seasons.


The Barents Sea is presently undergoing rapid warming and the sea-ice edge and the productive zones are retreating northward at accelerating rates. Planktonic foraminifers and shelled pteropods are ubiquitous marine calcifiers that play an important role in the carbon budget and being particularly sensitive to ocean biogeochemical changes and ocean acidification. Their distribution at high latitudes have rarely been studied, and usually only for the summer season. Here we present results of their distribution patterns in the upper 300 m in the water column (individuals m−3), protein content and size distribution on a seasonal basis to estimate their inorganic and organic carbon standing stocks (µg m−3) and export production (mg m−2 d−1). The study area constitutes a latitudinal transect in the northern Barents Sea from 76˚ N to 82˚ N including seven stations through both Atlantic, Arctic, and Polar surface water regimes and the marginal and seasonal sea-ice zones. The transect was sampled in 2019 (August and December) and 2021 (March, May, and July). The highest carbon standing stocks and export production were found at the Polar seasonally sea-ice covered shelf stations with the contribution from shelled pteropods being significantly higher than planktonic foraminifers during all seasons. We recorded the highest production of foraminifers and pteropods in summer (August 2019 and July 2021) and autumn (December 2019) followed by spring (May 2021), and the lowest in winter (March 2021).

Continue reading ‘Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics’

Elucidating the mechanisms of stress tolerance in reef-building coral holobionts

Coral reefs worldwide are threatened by climate change effects like increasing ocean warming and ocean acidification. These increased pressures cause a dysbiosis between the coral host, algal endosymbionts, and associated coral microbiome that results in the coral host expelling algal endosymbionts, leaving the coral host with a stark white ‘bleached’ appearance. Without their endosymbionts, coral hosts are forced to sustain themselves energetically with heterotrophy instead of relying on the autotrophic carbon and energy sources that once came from the algal endosymbionts. When this response, termed ‘coral bleaching’, happens reef-wide during an extreme wave of increased ocean temperatures, this is called a mass Coral Bleaching Event. The frequency and intensity of mass Coral Bleaching events are increasing around the world, forcing corals to acclimatize to survive. This dissertation investigates the physiological and genomic mechanisms underlying acclimatization and increased stress tolerance in two common, reef-building corals: Montipora capitata and Pocillopora acuta. In three chapters, I present findings that support phenotypic plasticity and increased stress tolerance in M. capitata and hypothesize the mechanisms contributing to this. In Chapter 1, I conducted an ex-situ experiment that mimicked an environmentally realistic, extended heatwave and ocean acidification scenario in a factorial design of increased temperature and increased pCO2 conditions for a two-month stress period and a two-month recovery period. Both species’ physiological states were significantly challenged but M. capitata displayed a more favorable photosynthetic rate to antioxidant capacity ratio and associated with more thermally tolerant symbionts. Although M. capitata survived at higher rates than P. acuta, physiological state was still significantly impacted after two months of recovery, suggesting that marine heatwaves likely induce physiological legacies that may impact performance during the next, inevitable heatwave. In Chapter 2, I further investigated P. acuta’s stress response from Chapter 1 at a genomic level. We sought to test the effects of environmental stressors on gene body DNA methylation patterns to elucidate how environmentally sensitive and dynamic DNA methylation changes are in invertebrates. However, when analyzing gene expression data, our team found that polyploidy was prevalent in our samples, which convoluted our ability to test environmental effect in addition to polyploidy structure. We found that DNA methylation patterns followed polyploidy genetic lineage with diploid corals exhibiting the highest levels of DNA methylation despite lower gene expression levels of epigenetic machinery proteins. Despite significant DNA methylation pattern differences between polyploidies, P. acuta populations still severely declined in increased stress conditions (outlined in Chapter 1), suggesting that regardless of differential gene body methylation and ploidy status, this species may be ultimately too sensitive to future ocean conditions. In Chapter 3, I further investigated the genomic mechanisms underlying stress response in Montipora capitata, by directly comparing bleached (‘Susceptible’) and non-bleached (‘Resistant’) phenotypes of conspecific pairs. We found very little genetic diversity among our samples suggesting there is no effect of genetic structure on phenotypic variation in this context. ‘Resistant’ corals were characterized by association with more thermally tolerant symbionts, lower gene expression variability, higher gene body methylation levels on genes involved in death and stress response, and a more robust cellular stress response. The results of all three chapters suggest that both physiological and genomic stats impact bleaching susceptibility and phenotype and that not one mechanism may act alone to produce a particular phenotype. This dissertation aids in elucidating the mechanisms of stress response in reef-building corals, ultimately guiding our current knowledge of phenotypic variation in the face of climate change.

Continue reading ‘Elucidating the mechanisms of stress tolerance in reef-building coral holobionts’

Ocean acidification affects the response of the coastal coccolithophore Pleurochrysis carterae to irradiance

The ecologically important marine phytoplankton group coccolithophores have a global distribution. The impacts of ocean acidification on the cosmopolitan species Emiliania huxleyi have received much attention and have been intensively studied. However, the species-specific responses of coccolithophores and how these responses will be regulated by other environmental drivers are still largely unknown. To examine the interactive effects of irradiance and ocean acidification on the physiology of the coastal coccolithophore species Pleurochrysis carterae, we carried out a semi-continuous incubation experiment under a range of irradiances (50, 200, 500, 800 μmol photons m−2 s−1) at two CO2 concentration conditions of 400 and 800 ppm. The results suggest that the saturation irradiance for the growth rate was higher at an elevated CO2 concentration. Ocean acidification weakened the particulate organic carbon (POC) production of Pleurochrysis carterae and the inhibition rate was decreased with increasing irradiance, indicating that ocean acidification may affect the tolerating capacity of photosynthesis to higher irradiance. Our results further provide new insight into the species-specific responses of coccolithophores to the projected ocean acidification under different irradiance scenarios in the changing marine environment.

Continue reading ‘Ocean acidification affects the response of the coastal coccolithophore Pleurochrysis carterae to irradiance’

Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments

Microbial iron reduction is a crucial process in natural ecosystems, contributing to the cycling of elements and supporting the biological activities of organisms. However, the significance of fermentative iron reduction in marine environments and microbial metabolism remains understudied compared with iron reduction coupled with respiration. The main objective of our study was to investigate the influence of fermentative iron reduction on microbial populations and marine sediment. Our findings revealed a robust iron-reducing activity in the enriched marine sediment, demonstrating a maximum ferrihydrite-reducing rate of 0.063 mmol/h. Remarkably, ferrihydrite reduction exhibited an intriguing pH-buffering effect through the release of OH+ and Fe2+ ions, distinct from fermentation alone. This effect resulted in substantial improvements in glucose consumption (71.4%), bacterial growth (48.1%), and metabolite production (80.8%). To further validate the acidification-buffering and metabolism-promoting effects of ferrihydrite reduction, we conducted iron-reducing experiments using a pure strain, Clostridium pasteurianum DMS525. The observed pH-buffering effect resulted from microbial iron reduction in marine sediment and has potential environmental implications by reducing CO2 emissions, mitigating acidification, and preserving the delicate balance of marine ecosystems.

Continue reading ‘Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments’

Ocean acidification reduces iodide production by the marine diatom Chaetoceros sp. (CCMP 1690)


  • Ocean acidification had no effect on growth rates of the diatom Chaetoceros sp. CCMP (1690) but higher cell yield under high CO2.
  • Ocean acidifcation has the potential to inhibit the diatom-mediated iodate to iodide reduction process.
  • Iodide production was decoupled from iodate uptake and refute the proposed link between iodide produced and cell membrane permeability.


Phytoplankton in marine surface waters play a key role in the global iodine cycle. The biologically-mediated iodide production under future scenarios is limited. Here we compare growth, iodate to iodide conversion rate and membrane permeability in the diatom Chaetoceros sp. (CCMP 1690) grown under seawater carbonate chemistry conditions projected for 2100 (1000 ppm) and pre-industrial (280 ppm) conditions. We found no effect of CO2 on growth rates, but a significantly higher cell yield under high CO2, suggesting sustained growth from relief from carbon limitation. Cell normalised iodate uptake (16.73 ± 0.92 amol IO3 cell−1) and iodide production (8.61 ± 0.15 amol I cell−1) was lower in cultures grown at high pCO2 than those exposed to pre-industrial conditions (21.29 ± 2.37 amol IO3 cell−1, 11.91 ± 1.49 amol I cell−1, respectively). Correlating these measurements with membrane permeability, we were able to ascertain that iodide conversion rates were not linked to cell permeability and that the processes of mediated iodate loss and diatom-iodide formation are decoupled. These findings are the first to implicate OA in driving a potential shift in diatom-mediated iodate reduction. If our results are indicative of diatom-mediated iodine cycling in 2100, future surface ocean conditions could experience reduced rates of iodide production by Chaetoceros spp., potentially lowering iodide concentrations in ocean regions dominated by this group. These changes have the potential to impact ozone cycling and new particle formation in the atmosphere.

Continue reading ‘Ocean acidification reduces iodide production by the marine diatom Chaetoceros sp. (CCMP 1690)’

The combined effect of pH and dissolved inorganic carbon concentrations on the physiology of plastidic ciliate Mesodinium rubrum and its cryptophyte prey

Ocean acidification is caused by rising atmospheric partial pressure of CO2 (pCO2) and involves a lowering of pH combined with increased concentrations of CO2 and dissolved in organic carbon in ocean waters. Many studies investigated the consequences of these combined changes on marine phytoplankton, yet only few attempted to separate the effects of decreased pH and increased pCO2. Moreover, studies typically target photoautotrophic phytoplankton, while little is known of plastidic protists that depend on the ingestion of plastids from their prey. Therefore, we studied the separate and interactive effects of pH and DIC levels on the plastidic ciliate Mesodinium rubrum, which is known to form red tides in coastal waters worldwide. Also, we tested the effects on their prey, which typically are cryptophytes belonging to the Teleaulax/Plagioslemis/Geminigera species complex. These cryptophytes not only serve as food for the ciliate, but also as a supplier of chloroplasts and prey nuclei. We exposed M. rubrum and the two cryptophyte species, T. acuta, T. amphioxeia to different pH (6.8 – 8) and DIC levels (∼ 6.5 – 26 mg C L-1) and assessed their growth and photosynthetic rates, and cellular chlorophyll a and elemental contents. Our findings did not show consistent significant effects across the ranges in pH and/or DIC, except for M. rubrum, for which growth was negatively affected only by the lowest pH of 6.8 combined with lower DIC concentrations. It thus seems that M. rubrum is largely resilient to changes in pH and DIC, and its blooms may not be strongly impacted by the changes in ocean carbonate chemistry projected for the end of the 21th century.

Continue reading ‘The combined effect of pH and dissolved inorganic carbon concentrations on the physiology of plastidic ciliate Mesodinium rubrum and its cryptophyte prey’

Physiological and ecological tipping points caused by ocean acidification

Ocean acidification is predicted to cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to calcify and grow, and by influencing the photo-physiology of many others. In both calcifying and non-calcifying taxa, ocean acidification could further impair the ability of marine life to regulate internal pH, and thus metabolic function and/or behaviour. Identifying tipping points at which these effects will occur for different taxa due to the direct impacts of ocean acidification on organism physiology is difficult and they have not adequately been determined for most taxa, nor for ecosystems at higher levels. This is due to the presence of both resistant and sensitive species within most taxa. However, calcifying taxa such as coralline algae, corals, molluscs, and sea urchins appear to be most sensitive to ocean acidification. Conversely, non-calcareous seaweeds, seagrasses, diatoms, cephalopods, and fish tend to be more resistant, or even benefit from the direct effects of ocean acidification. While physiological tipping points of the effects of ocean acidification either do not exist or are not well defined, their direct effects on organism physiology will have flow on indirect effects. These indirect effects will cause ecologically tipping points in the future through changes in competition, herbivory and predation. Evidence for indirect effects and ecological change is mostly taken from benthic ecosystems in warm temperate–tropical locations in situ that have elevated CO2. Species abundances at these locations indicate a shift away from calcifying taxa and towards non-calcareous at high CO2 concentrations. For example, lower abundance of corals and coralline algae, and higher covers of non-calcareous macroalgae, often turfing species, at elevated CO2. However, there are some locations where only minor changes, or no detectable change occurs. Where ecological tipping points do occur, it is usually at locations with naturally elevated pCO2 concentrations of 500 μatm or more, which also corresponds to just under that concentrations where the direct physiological impacts of ocean acidification are detectable on the most sensitive taxa in laboratory research (coralline algae and corals). Collectively, the available data support the concern that ocean acidification will most likely cause ecological change in the near future in most benthic marine ecosystems, with tipping points in some ecosystems at as low as 500 μatm pCO2. However, much more further research is required to more adequately quantify and model the extent of these impacts in order to accurately project future marine ecosystem tipping points under ocean acidification.

Continue reading ‘Physiological and ecological tipping points caused by ocean acidification’

Differential reaction norms to ocean acidification in two oyster species from contrasting habitats

Ocean acidification (OA), a consequence of the increase in anthropogenic emissions of carbon dioxide, causes major changes in the chemistry of carbonates in the ocean with deleterious effects on calcifying organisms. The pH/pCO2 range to which species are exposed in nature is important to consider when interpreting the response of coastal organisms to OA. In this context, emerging approaches, which assess the reaction norms of organisms to a wide pH gradient, are improving our understanding of tolerance thresholds and acclimation potential to OA. In this study, we decipher the reaction norms of two oyster species living in contrasting habitats: the intertidal oyster Crassostrea gigas and the subtidal flat oyster Ostrea edulis, which are two economically and ecologically valuable species in temperate ecosystems. Six-month-old oysters of each species were exposed in common garden for 48 days to a pH gradient ranging from 7.7 to 6.4 (total scale). Both species are tolerant down to a pH of 6.6 with high plasticity in fitness-related traits such as survival and growth. However, oysters undergo remodelling of membrane fatty acids to cope with decreasing pH along with shell bleaching impairing shell integrity and consequently animal fitness. Finally, our work reveals species-specific physiological responses and highlights that intertidal C. gigas seems to have a better acclimation potential to rapid and extreme OA changes than O. edulis. Overall, our study provides important data about the phenotypic plasticity and its limits in two oyster species, which is essential for assessing the challenges posed to marine organisms by OA.

Continue reading ‘Differential reaction norms to ocean acidification in two oyster species from contrasting habitats’

Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach

Ocean acidification, warmer temperatures, and the expansion of hypoxic zones in coastal areas are direct consequences of the increase in anthropogenic activities. However, so far, the combined effects of these stressors on calcium carbonate-secreting marine microorganisms – foraminifera are complex and poorly understood. This study reports the foraminiferal survival behavior, and geochemical trace elements incorporation measured from the shells of living cultured benthic foraminifera from the Gullmar fjord (Sweden) after exposure to warming, acidification, and hypoxic conditions. An experimental set-up was designed with two different temperatures (fjord’s in-situ 9 ˚C and 14 ˚C), two different oxygen concentrations (oxic versus hypoxic), and three different pH (control, medium, and low pH based on the IPCC scenario for the year 2100). Duplicate aquariums, meaning aquariums displaying the same conditions and same number of species, were employed for the controls and the two lower pH conditions at both temperatures. The stability of the aquariums was ensured by regular measurement of the water parameters and confirmed by statistical analysis. The species Ammonia confertitesta’s (T6) survival (CTB-labeled), shell calcification (calcein-labeled), and geochemical analyses (laser-ablation ICP-MS) were investigated at the end of the experimental period (48 days). Investigated trace elements (TE) ratios were Mg/Ca, Mn/Ca, Ba/Ca, and Sr/ Ca. Results show that A. confertitesta (T6) calcified chambers in all the experimental conditions except for the most severe combination of stressors (i.e., warm, hypoxic, low pH). Survival rates varied by up to a factor of two between duplicates for all conditions suggesting that foraminiferal response may not solely be driven by environmental conditions but also by internal or confounding factors (e.g., physiological stress). A large variability of all the TE/Ca values of foraminifera growing at low pH is observed suggesting that A. confertitesta (T6) may struggle to calcify in these conditions. Thus, this study demonstrates the vulnerability of a resilient species to the triple-stressor scenario in terms of survival, calcification, and trace element incorporation. Overall, the experimental set-up yielded coherent results compared to previous studies in terms of ontogeny, trace elements ratios, and partition coefficient making it advantageous for environmental reconstructions. 

Continue reading ‘Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach’

Experimental ocean acidification and food limitation reveals altered energy budgets and synergistic effects on mortality of larvae of a coastal fish

Ocean acidification (OA) presents a unique challenge to early life stages of marine species. Developing organisms must balance the need to grow rapidly with the energetic demands of maintaining homeostasis. The small sizes of early life stages can make them highly sensitive to changes in environmental CO2 levels, but studies have found wide variation in responses to OA. Thus far most OA studies have manipulated CO2 only, and modifying factors need to be considered in greater detail. We investigated the effects of high pCO2 and food ration on rates of growth and mortality of a coastal fish, the California Grunion (Leuresthes tenuis). We also examined how CO2 and food levels affected feeding success, metabolic rate, and swimming activity – processes reflective of energy acquisition and expenditure. In general, exposure to high CO2 decreased energy intake by reducing feeding success, and increased energy expenditure by increasing metabolic rate and routine swimming speed, though the magnitudes of these effects varied somewhat with age. Despite these changes in energetics, growth of biomass was not affected significantly by pCO2 level but was reduced by low ration level, and we did not detect an interactive effect of food ration and pCO2 on growth. However, under OA conditions, larvae were in poorer condition (as evaluated by the mass to length ratio) by the end of the experiment and our analysis of mortality revealed a significant interaction in which the effects of OA were more lethal when food energy was limited. These results are consistent with the idea that although energy can be reallocated to preserve biomass growth, increased energetic demand under ocean acidification may draw energy away from maintenance, including those processes that foster homeostasis during development. Overall, these results highlight both the need to consider the availability of food energy as a force governing species’ responses to ocean acidification and the need to explicitly consider the energy allocated to both growth and maintenance as climate changes.

Continue reading ‘Experimental ocean acidification and food limitation reveals altered energy budgets and synergistic effects on mortality of larvae of a coastal fish’

  • Reset


OA-ICC Highlights

%d bloggers like this: