Posts Tagged 'physiology'

Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana

The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.

Continue reading ‘Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana’

Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification

Graphical abstract

Simultaneous ocean warming and acidification will alter marine ecosystem structure and directly affect marine organisms. The alga Phaeocystis globosa commonly causes harmful algal blooms in coastal areas of eastern China. P. globosa often outcompetes other species due to its heterotypic life cycle, primarily including colonies and various types of solitary cells. However, little is known about the adaptive response of P. globosa to ocean warming and acidification. This study aimed to reveal the global molecular regulatory networks implicated in the response of P. globosa to simultaneous warming and acidification. After exposure to warming and acidification, the phosphatidylinositol (PI) and mitogen-activated protein kinase (MAPK) signaling pathways of P. globosa were activated to regulate other molecular pathways in the cell, while the light harvesting complex (LHC) genes were downregulated to decrease photosynthesis. Exposure to warming and acidification also altered the intracellular energy flow, with more energy allocated to the TCA cycle rather than to the biosynthesis of fatty acids and hemolytic substances. The upregulation of genes associated with glycosaminoglycan (GAG) degradation prevented the accumulation of polysaccharides, which led to a reduction in colony formation. Finally, the upregulation of the Mre11 and Rad50 genes in response to warming and acidification implied an increase in meiosis, which may be used by P. globosa to increase the number of solitary cells. The increase in genetic diversity through sexual reproduction may be a strategy of P. globosa that supports rapid response to complex environments. Thus, the life cycle of P. globosa underwent a transition from colonies to solitary cells in response to warming and acidification, suggesting that this species may be able to rapidly adapt to future climate changes through life cycle transitions.

Continue reading ‘Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification’

No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies

In a future ocean, dissolved organic carbon (DOC) release by seaweed has been considered a pathway for organic carbon that is not incorporated into growth under carbon dioxide (CO2) enrichment/ocean acidification (OA). To understand the influence of OA on seaweed DOC release, a 21-day experiment compared the physiological responses of three seaweed species, two which operate CO2 concentrating mechanisms (CCMs), Ecklonia radiata (C. Agardh) J. Agardh and Lenormandia marginata (Hooker F. and Harvey) and one that only uses CO2 (non-CCM), Plocamium cirrhosum (Turner) M.J. Wynne. These two groups (CCM and non-CCM) are predicted to respond differently to OA dependent on their affinities for Ci (defined as CO2 + bicarbonate, HCO3). Future ocean CO2 treatment did not drive changes to seaweed physiology—growth, Ci uptake, DOC production, photosynthesis, respiration, pigments, % tissue carbon, nitrogen, and C:N ratios—for any species, regardless of Ci uptake method. Our results further showed that Ci uptake method did not influence DOC release rates under OA. Our results show no benefit of elevated CO2 concentrations on the physiologies of the three species under OA and suggest that in a future ocean, photosynthetic CO2 fixation rates of these seaweeds will not increase with Ci concentration.

Continue reading ‘No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies’

Population-specific vulnerability to ocean change in a multistressor environment

Variation in environmental conditions across a species’ range can alter their responses to environmental change through local adaptation and acclimation. Evolutionary responses, however, may be challenged in ecosystems with tightly coupled environmental conditions, where changes in the covariance of environmental factors may make it more difficult for species to adapt to global change. Here, we conduct a 3-month-long mesocosm experiment and find evidence for local adaptation/acclimation in populations of red sea urchins, Mesocentrotus franciscanus, to multiple environmental drivers. Moreover, populations differ in their response to projected concurrent changes in pH, temperature, and dissolved oxygen. Our results highlight the potential for local adaptation/acclimation to multivariate environmental regimes but suggest that thresholds in responses to a single environmental variable, such as temperature, may be more important than changes to environmental covariance. Therefore, identifying physiological thresholds in key environmental drivers may be particularly useful for preserving biodiversity and ecosystem functioning.

Continue reading ‘Population-specific vulnerability to ocean change in a multistressor environment’

Metabolic adaptation of fishes under different consequences of climate change

Aquaculture sustainability is affected by climate change which regulated livelihood, nutrition and world food security. The most important contributor to climate change is documented by a human due to deforestation and industries that release GHGs (greenhouse gases) accumulated in the surrounding environment such as methane, nitrous oxide, fluorinated gases and carbon dioxide. Climate change affected fisheries adversely but it is overshadowing the positive one. The effects of climate change on fishes can be directed by water quality parameters such as temperature, dissolve oxygen, pH (acidification) etc. which affected fish physiology and behavioural changes through metabolic adaptation. Due to the changes in climate fishes are adapting to a novel environment like high temperatures (higher to lower latitude or lower to higher latitude), a hypoxic condition due to evolutionary effect and adapting to low pH which is caused by high carbon dioxide released in the environment by human activities. This chapter mainly focuses on how fishes are adapting to the novel climatic condition such as a high or low temperature, hypoxic conditions and low pH through the metabolic activity through enzymatic action (fish physiology) and morphological changes like gill structure to cope with low oxygen and acidification of natural water body.

Continue reading ‘Metabolic adaptation of fishes under different consequences of climate change’

Invited review – the effects of anthropogenic abiotic stressors on the sensory systems of fishes

Graphical abstract.


  • Conditions in abiotic factors of oceans and freshwater habitats are changing quickly due to anthropogenic activity.
  • Low pH impairs olfaction and vision, alters otolith growth, and affects CNS functioning.
  • High temperatures increase the signalling speed of nerves, alters sensory processing, and increases ROS in the CNS.
  • Low oxygen impairs energy production, nerve conduction speed, negatively affects vision and causes apoptosis in the brain.


Climate change is a growing global issue with many countries and institutions declaring a climate state of emergency. Excess CO2 from anthropogenic sources and changes in land use practices are contributing to many detrimental changes, including increased global temperatures, ocean acidification and hypoxic zones along coastal habitats. All senses are important for aquatic animals, as it is how they can perceive and respond to their environment. Some of these environmental challenges have been shown to impair their sensory systems, including the olfactory, visual, and auditory systems. While most of the research is focused on how ocean acidification affects olfaction, there is also evidence that it negatively affects vision and hearing. The effects that temperature and hypoxia have on the senses have also been investigated, but to a much lesser extent in comparison to ocean acidification. This review assembles the known information on how these anthropogenic challenges affect the sensory systems of fishes, but also highlights what gaps in knowledge remain with suggestions for immediate action.

Continue reading ‘Invited review – the effects of anthropogenic abiotic stressors on the sensory systems of fishes’

Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research

After three decades of coral research on the impacts of climate change, there is a wide consensus on the adverse effects of heat-stress, but the impacts of ocean acidification (OA) are not well established. Using a review of published studies and an experimental analysis, we confirm the large species-specific component of the OA response, which predicts moderate impacts on coral physiology and pigmentation by 2100 (scenario-B1 or SSP2-4.5), in contrast with the severe disturbances induced by only +2 °C of thermal anomaly. Accordingly, global warming represents a greater threat for coral calcification than OA. The incomplete understanding of the moderate OA response relies on insufficient attention to key regulatory processes of these symbioses, particularly the metabolic dependence of coral calcification on algal photosynthesis and host respiration. Our capacity to predict the future of coral reefs depends on a correct identification of the main targets and/or processes impacted by climate change stressors.

Continue reading ‘Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research’

Ocean acidification increases the impact of typhoons on algal communities

Graphical abstract.


  • Algal community dynamics studied with three-year monthly surveys at a CO2 seep
  • Acidification consistently altered community composition across all seasons
  • Structurally complex communities shifted to degraded ‘turf’ state with rising pCO2
  • Acidification-driven community changes were maintained by typhoon disturbance
  • Turf-dominated communities displayed low resistance to typhoons


Long-term environmental change, sudden pulses of extreme perturbation, or a combination of both can trigger regime shifts by changing the processes and feedbacks which determine community assembly, structure, and function, altering the state of ecosystems. Our understanding of the mechanisms that stabilise against regime shifts or lock communities into altered states is limited, yet also critical to anticipating future states, preventing regime shifts, and reversing unwanted state change. Ocean acidification contributes to the restructuring and simplification of algal systems, however the mechanisms through which this occurs and whether additional drivers are involved requires further study. Using monthly surveys over three years at a shallow-water volcanic seep we examined how the composition of algal communities change seasonally and following periods of significant physical disturbance by typhoons at three levels of ocean acidification (equivalent to means of contemporary ∼350 and future ∼500 and 900 μatm pCO2). Sites exposed to acidification were increasingly monopolised by structurally simple, fast-growing turf algae, and were clearly different to structurally complex macrophyte-dominated reference sites. The distinct contemporary and acidified community states were stabilised and maintained at their respective sites by different mechanisms following seasonal typhoon disturbance. Macroalgal-dominated sites were resistant to typhoon damage. In contrast, significant losses of algal biomass represented a near total ecosystem reset by typhoons for the turf-dominated communities at the elevated pCO2 sites (i.e. negligible resistance). A combination of disturbance and subsequent turf recovery maintained the same simplified state between years (elevated CO2 levels promote turf growth following algal removal, inhibiting macroalgal recruitment). Thus, ocean acidification may promote shifts in algal systems towards degraded ecosystem states, and short-term disturbances which reset successional trajectories may ‘lock-in’ these alternative states of low structural and functional diversity.

Continue reading ‘Ocean acidification increases the impact of typhoons on algal communities’

Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis

Using a targeted metabolomic approach we investigated the effects of low seawater pH on energy metabolism in two late copepodite stages (CIV and CV) of the keystone Arctic copepod species Calanus glacialis. Exposure to decreasing seawater pH (from 8.0 to 7.0) caused increased ATP, ADP and NAD+ and decreased AMP concentrations in stage CIV, and increased ATP and phospho-L-arginine and decreased AMP concentrations in stage CV. Metabolic pathway enrichment analysis showed enrichment of the TCA cycle and a range of amino acid metabolic pathways in both stages. Concentrations of lactate, malate, fumarate and alpha-ketoglutarate (all involved in the TCA cycle) increased in stage CIV, whereas only alpha-ketoglutarate increased in stage CV. Based on the pattern of concentration changes in glucose, pyruvate, TCA cycle metabolites, and free amino acids, we hypothesise that ocean acidification will lead to a shift in energy production from carbohydrate metabolism in the glycolysis toward amino acid metabolism in the TCA cycle and oxidative phosphorylation in stage CIV. In stage CV, concentrations of most of the analysed free fatty acids increased, suggesting in particular that ocean acidification increases the metabolism of stored wax esters in this stage. Moreover, aminoacyl-tRNA biosynthesis was enriched in both stages indicating increased enzyme production to handle low pH stress.

Continue reading ‘Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis’

Impact of ultraviolet radiation nearly overrides the effects of elevated pCO2 on a prominent nitrogen-fixing cyanobacterium

Although the marine N2-fixers Trichodesmium spp. are affected by increasing pCO2 and by ultraviolet radiation (UVR) in their habitats, little is known on their potential responses to future ocean acidification in the presence of UVR. We grew Trichodesmium at two pCO2 levels (410 and 1000 μatm) under natural sunlight, documented the filament length, growth, and chlorophyll content after its acclimation to the pCO2 treatments, and measured its carbon and N2 fixation rates under different solar radiation treatments with or without UVR. We showed that the elevated pCO2 did not significantly alter the diazotroph’s growth, filament length, or pigment content, and its photosynthetic rate was only affected by solar radiation treatments rather than the pCO2 levels. The presence of UV-A and UV-B inhibited photosynthesis by 10–22% and 17–21%, respectively. Inhibition of N2 fixation by UV-B was proportional to its intensity, whereas UV-A stimulated N2 fixation at low, but inhibited it at high, intensities. Elevated pCO2 only stimulated N2 fixation under moderate levels of solar radiation. The simulated depth profile of N2 fixation in the water column showed that UV-induced inhibition dominated the combined effects of elevated pCO2 and UVR at 0–30 m depth and the combination of these factors enhanced N2 fixation at 30–60 m depth, but this effect diminished in deeper water. Our results suggest that Trichodesmium could be influenced more by UVR than by pCO2 and their combined action result in negative effects on N2 fixation under high solar radiation, but positive effects under low to moderate solar radiation.

Continue reading ‘Impact of ultraviolet radiation nearly overrides the effects of elevated pCO2 on a prominent nitrogen-fixing cyanobacterium’

Ocean acidification and aquacultured seaweeds: progress and knowledge gaps

This systematic review aimed to synthesise the existing studies regarding the effects of ocean acidification (OA) on seaweed aquaculture. Ocean acidification scenarios may increase the productivity of aquacultured seaweeds, but this depends on species-specific tolerance ranges. Conversely, seaweed productivity may be reduced, with ensuing economic losses. We specifically addressed questions on: how aquacultured seaweeds acclimatise with an increase in oceanic CO2; the effects of OA on photosynthetic rates and nutrient uptake; and the knowledge gaps in mitigation measures for seaweed farming in OA environments. Articles were searched by using Google Scholar, followed by Scopus and Web of Science databases, limiting the publications from 2001 to 2022. Our review revealed that, among all the OA-related studies on macroalgae, only a relatively small proportion (n < 85) have examined the physiological responses of aquacultured seaweeds. However, it is generally agreed that these seaweeds cannot acclimatise when critical biological systems are compromised. The existing knowledge gaps regarding mitigation approaches are unbalanced and have overly focused on monitoring and cultivation methods. Future work should emphasise effective and implementable actions against OA while linking the physiological changes of aquacultured seaweeds with production costs and profits.

Continue reading ‘Ocean acidification and aquacultured seaweeds: progress and knowledge gaps’

A space-time mosaic of seawater carbonate chemistry conditions in the north-shore Moorea coral reef system

The interplay between ocean circulation and coral metabolism creates highly variable biogeochemical conditions in space and time across tropical coral reefs. Yet, relatively little is known quantitatively about the spatiotemporal structure of these variations. To address this gap, we use the Coupled Ocean Atmosphere Wave and Sediment Transport (COAWST) model, to which we added the Biogeochemical Elemental Cycling (BEC) model computing the biogeochemical processes in the water column, and a coral polyp physiology module that interactively simulates coral photosynthesis, respiration and calcification. The coupled model, configured for the north-shore of Moorea Island, successfully simulates the observed (i) circulation across the wave regimes, (ii) magnitude of the metabolic rates, and (iii) large gradients in biogeochemical conditions across the reef. Owing to the interaction between coral net community production (NCP) and coral calcification, the model simulates distinct day versus night gradients, especially for pH and the saturation state of seawater with respect to aragonite (Ωα). The strength of the gradients depends non-linearly on the wave regime and the resulting residence time of water over the reef with the low wave regime creating conditions that are considered as “extremely marginal” for corals. With the average water parcel passing more than twice over the reef, recirculation contributes further to the accumulation of these metabolic signals. We find diverging temporal and spatial relationships between total alkalinity (TA) and dissolved inorganic carbon (DIC) (≈ 0.16 for the temporal vs. ≈ 1.8 for the spatial relationship), indicating the importance of scale of analysis for this metric. Distinct biogeochemical niches emerge from the simulated variability, i.e., regions where the mean and variance of the conditions are considerably different from each other. Such biogeochemical niches might cause large differences in the exposure of individual corals to the stresses associated with e.g., ocean acidification. At the same time, corals living in the different biogeochemical niches might have adapted to the differing conditions, making the reef, perhaps, more resilient to change. Thus, a better understanding of the mosaic of conditions in a coral reef might be useful to assess the health of a coral reef and to develop improved management strategies.

Continue reading ‘A space-time mosaic of seawater carbonate chemistry conditions in the north-shore Moorea coral reef system’

Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five

Bioerosion, resulting from microbioerosion or biogenic dissolution, macrobioerosion and grazing, is one the main processes involved in reef carbonate budget and functioning. On healthy reefs, most of the produced carbonates are preserved and accumulate. But in the context of global change, reefs are increasingly degraded as environmental factors such as ocean warming and acidification affect negatively reef accretion and positively bioerosion processes. The recent 2019 SROCC report suggests that if CO2 emissions in the atmosphere are not drastically reduced rapidly, 70%–99% of coral reefs will disappear by 2,100. However, to improve projections of coral reef evolution, it is important to better understand dynamics of bioerosion processes. Among those processes, it was shown recently that bioeroding microflora which actively colonize and dissolve experimental coral blocks, release significant amount of alkalinity in seawater both by day and at night under controlled conditions. It was also shown that this alkalinity production is enhanced under ocean acidification conditions (saturation state of aragonite comprised between 2 and 3.5) suggesting that reef carbonate accumulation will be even more limited in the future. To better understand the conditions of production of alkalinity in seawater by boring microflora and its possible consequences on reef resilience, we conducted a series of experiments with natural rubble maintained under natural or artificial light, and various saturation states of aragonite. We show here that biogenic dissolution of natural reef rubble colonized by microboring communities dominated by the chlorophyte Ostreobium sp., and thus the production of alkalinity in seawater, can occur under a large range of saturation states of aragonite, from 2 to 6.4 under daylight and that this production is directly correlated to the photosynthetic activity of microboring communities. We then discuss the possible implications of such paradoxical activities on reef resilience.

Continue reading ‘Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five’

Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

The supply of dissolved inorganic carbon to seaweeds is a key factor regulating photosynthesis. Thinner diffusive boundary layers at the seaweed surface or greater seawater carbon dioxide (CO2) concentrations increase CO2 supply to the seaweed surface. This may benefit seaweeds by alleviating carbon limitation either via an increased supply of CO2 that is taken up by passive diffusion, or via the down-regulation of active carbon concentrating mechanisms (CCMs) that enable the utilization of the abundant ion bicarbonate (HCO3). Laboratory experiments showed that a 5 times increase in water motion increases DIC uptake efficiency in both a non-CCM (Hymenena palmata, Rhodophyta) and CCM (Xiphophora gladiata, Phaeophyceae) seaweed. In a field survey, brown and green seaweeds with active-CCMs maintained their CCM activity under diverse conditions of water motion. Whereas red seaweeds exhibited flexible photosynthetic rates depending on CO2 availability, and species switched from a non-CCM strategy in wave-exposed sites to an active-CCM strategy in sheltered sites where mass transfer of CO2 would be reduced. 97–99% of the seaweed assemblages at both wave-sheltered and exposed sites consisted of active-CCM species. Variable sensitivities to external CO2 would drive different responses to increasing CO2 availability, although dominance of the CCM-strategy suggests this will have minimal impact within shallow seaweed assemblages.

Continue reading ‘Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae’

Transgenerational transfer of the microbiome is altered by ocean acidification in oyster larvae

Ocean acidification will affect marine molluscs, however, transgenerational plasticity (TGP) can ameliorate some effects. Marine molluscs acquire members of their microbiome via the egg, yet we know little about how the microbiome can be influenced by transgenerational exposure to ocean acidification. We exposed adult Sydney Rock oysters (Saccostrea glomerata) from four genotypes to elevated and ambient PCO2 for nine weeks. Larvae were then raised in the same ambient and elevated PCO2 conditions. The relative abundance of bacteria in eggs and larvae were characterised using 16S RNA amplicon sequencing. Parental exposure to elevated PCO2 significantly altered the bacterial community composition of both eggs and larvae, but this was dependent on genotype. Parental exposure to elevated PCO2 caused five core Rhodobacteraceae ASVs to increase in relative abundance, and three Rhodobacteraceae ASVs to decrease in relative abundance. These findings show transfer of maternal microbiomes to larvae is altered by exposure to ocean acidification and this may play a role in TGP.

Continue reading ‘Transgenerational transfer of the microbiome is altered by ocean acidification in oyster larvae’

Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga

Introduction: The coastal macroalgal genus, Ulva, is found worldwide and is considered a nuisance algal genus due to its propensity for forming vast blooms. The response of Ulva to ocean acidification (OA) is of concern, particularly with nutrient enrichment, as these combined drivers may enhance algal blooms because of increased availability of dissolved inorganic resources.

Methods: We determined how a suite of physiological parameters were affected by OA and ammonium (NH4+) enrichment in 22-day laboratory experiments to gain a mechanistic understanding of growth, nutrient assimilation, and photosynthetic processes. We predicted how physiological parameters change across a range of pCO2 and NH4+ scenarios to ascertain bloom potential under future climate change regimes.

Results: During the first five days of growth, there was a positive synergy between pCO2 and NH4+ enrichment, which could accelerate initiation of an Ulva bloom. After day 5, growth rates declined overall and there was no effect of pCO2, NH4+, nor their interaction. pCO2 and NH4+ acted synergistically to increase NO3 uptake rates, which may have contributed to increased growth in the first five days. Under the saturating photosynthetically active radiation (PAR) used in this experiment (500 μmol photon m-2 s-1), maximum photosynthetic rates were negatively affected by increased pCO2, which could be due to increased sensitivity to light when high CO2 reduces energy requirements for inorganic carbon acquisition. Activity of CCMs decreased under high pCO2 and high NH4+ conditions indicating that nutrients play a role in alleviating photodamage and regulating CCMs under high-light intensities.

Discussion: This study demonstrates that OA could play a role in initiating or enhancing Ulva blooms in a eutrophic environment and highlights the need for understanding the potential interactions among light, OA, and nutrient enrichment in regulating photosynthetic processes.

Continue reading ‘Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga’

Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System

Early life history stages of marine fishes are often more susceptible to environmental stressors than adult stages. This vulnerability is likely exacerbated for species that lay benthic egg masses bound to substrate because the embryos cannot evade locally unfavorable environmental conditions. Lingcod (Ophiodon elongatus), a benthic egg layer, is an ecologically and economically significant predator in the highly-productive California Current System (CCS). We ran a flow-through mesocosm experiment that exposed Lingcod eggs collected from Monterey Bay, CA to conditions we expect to see in the central CCS by the year 2050 and 2100. Exposure to temperature, pH, and dissolved oxygen concentrations projected by the year 2050 halved the successful hatch of Lingcod embryos and significantly reduced the size of day-1 larvae. In the year 2100 treatment, viable hatch plummeted (3% of normal), larvae were undersized (83% of normal), yolk reserves were exhausted (38% of normal), and deformities were widespread (94% of individuals). This experiment is the first to expose marine benthic eggs to future temperature, pH, and dissolved oxygen conditions in concert. Lingcod are a potential indicator species for other benthic egg layers for which global change conditions may significantly diminish recruitment rates.

Continue reading ‘Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System’

Re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana

In coccolithophores, stable isotopes recorded in both the calcite exoskeleton (coccoliths), and organic carbon (Corg), can reflect their physiological response to environment, and thereby have a wide usage in paleoclimate and biogeochemistry studies. Recently, Liu et al.1 reported that coccolithophore Ochrosphaera neapolitana has much more positive carbon isotope fractionations relative to dissolved inorganic carbon (DIC) in both coccolith and Corg compared with those published previously for other species2,3,4 and attributed such unexpected positive carbon isotope fractionations to a unique carbon pathway in this species. However, we find that these extreme isotopic fractionations should be attributed to the poor constraints in DIC carbon isotope ratios instead of the coccolithophores’ physiological response to pCO2. More careful measurements of DIC carbon isotope would benefit data interpretations and comparisons in future laboratory culture works focusing on phytoplankton’s response to ocean acidification.

ARISING FROM Y.-W. Liu et al. Nature Communications (2018)

Continue reading ‘Re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana’

Reply to: re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana

REPLYING TO H. Zhang et al. Nature Communications (2022)

In the accompanying Matters Arising, Zhang et al.1 report that they did not generate the same fractionation in δδ13C between seawater dissolved inorganic carbon (DIC) and both inorganic and organic carbon of the coccolithophore Ochrosphaera neapolitana that were observed in our study2. These differences in findings are an opportunity to discuss the uncertainties and limitations of different designs of ocean acidification experiments. Here, we note that Zhang et al.1 did not closely replicate our experimental conditions, meaning that their alternative hypotheses about what could be occurring in our experiment have ultimately not been tested. Additionally, we highlight elements of their analyses that are under-constrained and how it is difficult to fully resolve these issues without more experimental work.

Continue reading ‘Reply to: re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana’

Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730

Ocean acidification (OA) caused by rising atmospheric CO2 concentration and solar ultraviolet radiation (UVR) resulting from ozone depletion may affect marine organisms, but little is known regarding how unicellular Rhodosorus sp. SCSIO-45730, an excellent species resource containing various biological-active compounds, responds to OA and UVR. Therefore, we conducted a factorial coupling experiment to unravel the combined effects of OA and UVR on the growth, photosynthetic performances, biochemical compositions and enzyme activities of Rhodosorus sp. SCSIO-45730, which were exposed to two levels of CO2 (LC, 400 μatm, current CO2 level; HC, 1000 μatm, future CO2 level) and three levels of UVR (photosynthetically active radiation (PAR), PAR plus UVA, PAR plus UVB) treatments in all combinations, respectively. Compared to LC treatment, HC stimulated the relative growth rate (RGR) due to higher optimum and effective quantum yields, photosynthetic efficiency, maximum electron transport rates and photosynthetic pigments contents regardless of UVR. However, the presence of UVA had no significant effect but UVB markedly reduced the RGR. Additionally, higher carbohydrate content and lower protein and lipid contents were observed when Rhodosorus sp. SCSIO-45730 was cultured under HC due to the ample HCO−3HCO3− applications and active stimulation of metabolic enzymes of carbonic anhydrase and nitrate reductase, thus resulting in higher TC/TN. OA also triggered the production of reactive oxygen species (ROS), and the increase of ROS coincided approximately with superoxide dismutase and catalase activities, as well as phenols contents. However, UVR induced photochemical inhibition and damaged macromolecules, making algal cells need more energy for self-protection. Generally, these results revealed that OA counteracted UVR-related inhibition on Rhodosorus sp. SCSIO-45730, adding our understanding of the red algae responding to future global climate changes.

Continue reading ‘Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730’

  • Reset


OA-ICC Highlights

%d bloggers like this: