Posts Tagged 'physiology'

Effects of bicarbonate on cardiac function in fish

An entirely novel mechanism to modulate heart rate was recently discovered in the Pacific hagfish (Eptatretus stoutii): a soluble adenylyl cyclase (sAC)-mediated pathway that increases cyclic adenosine monophosphate (cAMP) production upon stimulation by HCO₃₋ to increase heart rate. However, still unknown is whether this cardiac control pathway is present in other species as well. The objective of my study was to determine the effects of increasing extracellular [HCO₃₋] on the in vitro cardiac function of other fish species and whether the sAC-mediated pathway is associated with recovery of cardiac function during debilitating conditions. Exposure to severe hypoxia (100% N₂) and hypercapnic acidosis (7.5% or 15% CO₂) significantly decreased the heart rate of isolated, freely beating hearts and reduced the isometric tension (contractility) of electrically paced ventricular strips from Pacific lamprey (Lampetra richardsoni), Pacific spiny dogfish (Squalus suckleyi), Asian swamp eel (Monopterus albus), white sturgeon (Acipenser transmontanus), zebrafish (Danio rerio), and starry flounder (Platichthys stellatus). Spontaneous recovery in heart rate or contractility was not observed during severe hypoxia or hypercapnic acidosis for any of the species tested. Addition of HCO₃₋ (up to 50 mM) was associated with a complete and dose-dependent recovery of control heart rate in lamprey, dogfish, and swamp eel hearts during severe hypoxia, and in dogfish, sturgeon, and swamp eel hearts during hypercapnic acidosis. A partial recovery of control heart rate was observed in lamprey and zebrafish hearts during hypercapnic acidosis. However, HCO₃₋ had no effect on the heart rate or contractility in flounder hearts and had little to no effect on restoring control contractility in dogfish, swamp eel, and flounder ventricular strips. The addition of KH7 (sAC blocker) abolished the HCO₃₋-induced recovery of heart rate during severe hypoxia only in the lamprey heart. Thus, the sAC-mediated pathway in cardiac control appears to be unique to the cyclostomes and not present in the other species tested. While the sAC-mediated pathway was associated with the recovery of heart rate in the lamprey heart, the specific mechanisms behind how HCO₃₋ was associated with the recovery of heart rate in the other species still needs to be determined.

Continue reading ‘Effects of bicarbonate on cardiac function in fish’

CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: an integrated study from a cellular and proteomic perspective

Highlights

• Combined effects of elevated pCO2 and Vibrio splendidus challenge on the Pacific oyster are investigated.
Vibrio infection aggravates the oyster immunosuppressive effect caused by ocean acidification.
• Vibrio infection aggravates the oyster immunosuppressive effect caused by ocean acidification.
• Ocean acidification may increase the risk of enhanced disease of marine mollusks.

Abstract

Ocean acidification (OA) and pathogenic diseases pose a considerable threat to key species of marine ecosystem. However, few studies have investigated the combined impact of reduced seawater pH and pathogen challenge on the immune responses of marine invertebrates. In this study, Pacific oysters, Crassostrea gigas, were exposed to OA (~2000 ppm) for 28 days and then challenged with Vibrio splendidus for another 72 h. Hemocyte parameters showed that V. splendidus infection exacerbated the impaired oyster immune responses under OA exposure. An iTRAQ-based quantitative proteomic analysis revealed that C. gigas responded differently to OA stress and V. splendidus challenge, alone or in combination. Generally, OA appears to act via a generalized stress response by causing oxidative stress, which could lead to cellular injury and cause disruption to the cytoskeleton, protein turnover, immune responses and energy metabolism. V. splendidus challenge in oysters could suppress the immune system directly and lead to a disturbed cytoskeleton structure, increased protein turnover and energy metabolism suppression, without causing oxidative stress. The combined OA- and V. splendidus-treated oysters ultimately presented a similar, but stronger proteomic response pattern compared with OA treatment alone. Overall, the impaired oyster immune functions caused by OA exposure may have increased the risk of V. splendidus infection. These results have important implications for the impact of OA on disease outbreaks in marine invertebrates, which would have significant economic and ecological repercussions.

Continue reading ‘CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: an integrated study from a cellular and proteomic perspective’

Interaction between elevated CO2 and phytoplankton-derived organic matter under solar radiation on bacterial metabolism from coastal waters

Microcosm experiments to assess bacterioplankton response to phytoplankton-derived organic matter obtained under current and future-ocean CO2 levels were performed. Surface seawater enriched with inorganic nutrients was bubbled for 8 days with air (current CO2 scenario) or with a 1000 ppm CO2–air mixture (future CO2 scenario) under solar radiation. The organic matter produced under the current and future CO2 scenarios was subsequently used as inoculum. Triplicate 12 L flasks filled with 1.2 µm-filtered natural seawater enriched with the organic matter inocula were incubated in the dark for 8 days under CO2 conditions simulating current and future CO2 scenarios to study the bacterial response. The acidification of the media increased bacterial respiration at the beginning of the experiment while the addition of the organic matter produced under future levels of CO2 was related to changes in bacterial production and abundance. The balance between both, respiration and production, made that the bacteria grown under future CO2 levels with an addition of non-acidified matter showed the best growth efficiency at the end of the incubation. However cells grown under future scenarios with high CO2 levels and acidified organic matter additions did not perform differently than those grown under present CO2 conditions, independently of the addition of acidified or non-acidified organic matter. This study demonstrates that the increase in atmospheric CO2 concentrations can affect bacterioplankton directly by changes in the respiration rate and indirectly by changes on the organic matter with concomitant effects on bacterial production and abundance.

Continue reading ‘Interaction between elevated CO2 and phytoplankton-derived organic matter under solar radiation on bacterial metabolism from coastal waters’

Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity (update)

High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.

Continue reading ‘Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity (update)’

Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation

Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels—i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities.

Continue reading ‘Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation’

Taking the metabolic pulse of the world’s coral reefs

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

Continue reading ‘Taking the metabolic pulse of the world’s coral reefs’

Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber

Highlights

• Combined effects of acidification and cadmium were analysed in the scallop, F. glaber.
• Reduced pH slightly increased bioaccumulation of Cd.
• Synergistic and antagonistic effects occurred at cellular level.
• Tissue-specific responses indicate higher sensitivity of gills than digestive gland.
• Ocean acidification modulates the cellular toxicity of metals.

Abstract

Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO2 7.4/∼3000 μatm) and Cd (20 μg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms.

Continue reading ‘Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,051,359 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book