Posts Tagged 'physiology'

The interactive effects of ocean acidification, food availability, and source location on the growth and physiology of the California mussel

Research shows ocean acidification (OA) can have largely negative impacts on marine organisms and ecosystems. Prior laboratory studies show that shelled marine invertebrates (e.g., molluscs) exhibit reduced growth rates and weaker shells when experiencing OA-related stress. However, populations of the critical intertidal mussel species, Mytilus californianus, which experience naturally acidic water due to upwelling in certain parts of Northern California have been observed to have relatively stronger and thicker shells and higher growth rates than those that experience less frequent exposure to upwelling. To address the discrepancies between negative effects of OA exposure in the laboratory and seemingly positive effects off OA exposure in the field we collected juvenile mussels from four separate locations on the northern California coast that vary in exposure to upwelling-driven OA and raised them under ambient, constantly acidified, or intermittently acidified seawater conditions. Half of the mussels in each of the experimental treatments were given access to either ambient or elevated food concentrations. Although higher food availability increased shell and overall mussel growth, variation in mussel life-history traits among locations appears to be driven primarily by inherent differences (i.e. genetics or epigenetics). In particular, overall growth, soft tissue mass, and shell dissolution in mussels were associated with source-specific upwelling strength while adductor muscle mass along with shell growth and strength of mussels were associated with source-specific levels of predation risk. Oxygen consumption of mussels did not significantly vary among food, pH or source location treatments, suggesting that differences in growth rates were not due to differences in differences in metabolic or energetic efficiencies between individuals. Although not statistically significant, mussels from areas of high crab predation risk tended to survive crab attacks in the lab better than mussels from other areas. My data suggests that the adaptive potential of M. californianus to respond to future OA conditions is dependent on local environmental factors such as upwelling strength, food availability, and predation risk. My study addresses a significant gap in our understanding of the mechanism behind conflicting observations of increased growth in the field associated with low pH and previous laboratory results, demonstrating the importance of environmental context in shaping the organismal response to current and future OA conditions.

Continue reading ‘The interactive effects of ocean acidification, food availability, and source location on the growth and physiology of the California mussel’

Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams, Tegillarca granosa

An enormous amount of anthropogenic carbon dioxide (CO2) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of pCO2-driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of pCO2-driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam (Tegillarca granosa). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 (NOS2) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively regulate immune responses.

Continue reading ‘Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams, Tegillarca granosa’

Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality

Highlights

• We tested if energy transfer via feeding is boosted under future seawater conditions.
• Energy budget of herbivores and nutritional quality of their food were determined.
• Energy budget raised by feeding on the more nutritious food under ocean acidification.
• When combined with warming, however, mass mortality occurred due to energy depletion.
• Enhanced food quality inadequately offsets the energy demand under ocean warming.

Abstract

The CO2-boosted trophic transfer from primary producers to herbivores has been increasingly discovered at natural CO2 vents and in laboratory experiments. Despite the emerging knowledge of this boosting effect, we do not know the extent to which it may be enhanced or dampened by ocean warming. We investigated whether ocean acidification and warming enhance the nutritional quality (C:N ratio) and energy content of turf algae, which is speculated to drive higher feeding rate, greater energy budget and eventually faster growth of herbivores. This proposal was tested by observing the physiological (feeding rate, respiration rate and energy budget) and demographic responses (growth and survival) of a common grazing gastropod (Phasianella australis) to ocean acidification and warming in a 6-month mesocosm experiment. Whilst we observed the boosting effect of ocean acidification and warming in isolation on the energy budget of herbivores by either increasing feeding rate on the more nutritious algae or increasing energy gain per feeding effort, their growth and survival were reduced by the sublethal thermal stress under ocean warming, especially when both climate change stressors were combined. This reduced growth and survival occurred as a consequence of depleted energy reserves, suggesting that the boosting effect via trophic transfer might not sufficiently compensate for the increased energy demand imposed by ocean warming. In circumstances where ocean acidification and warming create an energy demand on herbivores that outweighs the energy enhancement of their food (i.e. primary producers), the performance of herbivores to control their blooming resources likely deteriorates and thus runaway primary production ensues.

Continue reading ‘Boosted nutritional quality of food by CO2 enrichment fails to offset energy demand of herbivores under ocean warming, causing energy depletion and mortality’

Effects of CO2 enrichment on metal bioavailability and bioaccumulation using Mytilus galloprovincialis

Highlights

• This study addresses the effects of acidification in marine ecosystems using mussels.
• CO2 enrichment in the marine ecosystem increased significantly the concentrations of some metals
• There was relationship between accumulation of metals in tissues of Mytilus galloprovincialis and the decrease of pH values
• The increase in the bioaccumulation of Fe, Ni and Zn in the body of mussels is related to acidification

Abstract

The main aim of this study was to evaluate the bioavailability of metals related to CO2 enrichment on the mussels Mytilus galloprovincialis by metal’s bioaccumulation analysis. Two sediment samples were selected and subjected to different pH levels. Concentrations of metals were measured in the overlying seawater and in the whole body of mussels exposed on the 7th, 14th and 21st days. Results showed that the CO2 enrichment in aquatic ecosystems cause significant (p < 0.05) changes on the concentrations of Cu, Zn, Ni, Mn and As between the control pH and pH 7.0 after 7 days of exposure; and in the concentration of Fe at pH 6.0 using the RSP sediment. The multivariate analysis results showed that the increase in the bioaccumulation of some metals in mussels was linked to the acidification. It was concluded that many factors may interfere in the results when the acidification and bioavailability of metals are inquired.

Continue reading ‘Effects of CO2 enrichment on metal bioavailability and bioaccumulation using Mytilus galloprovincialis’

Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)

Highlights

• A sediment incubation experiment to assess the effect of ocean acidification
• Porewater concentration gradients and sediment-water fluxes (DIC, TA, pH, Ca2+, O2)
• Ocean acidification impacts early diagenesis in carbonate-rich sediments.
• CaCO3 dissolution and the TA release may increase the buffering capacity of bottom water.

Abstract

Marine sediments are an important carbonate reservoir whose partial dissolution could buffer seawater pH decreases in the water column as a consequence of anthropogenic CO2 uptake by the ocean. This study investigates the impact of ocean acidification on the carbonate chemistry at the sediment-water interface (SWI) of shallow-water carbonate sediments. Twelve sediment cores were sampled at one station in the Bay of Villefranche (NW Mediterranean Sea). Four sediment cores were immediately analyzed in order to determine the initial distribution (T0) of dissolved inorganic carbon (DIC), total alkalinity (TA), pH and dissolved oxygen (O2) in the porewaters and to quantify sediment-water fluxes. Four other cores were kept submerged in the laboratory for 25 days with ambient seawater (pHT = 8.12) and the remaining four cores were incubated with acidified seawater (average pH offset of −0.68). This acidification experiment was carried out in an open-flow system, in the dark and at in-situ temperature (15 °C). Every three days, sediment-water fluxes (DIC, TA, pH, O2 and nutrients) were determined using a whole core 12-h incubation technique. Additionally, vertical O2 and pH microprofiles were regularly recorded in the first 2 cm of the sediment during the entire experiment. At the end of the experiment, TA, DIC and Ca2+ concentrations were analyzed in the porewaters and the abundance and taxonomic composition of meiofaunal organisms were assessed. The saturation states of the porewaters with respect to calcite and aragonite were over-saturated but under-saturated with respect to 12 mol% Mg-calcite, in both acidified and non-acidified treatments. The sediment-water fluxes of TA and DIC increased in the acidified treatment, likely as a consequence of enhanced carbonate dissolution. In contrast, the acidification of the overlying water did not significantly affect the O2 and nutrients fluxes at the SWI. Meiofaunal abundance decreased in both treatments over the duration of the experiment, but the organisms seemed unaffected by the acidification. Our results demonstrate that carbonate dissolution increased under acidified conditions but other parameters, such as microbial redox processes, were apparently not affected by the pH decrease, at least during the duration of our experiment. The dissolution of sedimentary carbonates and the associated release of TA may potentially buffer bottom water, depending on the intensity of the TA flux, the TA/DIC ratio, vertical mixing and, therefore, the residence time of bottom water. Under certain conditions, this process may mitigate the effect of ocean acidification on benthic ecosystems.

Continue reading ‘Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)’

Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae

Macroalgae are the major habitat-forming organisms in many coastal temperate and subtropical marine systems. Although climate change has been identified as a major threat to the persistence of macroalgal beds, the combined effects of ocean warming and ocean acidification on algal performance are poorly understood. Here we investigate the effects of increased temperature and acidification on the growth, calcification and nutritional content of 6 common subtropical macroalgae; Sargassum linearifolium, Ulva sp., Amphiroa anceps, Corallina officinalis, Delisea pulchra and Laurencia decussata. Algae were reared in a factorial cross of 3 temperatures (23°C [ambient], 26°C and 28°C) and 3 pH levels (8.1 [ambient], 7.8 and 7.6) for 2 wk. The highest (28°C) temperature decreased the growth of all 6 macroalgal species, irrespective of the pH levels. In contrast, the effect of decreased pH on growth was variable. The growth of Ulva sp. and C. officinalis increased, L. decussata decreased, while the remaining 3 species were unaffected. Interestingly, the differential responses of macroalgae to ocean acidification were unrelated to whether or not a species was a calcifying alga, or their carbon-uptake mechanism—2 processes that are predicted to be sensitive to decreased pH. The growth of the calcifying algae (C. officinalis and A. anceps) was not affected by reduced pH but calcification of these 2 algae was reduced when exposed to a combination of reduced pH and elevated temperature. The 3 species capable of uptake of bicarbonate, S. linearifolium, L. decussata and Ulva sp., displayed positive, negative and neutral changes in growth, respectively, in response to reduced pH. The C:N ratio for 5 of the 6 species was unaffected by either pH or temperature. The consistent and predictable negative effects of temperature on the growth and calcification of subtropical macroalgae suggests that this stressor poses a greater threat to the persistence of subtropical macroalgal populations than ocean acidification under ongoing and future climate change.

Continue reading ‘Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae’

Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis)

Highlights

• Citalopram showed the highest bioconcentration in mussels, methylparaben the lowest.
• Response to warming and acidification differed depending on the compound.
• Acidification decreased mussels capacity to metabolize venlafaxine.
• Acidification was the dominant factor when both stressors were combined.

Abstract

Warming and acidification are expected impacts of climate change to the marine environment. Besides, organisms that live in coastal areas, such as bivalves, can also be exposed to anthropogenic pollutants like pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs). In this study, the effects of warming and acidification on the bioconcentration, metabolization and depuration of five PhACs (sotalol, sulfamethoxazole, venlafaxine, carbamazepine and citalopram) and two EDCs (methylparaben and triclosan) were investigated in the mussel species (Mytilus galloprovincialis), under controlled conditions. Mussels were exposed to warming and acidification, as well as to the mixture of contaminants up to 15.7 μg L−1 during 20 days; followed by 20 days of depuration. All contaminants bioconcentrated in mussels with levels ranging from 1.8 μg kg−1 dry weight (dw) for methylparaben to 12889.4 μg kg−1 dw for citalopram. Warming increased the bioconcentration factor (BCF) of sulfamethoxazole and sotalol, whereas acidification increased the BCF of sulfamethoxazole, sotalol and methylparaben. In contrast, acidification decreased triclosan levels, while both stressors decreased venlafaxine and citalopram BCFs. Warming and acidification facilitated the elimination of some of the tested compounds (i.e. sotalol from 50% in control to 60% and 68% of elimination in acidification and warming respectively). However, acidification decreased mussels’ capacity to metabolize contaminants (i.e. venlafaxine). This work provides a first insight in the understanding of aquatic organisms’ response to emerging contaminants pollution under warming and acidification scenarios.

Continue reading ‘Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,083,817 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book