Posts Tagged 'physiology'

Competitive interactions moderate the effects of elevated temperature and atmospheric CO2 on the health and functioning of oysters

Global increases in sea temperatures and atmospheric concentrations of CO2 may affect the health of calcifying shellfish. Little is known, however, about how competitive interactions within and between species may influence how species respond to multiple stressors. We experimentally assessed separate and combined effects of temperature (12 or 16°C) and atmospheric CO2 concentrations (400 and 1000 ppm) on the health and biological functioning of native (Ostrea edulis) and invasive (Crassostrea gigas) oysters held alone and in intraspecific or interspecific mixtures. We found evidence of reduced phagocytosis under elevated CO2 and, when combined with increased temperature, a reduction in the number of circulating haemocytes. Generally, C. gigas showed lower respiration rates relative to O. edulis when the species were in intraspecific or interspecific mixtures. In contrast, O. edulis showed a higher respiration rate relative to C. gigas when held in an interspecific mixture and exhibited lower clearance rates when held in intraspecific or interspecific mixtures. Overall, clearance rates of C. gigas were consistently greater than those of O. edulis. Collectively, our findings indicate that a species’ ability to adapt metabolic processes to environmental conditions can be modified by biotic context and may make some species (here, C. gigas) competitively superior and less vulnerable to future climatic scenarios at local scales. If these conclusions are generic, the relative role of species interactions, and other biotic parameters, in altering the outcomes of climate change will require much greater research emphasis.

Continue reading ‘Competitive interactions moderate the effects of elevated temperature and atmospheric CO2 on the health and functioning of oysters’

Target gene expression studies on Platynereis dumerilii and Platynereis cfr massiliensis at the shallow CO2 vents off Ischia, Italy

Many studies predict negative effects of ocean acidification on marine organisms, potentially leading to loss of biodiversity and ecosystem function. Research on species inhabiting naturally high pCO2 environments, such as volcanic CO2 vents, offers an opportunity to understand the molecular mechanisms involved in high pCO2 regulation. Here we investigate the relative expression of NADH dehydrogenase, sodium-hydrogen antiporter (NHE), carbonic anhydrase (CA) and paramyosin genes from two non-calcifying sibling Nereididae polychaetes species, Platynereis cfr massiliensis, collected in the shallow CO2 vents off Ischia (Italy; 40°43′52.0″N 13°57′46.2″E and 40°43′55.5″N 13°57′48.4″E), and P. dumerilii collected in an area nearby (40°43′34.51″N; 13°57′35.7″E). The origin of the worms was confirmed using restriction enzyme digest. NHE and paramyosin expressions were both significantly increased in P. dumerilii relative to the P. cfr massiliensis vent populations. Furthermore, a seven day laboratory transfer experiment to lower/higher pCO2 conditions was conducted to investigate the effects on the short term gene expression. The transfer experiment of the non-vent worms to high pCO2 conditions showed no significant effect on any of the genes analysed, however, two genes (NADH dehydrogenase and NHE) from worms of the vent population were significantly down-regulated under low pCO2. These findings will help to gain further insights into the cellular mechanisms affected by pCO2 changes in two polychaete species.

Continue reading ‘Target gene expression studies on Platynereis dumerilii and Platynereis cfr massiliensis at the shallow CO2 vents off Ischia, Italy’

Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters


• Diversity of periphytic diatoms from freshwater, brackish water and marine sites from the same biogeographical region was assessed.
• Taxonomical parameters (life-forms, cell density, biovolume, Shannon index, species richness and % relative abundance) effectively differentiate impacted sites from less-impacted one.
• Lipid bodies and deformities in diatoms show tremendous potential to be used as a rapid early warning system for assessing the ecological health of fluvial ecosystem.


The aims of this study were to assess the biodiversity of periphytic diatom assemblages in fresh, brackish and marine waterbodies of Korea, and to assess the effect of environmental and anthropogenic factors on parameters such as the quantity and biovolume of lipid bodies and deformations of diatoms as early warning measures of anthropogenic impact. Diatom samples were collected from 31 sites (14 freshwater, 10 brackish and 7 marine), which included less impacted (upstream) and impacted (downstream) sites in each water type. Our results showed higher abundance and biodiversity of periphytic diatoms at the less impacted sites in terms of species richness, Shannon index, cell count and biovolume of the communities than at the impacted sites for freshwater and estuarine sites, but not for marine sites. 84 diatom species were noted in freshwater, 80 in brackish water and 40 in marine waters. In comparison to diatoms of the impacted sites, those of less impacted freshwater, brackish and marine sites had less lipid bodies (also less biovolume) and a lower percentage of teratological frustules, and showed more mobile forms in the community. Principal component analysis (PCA) also showed clear segregation of impacted from less impacted sites by the extent of the presence of lipid bodies (higher both in number and biovolume) and deformities in diatom frustules. Pearson correlation analysis revealed that lipid body induction and deformities were positively correlated with metals (Cd, Co, Cr, Cu, Fe, Pb and Zn) and nutrients (total phosphorus and total nitrogen), whereas they showed negative correlation with salinity, dissolved oxygen, suspended solutes and pH. Life-forms, lipid bodies and deformities in diatoms may be an effective biomonitoring tool for assessing biological effects of pollutants in non-marine aquatic ecosystems in Korea.

Continue reading ‘Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters’

Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius)


• Atmospheric and water conditions/contaminants influence animal physiology status.
• Scarcely studied multi-stressor effects were extricated via full-factorial design.
• Warming stimulated mercury accumulation, but was offset by acidification.
• Co-occurring acidification countered oxidative stress elicited by other stressors.
• Enhanced mitigation pathways or chemical dynamics may underpin stressor antagonism.


Increases in carbon dioxide (CO2) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT = 4 °C) and acidification (ΔpCO2 = 1100 μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30 days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO2-promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic).

Continue reading ‘Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius)’

Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits

Coral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δ11B, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pHcf and DICcf for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pHcf range from 8.38 in summer to 8.60 in winter, while DICcf is 25 to 30% higher during summer compared to winter (×1.5 to ×2 seawater). Thus, both variables are up-regulated well above seawater values and are seasonally out of phase with one another. The net effect of this counter-cyclical behaviour between DICcf and pHcf is that the aragonite saturation state of the calcifying fluid (Ωcf) is elevated ~4 times above seawater values and is ~25 to 40% higher during winter compared to summer. Thus, these corals control the chemical composition of the calcifying fluid to help sustain near-constant year-round calcification rates, despite a seasonal seawater temperature range from just ~19° to 24 °C. The ability of corals to up-regulate Ωcf is a key mechanism to optimise biomineralization, and is thus critical for the future of coral calcification under high CO2 conditions.

Continue reading ‘Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits’

What is currently known about the effects of climate change on the coral immune response

It is well documented that climate change has a negative effect on coral reefs worldwide. Recurrent warming events, ocean acidification, and nutrient pollution are some of the hallmarks of climate change; each affects the health of coral, and together, their effects are multiplied. It is hypothesized that a healthy coral will have a strong, highly active immune system when confronted with different stressors. However, there is very little that we understand about how the coral immune system reacts to different climate change stressors. In this review, we will examine what is known about the effects of heat stress, ocean acidification, and nutrient pollution on the coral immune system. We will identify gaps in our knowledge and briefly discuss a path forward to address these gaps.

Continue reading ‘What is currently known about the effects of climate change on the coral immune response’

Differences in neurochemical profiles of two gadid species under ocean warming and acidification


Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO2-induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396–548 μatm PCO2 under control and 915–1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod (Boreogadus saida, exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod (Gadus morhua, exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience.


We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO2, possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO2 induced behavioural impairments. In contrast to B. saida, such temperature limitation was not detected in G. morhua; however, at 8 °C, CO2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua. Further, increased availability of energy-rich substrates was detected under these conditions.


Our results indicate a change of GABAergic metabolism in the nervous system of Gadus morhua close to the optimum of the temperature range. Since a former study showed that juvenile G. morhua might be slightly more behaviourally resilient to CO2 at this respective temperature, we conclude that the observed change of GABAergic metabolism could be involved in counteracting OA induced behavioural changes. This may serve as a fitness advantage of this respective species compared to B. saida in a future warmer, more acidified polar ocean.

Continue reading ‘Differences in neurochemical profiles of two gadid species under ocean warming and acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,040,101 hits


Ocean acidification in the IPCC AR5 WG II

OUP book