Posts Tagged 'physiology'

Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum


• Monoculture of oysters produces excess CO2, affecting carbon fluxes.

• Seaweed can eliminate CO2 released by oysters.

• Multi-trophic culture of oysters and seaweed can mitigate oysters monoculture negative impacts.


The physiological responses of aquaculture organisms (e.g., oyster and seaweed) have the potential to affect seawater carbon fluxes and subsequently are affected by these seawater changes. In this study, a laboratory experiment and a field mesocosm experiment were carried out in Daya Bay, southern China. In the laboratory experiment, Portuguese oyster Magallana angulata and the brown seaweed Sargassum hemiphyllum were mono-cultured in 20-L transparent glass bottles for 24 h. Water sample were collected at four incubation time points (i.e. 0 h, 4 h, 12 h and 24 h) to examine their physiological responses across the incubation period. The results showed that the oyster calcification rate was not significantly changed among 4 h, 12 h and 24 h. On the other hand, during the 24 h incubation time, the oyster respiration rate, seawater pH, dissolved oxygen (DO), and CO32– concentration were significantly declined, but the seawater CO2 concentration was increased. For the seaweed, from 0 h to 12 h, seawater CO2 and HCO3– concentrations were significantly declined. However, the seawater pH and DO concentration were increased. In the field experiment, oyster and seaweed were cultured in mesocosm bags. The effects of different culture models of M. angulata and S. hemiphyllum (i.e. oyster monoculture, seaweed monoculture and oyster-seaweed co-culture) on seawater CO2‑carbonate system and air-sea CO2 flux (FCO2) were investigated after 24 h incubation. The results showed that DIC, HCO3– and CO2 concentrations and the partial pressure of CO2 in co-culture bags were significantly lower than the control bags (without any culture organisms) and oyster bags, indicated that S. hemiphyllum can effectively absorb the CO2 released by the oysters. The negative values of air-sea FCO2 in the co-culture bags represent a CO2 sink from the atmosphere to the sea. These results demonstrated that aquaculture organism monoculture could result in a stress for itself, and there could be an interspecies mutual benefit for both M. angulata and S. hemiphyllum in the co-culture system. The negative environmental impacts of mono-trophic oyster aquaculture in this view could be mediated with the multi-trophic inclusion of seaweed.

Continue reading ‘Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum’

Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business‐as‐usual RCP8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end‐of‐century RCP8.5 conditions for temperature and pCO2 (3.5 °C and 570 ppm above present‐day respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral‐dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business‐as‐usual CO2 emission scenarios will likely extirpate thermally‐sensitive coral species before the end of the century, while slowing the recovery of more thermally‐tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

Continue reading ‘Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals’

Sperm motility impairment in free spawning invertebrates under near-future level of ocean acidification: uncovering the mechanism

Ocean acidification (OA) refers to the decrease in ocean water pH resulting from the increasing absorption of atmospheric CO2. This will cause changes in the ocean’s carbonate chemistry system with a resulting impact on reproduction of marine organisms. Reproduction is the fundamental process that allows the conservation of the species; in free-spawning marine invertebrates, this process is highly sensitive to changes in seawater quality and chemistry. To date, the majority of the studies concerned OA effects on reproduction has been focused on embryo and larval development. Despite several evidence for the impairment of reproductive success by environmental perturbations through altering gamete quality, sperm physiological responses to OA are poorly investigated. In this study, we evaluated the effects of exposure to acidified seawater (AcSW) (pH 7.8), which approximate the predicted global averages for oceanic surface waters at the end of this century, on sperm quality of the mussel Mytilus galloprovincialis and the ascidian Ciona robusta by evaluating several endpoints, such as motility, vitality, mitochondrial activity, oxidative state, and intracellular pH (pHi). Following sperm exposure to AcSW, the percentage of motile spermatozoa, mitochondrial activity and pHi decreased in comparison to the current seawater pH of 8.1, whereas vitality and oxidative state were unaffected by the low external pH in both the species. In broadcast spawners, a relationship between sperm intracellular pH and the initiation of motility are well known. Spermatozoa are immotile in the testes and motility is induced after the spermatozoa are released into seawater; the alkaline pH of seawater, in fact, increases the pHi activating motility and mitochondrial respiration. The results of this study suggest that the lowering of seawater pH as predicted to occur for 2100, through the inhibition of pHi increase, prevent sperm motility activation. Sperm motility is a key determinant of fertilization success; consequently, a corresponding drop in fertilization success would be expected with important implications for the fitness and the survival of marine invertebrates.

Continue reading ‘Sperm motility impairment in free spawning invertebrates under near-future level of ocean acidification: uncovering the mechanism’

Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses

Uptake of increasing anthropogenic CO2 emissions by ocean surface waters is causing an increase of seawater PCO2 accompanied by a decrease of seawater pH and carbonate ion concentrations. This process, termed ocean acidification (OA), is predicted to negatively affect many marine organisms with likely consequences for marine ecosystems and the services they provide. Calcifying mussels and oysters, and particularly their early life stages, are predicted to be among the most OA sensitive taxa, as OA interferes with the calcification process. In addition, mussels and oysters possess a relatively low ability to compensate for CO2 induced disturbances in extracellular body fluid pH with potential physiological downstream effects such as elevated metabolic maintenance costs. As mussels and oysters are key habitat forming organisms in many highly productive temperate coastal communities, negative OA effects may translate into deleterious effects at an ecosystem scale. In particular, the relative long generation time of most marine bivalves raises the concern that the rapid rate at which OA occurs may outpace species’ ability to genetically adapt, leaving pre-existing genetic variation as a potential key to species resilience under OA. Against this backdrop, this thesis contributes to the understanding of physiological mechanisms that underpin and define the OA vulnerability of ecologically and economically important mussels and oysters. Thereby, emphasis was placed on investigating intra-specific variance as a proxy for potential adaptive capacities. Kiel Fjord is located in the Western Baltic Sea and is characterised by strong seasonal and diurnal fluctuations in seawater PCO2. These fluctuations are caused by upwelling events of acidified bottom waters with peak PCO2 values (>2300 μatm) that are already by far exceeding those projected for open ocean surface waters by the end of this century. Despite these unfavourable conditions, blue mussels (Mytilus edulis) dominate the benthic community, which makes this population particularly interesting in the context of metabolic adaptation to OA. Consequently, a long-term multi-generation CO2 acclimation experiment with different family lines of M. edulis from Kiel Fjord formed the first part of this thesis. Offspring of 16 different family lines were transferred to three different PCO2 conditions, representing present and predicted PCO2 levels in Kiel Fjord (700 μatm (control), 1120 μatm (intermediate) and 2400 μatm (high)). Larval survival rates were substantially different between family lines at the highest PCO2 level. Based on these differences, families were classified as either ‘tolerant’ (i.e. successful settlement at all PCO2 levels) or ‘sensitive’ (i.e. successful settlement only at control and intermediate PCO2 level). Subsequently, the offspring were raised for over one year at respective PCO2 levels, followed by measurements of physiological parameters at the whole-animal, tissue (gill and outer mantle) and biochemical level (key metabolic enzymes). The results revealed that routine metabolic rates (RMR) and summed tissue respiration were increased in tolerant families at intermediate PCO2, indicating elevated homeostatic costs. However, this higher energy demand at the intermediate PCO2 level was not accompanied by a simultaneous increase in energy assimilation (i.e. clearance rates (CR)), indicating an incipient imbalance in energy demand and supply. Consequently, RMRs at the highest PCO2 were not different to control RMRs but associated with reduced CRs, which correlated with a lower gill metabolic scope, reduced gill mitochondrial capacities (lower capacities for citrate synthase (CS) and cytochrome c oxidase (COX)) as well as an increased capacity for anaerobic energy production (lower ratio of pyruvate kinase to phospoenolpyruvate carboxykinase). In conjunction with a lower COX to CS ratio observed in outer mantle tissue, this suggested a CO2-induced shift of metabolic pathways in tolerant families at the highest PCO2 level. By contrast, sensitive families had an unchanged RMR, tissue respiration and CR at the intermediate CO2. However, a higher control RMR in sensitive than tolerant families at similar CR suggested a lower, CO2 independent metabolic efficiency in sensitive families. This was also reflected in their lower gill mitochondrial scope at control conditions compared to tolerant families. These findings suggested that sensitive families lack the metabolic scope to cover OA induced higher maintenance costs and have to rely on energy reallocation and thus, energy trade-offs which may also have prevented survival at the highest experimental PCO2 level. Accordingly, investigations of 3-hydroxyacyl-CoA dehydrogenase (HADH) capacities, which catalyses a key step in lipid oxidation, suggested an increased reliance on lipids as metabolic fuel in sensitive families at elevated PCO2. If this was also prevalent during the larval phase, a quicker depletion of lipid reserves before completion of metamorphosis may have contributed to the higher larval mortality at the highest PCO2 treatment in sensitive compared to tolerant mussels. The second part of the thesis aimed to clarify whether a higher OA tolerance in Sydney rock oysters (Saccostrea glomerata) is directly correlated with an increased capacity to compensate for CO2 induced extracellular acid-base disturbances, and whether such a capacity is driven by higher metabolic and ion-regulatory costs at the tissue level. Earlier studies focusing on two different populations of Sydney rock oysters demonstrated that oysters that were selectively bred for increased growth and disease resistance (‘selected oysters’) have a higher CO2 resilience compared to the wild population (‘wild oysters’). To unravel the underlying physiological mechanisms, oysters of both populations were acclimated at control and elevated PCO2 (1100 μatm) levels for seven weeks, followed by determinations of extracellular acidbase parameters (pHe, PeCO2, [HCO3 -]e), tissue respiration and indirect determination of energy demands of major ion regulatory transport proteins. Indeed, at elevated PCO2, wild oysters had a lower pHe and an increased PeCO2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pHe values between oyster types were not driven by elevated metabolic costs of major ion regulators at tissue level. Selected oysters rather exhibited an increased systemic capacity to eliminate metabolic CO2, which likely came through higher and energetically more efficient filtration rates and associated facilitation of gas exchange, suggesting that effective filtration and CO2 resilience might be positively correlated traits in oysters. In conclusion, the findings of this thesis contribute to the growing evidence that ongoing OA will likely impair the physiology of marine mussels and oysters with potentially associated downstream consequences for the respective ecosystems. However, the results also suggest adaptive capacities in both species studied. The higher CO2 resilience of selected Sydney rock oysters was expressed within the – in evolutionary terms – rapid time span of only a few generations of selective breeding, which indicates that rapid adaptation to OA may be possible in marine bivalves. The observed intra-specific variation of OA responses in blue mussels suggests standing genetic variation within this population, which is likely to be key for the persistence of populations under rapidly occurring OA. However, as global change is not limited to OA, future research will have to reassess potential resilience traits and adaptive capacities to OA when combined with changes in other environmental drivers.

Continue reading ‘Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses’

Paths to growth: exploring the effects of reduced pH and increased temperature on a fisheries-important prawn

Crustaceans are relatively understudied in regards to their vulnerability to the changing ocean conditions of ocean acidification and ocean warming. Although they are generally considered less vulnerable to reduced pH and increased temperature than other calcifying groups, studies have found potential effects on their growth, energy storage, and prey detection. In this study, we examined the vulnerability of the ridgeback prawn, Sicyonia ingentis, which is a commercially important species along the West coast of the United States. Prawn were exposed to reduced pH (7.50 ± 0.02; pCO₂ = 1475 ± 25 µatm) and increased temperature (16.2 ± 0.7°C) conditions in a full factorial design for twelve weeks. Prawns were monitored for survival and growth throughout the experiment. At the end of the experiment, their prey detection was analyzed via antennular flicking rates, and they were dissected for Gonadosomatic Index (GSI) and Hepatosomatic Index (HSI) measurements, which are indicators of gonad development, energy storage, and the trade-off between the two. No significant effect of treatment was found for antennular flicking, GSI, or HSI. The second molt increment was significantly less in the reduced pH/increased temperature treatment in comparison to the control (ANOVA: F3,18 = 3.36, p = 0.04), but growth over the experiment did not differ among treatments. Survival was significantly lower in the reduced pH/increased temperature treatment. S. ingentis is robust to a pH below its natural range, but the synergistic effects of reduced pH and increased temperature have a significant impact on mortality.

Continue reading ‘Paths to growth: exploring the effects of reduced pH and increased temperature on a fisheries-important prawn’

A coralline alga gains tolerance to ocean acidification over multiple generations of exposure

Crustose coralline algae play a crucial role in the building of reefs in the photic zones of nearshore ecosystems globally, and are highly susceptible to ocean acidification. Nevertheless, the extent to which ecologically important crustose coralline algae can gain tolerance to ocean acidification over multiple generations of exposure is unknown. We show that, while calcification of juvenile crustose coralline algae is initially highly sensitive to ocean acidification, after six generations of exposure the effects of ocean acidification disappear. A reciprocal transplant experiment conducted on the seventh generation, where half of all replicates were interchanged across treatments, confirmed that they had acquired tolerance to low pH and not simply to laboratory conditions. Neither exposure to greater pH variability, nor chemical conditions within the micro-scale calcifying fluid internally, appeared to play a role in fostering this capacity. Our results demonstrate that reef-accreting taxa can gain tolerance to ocean acidification over multiple generations of exposure, suggesting that some of these cosmopolitan species could maintain their critical ecological role in reef formation.

Continue reading ‘A coralline alga gains tolerance to ocean acidification over multiple generations of exposure’

Microscale pH and dissolved oxygen fluctuations within mussel aggregations and their implications for mussel attachment and raft aquaculture

Mussel mariculture uses the natural attachment strategy of marine mussels by allowing them to aggregate on submerged rope lines that are then pulled to the surface and harvested. Mussels attach to ropes using a network of byssal threads, proteinaceous fibers that adhere to surfaces underwater using a powerful biological glue (adhesive plaque). Plaques use the surrounding seawater as a molecular trigger during adhesive curing, a process that requires a pH greater than 7.0 and an abundance of dissolved oxygen to progress. To ascertain whether mussels experience seawater conditions that are potentially harmful to mussel attachment, this study measured the conditions within mussel aggregations at a mussel farm in Washington state and, then, applied those conditions to plaques to determine whether such conditions are sufficient to weaken attachment. Seawater monitoring demonstrated that mussels infrequently experience acidic (pH <5.0) and hypoxic excursions (O2 <2 mg L–1) in the summer, especially near the seafloor. When reproduced in laboratory assays, the most extreme pH excursions observed delayed plaque strengthening when applied early in the plaque-curing process, whereas extreme excursions in hypoxia decreased adhesion strength after the adhesive had fully matured. In either case, adhesion strength was rescued after reimmersion in open-ocean seawater conditions, highlighting the resilience of the mussel holdfast to stresses other than mechanical strain. The window of susceptibility to changes in environmental conditions during and after curing could contribute to fall-off events at mussel farms, especially in the late summer months.

Continue reading ‘Microscale pH and dissolved oxygen fluctuations within mussel aggregations and their implications for mussel attachment and raft aquaculture’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,317,375 hits


Ocean acidification in the IPCC AR5 WG II

OUP book