Posts Tagged 'molecular biology'

Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams, Tegillarca granosa

An enormous amount of anthropogenic carbon dioxide (CO2) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of pCO2-driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of pCO2-driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam (Tegillarca granosa). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 (NOS2) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively regulate immune responses.

Continue reading ‘Ocean acidification affects the cytoskeleton, lysozymes, and nitric oxide of hemocytes: a possible explanation for the hampered phagocytosis in blood clams, Tegillarca granosa’

Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency

Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food.

In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.

Continue reading ‘Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency’

Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress (update)

Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the increased variation in physiological response under the future scenario indicated that some individuals have higher physiological plasticity to cope with these conditions. While short-term acclimation to reduced pH seawater decreases the ability of partial individuals against thermal stress, physiological plasticity and variability seem to be crucial in allowing some intertidal animals to survive in a rapidly changing environment.

Continue reading ‘Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress (update)’

A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos

Efficient pH regulation is a fundamental requisite of all calcifying systems in animals and plants but with the underlying pH regulatory mechanisms remaining largely unknown. Using the sea urchin larva this work identified the SLC4 HCO3 transporter family member SpSlc4a10 to be critically involved in the formation of an elaborate calcitic endoskeleton. SpSlc4a10 is specifically expressed by calcifying primary mesenchyme cells with peak expression during de novo formation of the skeleton. Knock-down of SpSlc4a10 led to pH regulatory defects accompanied by decreased calcification rates and skeleton deformations. Reductions in seawater pH, resembling ocean acidification scenarios, led to an increase in SpSlc4a10 expression suggesting a compensatory mechanism in place to maintain calcification rates. We propose a first pH regulatory and HCO3 concentrating mechanism that is fundamentally linked to the biological precipitation of CaCO3. This knowledge will help understanding biomineralization strategies in animals and their interaction with a changing environment.

Continue reading ‘A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos’

Microeukaryotic biogeography in the typical subtropical coastal waters with multiple environmental gradients


• Microeukaryotic communities in subtropical coastal waters were investigated.
• The microeukaryotes were dominantly comprised of Dinoflagellata and Ciliophora.
• The distribution of top abundant taxa exhibited environment-conditioned features.
• Microeukaryotic α-diversity was associated with phosphorus and suspended particles.
• Spatially-structured local conditions largely shape microeukaryotic biogeography.


The determinants of microeukaryotic biogeography in coastal waters at a regional scale remain largely unclear. The coastal northern Zhejiang (in the East China Sea) is a typical subtropical marine ecosystem with multiple environmental gradients that has been extensively perturbed by anthropogenic activities. Thus, it is a valuable region to investigate the key drivers that shape microbial biogeography. We investigated microeukaryotic communities in surface waters from 115 stations in this region using 18S ribosomal RNA gene amplicon sequencing. The microeukaryotic communities were mainly comprised of Dinoflagellata, Ciliophora, Protalveolata, Rhizaria, Stramenopiles and Cryptophyceae. The top abundant operational taxonomic units (OTUs) were highly specific for distinct habitat types, exhibiting significant environment-conditioned features; however, the cosmopolitan OTUs were not strongly correlated with the measured environmental variables. Total phosphorus and suspended particles were major environmental determinants of microeukaryotic α-diversity. Environmental variables, particularly temperature, salinity, pH and silicate concentration, were strongly associated with the microeukaryotic community composition. Overall, environmental and spatial factors explained 55.92% of community variation in total with 34.03% of the variation shared, suggesting that spatially structured environmental variations mainly conditioned the microeukaryotic biogeography in this region. Additionally, dispersal limitation, as indicated by the great pure spatial effect and distance-decay pattern, was another important factor. In summary, our results reveal that spatially structured environmental variation and dispersal limitation mainly conditioned the microeukaryotic biogeography. The results may provide useful distribution patterns of microeukaryotes to determine sources of microbes from marine ecosystems that may facilitate the utilization of coastal resources.

Continue reading ‘Microeukaryotic biogeography in the typical subtropical coastal waters with multiple environmental gradients’

Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification

Coral bleaching events are increasing in frequency, demanding examination of the physiological and molecular responses of scleractinian corals and their algal symbionts (Symbiodinium sp.) to stressors associated with bleaching. Here, we quantify the effects of long-term (95-day) thermal and CO2-acidification stress on photochemical efficiency of in hospite Symbiodinium within the coral Siderastrea siderea, along with corresponding coral color intensity, for corals from two reef zones (forereef, nearshore) on the Mesoamerican Barrier Reef System. We then explore the molecular responses of in hospite Symbiodinium to these stressors via genome-wide gene expression profiling. Elevated temperatures reduced symbiont photochemical efficiencies and were highly correlated with coral color loss. However, photochemical efficiencies of forereef symbionts were more negatively affected by thermal stress than nearshore symbionts, suggesting greater thermal tolerance and/or reduced photodamage in nearshore corals. At control temperatures, CO2-acidification had little effect on symbiont physiology, although forereef symbionts exhibited constitutively higher photochemical efficiencies than nearshore symbionts. Gene expression profiling revealed that S. siderea were dominated by Symbiodinium goreaui (C1), except under thermal stress, which caused shifts to thermotolerant Symbiodinium trenchii (D1a). Comparative transcriptomics of conserved genes across the host and symbiont revealed few differentially expressed S. goreaui genes when compared to S. siderea, highlighting the host’s role in the coral’s response to environmental stress. Although S. goreaui transcriptomes did not vary in response to acidification stress, their gene expression was strongly dependent on reef zone, with forereef S. goreaui exhibiting enrichment of genes associated with photosynthesis. This finding, coupled with constitutively higher forereef S. goreaui photochemical efficiencies, suggests that functional differences in genes associated with primary production exist between reef zones.

Continue reading ‘Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification’

Characterization of a γ‐aminobutyrate type A receptor‐associated protein gene, which is involved in the response of Portunus trituberculatus to CO2‐induced ocean acidification

The γ‐aminobutyrate type A receptor‐associated protein (GABARAP) is a ubiquitin‐like modifier implicated in membrane trafficking and fusion events involving the γ‐aminobutyrate type A receptor, autophagy and apoptosis. In this study, the gene encoding GABARAP was cloned from swimming crab Portunus trituberculatus (PtGABARAP) based on the expression sequence tag (EST). The full‐length cDNA of 664 bp includes a 5′ untranslated region (UTR) of 87 bp, a 3′ UTR of 223 bp with a poly(A) tail, and an open reading frame (ORF) of 354 bp encoding a polypeptide of 117 amino acids with a predicted molecular weight of 13.96 kDa. The deduced amino acid sequence shares high similarity (93%–100%) with GABARAPs from other species and includes a conserved Atg8 domain. In a phylogenetic analysis PtGABARAP clustered with GABARAPs from other species, and more widely with other GABARAP family proteins. The impact of elevated ocean acidification (OA) on P. trituberculatus behaviours was investigated, and real‐time RT‐PCR revealed that PtGABARAP expression was up‐regulated after OA exposure. Ocean acidification also caused crabs anxiety‐like behaviours, like the shoal average speed increase, preference for dark environment (scototaxis) and fast exploration. The results indicated that GABARAP might be involved in the interactions of GABAA receptors and elevated‐CO2 seawater.

Continue reading ‘Characterization of a γ‐aminobutyrate type A receptor‐associated protein gene, which is involved in the response of Portunus trituberculatus to CO2‐induced ocean acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,083,823 hits


Ocean acidification in the IPCC AR5 WG II

OUP book