Posts Tagged 'molecular biology'

Transcriptomic responses of adult versus juvenile Atlantids to ocean acidification

Shelled holoplanktonic gastropods are among the most vulnerable calcifiers to ocean acidification. They inhabit the pelagic environment and build thin and transparent shells of aragonite, a metastable form of calcium carbonate. While shelled pteropods have received considerable attention and are widely regarded as bioindicators of ocean acidification, atlantids have been much less studied. In the open ocean, atlantids are uniquely positioned to address the effects of ocean acidification at distinct trophic levels. From juvenile to adult, they undergo dramatic metamorphosis. As adults they are predatory, feeding primarily on shelled pteropods, copepods and other zooplankton, while as juveniles they feed on algae. Here we investigated the transcriptome and the impact of a three-day CO2 exposure on the gene expression of adults of the atlantid Atlanta ariejansseni and compared these to results previously obtained from juveniles. Individuals were sampled in the Southern Subtropical Convergence Zone (Atlantic Ocean) and exposed to ocean chemistry simulating past (~mid-1960s), present (ambient) and future (2050) conditions. In adults we found that the changes in seawater chemistry had significantly affected the expression of genes involved in biomineralization and the immune response, although there were no significant differences in shell growth between the three conditions. In contrast, juveniles experienced substantial changes in shell growth and a broader transcriptomic response. In adults, 1170 genes had the same direction of expression in the past and future treatments when compared to the ambient. Overall, this type of response was more common in adults (8.6% of all the genes) than in juveniles (3.9%), whereas a linear response with decreasing pH was more common in juveniles (7.7%) than in adults (4.5%). Taken together, these results suggest that juveniles are more sensitive to increased acidification than adults. However, experimental limitations including short incubation times, one carboy used for each treatment and two replicates for transcriptome analysis, require us to be cautious about these conclusions. We show that distinct transcriptome profiles characterize the two life stages, with less than 50% of shared transcripts. This study provides an initial framework to understand how ocean acidification may affect the molecular and calcification responses of adult and juvenile atlantids.

Continue reading ‘Transcriptomic responses of adult versus juvenile Atlantids to ocean acidification’

Adaptive potential of coastal invertebrates to environmental stressors and climate change

Climate change presents multiple stressors that are impacting marine life. As carbon dioxide emissions continue to increase in the atmosphere, atmospheric and sea water temperatures increase. In addition, more carbon dioxide is absorbed into the oceans, reducing pH and aragonite saturation state, resulting in ocean acidification (OA). Tightly coupled with OA is hypoxia due to deep stratified sea water becoming increasingly acidified and deoxygenated. The effects of these climate stressors have been studied in detail for only a few marine animal models. However, there are still many taxa and developmental stages in which we know very little about the impacts. Using genomic techniques, we examine the adaptive potential of three local marine invertebrates under three different climate stressors: marine disease exacerbated by thermal stress, OA, and combined stressors OA with hypoxia (OAH). As sea water temperatures rise, the prevalence of marine diseases increases, as seen in the sea star wasting syndrome (SSWS). The causation of SSWS is still widely debated; however reduced susceptibility to SSWS could aid in understanding disease progression. By examining genetic variation in Pisaster ochraceous collected during the SSWS outbreak, we observed weak separation between symptomatic and asymptomatic individuals. OA has been widely studied in many marine organisms, including Crassostrea gigas. However, limited studies have parsed the effects of OA during settlement, with no studies assessing the functionality of settlement and how it is impacted by OA. We investigated the effects of OA on settlement and gene expression during the transition from larval to juvenile stages in Pacific oysters. While OA and hypoxia are common climate stressors examined, the combined effects have scarcely examined. Further, the impacts of OAH have been narrowly focused on a select few species, with many economically important organisms having no baseline information on how they will persist as OAH severity increases. To address these gaps in our knowledge, we measured genetic variation in metabolic rates during OA for the species Haliotis rufescens to assess their adaptive potential through heritability measurements. We discuss caveats and considerations when utilizing similar heritability estimate methods for other understudied organisms. Together, these studies will provide novel information on the biological responses and susceptibility of difference coastal species to stressors associated with global climate change. These experiments provide information on both the vulnerability of current populations and their genetic potential for adaptation to changing ocean conditions.

Continue reading ‘Adaptive potential of coastal invertebrates to environmental stressors and climate change’

The effects of ocean acidification on microbial nutrient cycling and productivity in coastal marine sediments

Ocean Acidification (OA), commonly referred to as the “other CO₂ problem,” illustrates the current rise in atmospheric carbon dioxide (CO₂) levels, precipitated in large by human-related activity (e.g., fossil fuel combustion and mass deforestation). The dissolution of atmospheric CO₂ into the surface of the ocean over time has reduced oceanic pH levels by 0.1 units since the start of the pre-industrial era and has resulted in wholesale shifts in seawater carbonate chemistry on a planetary scale. The chemical processes of ocean acidification are increasingly well documented, demonstrating clear rates of increase for global CO₂ emissions predicted by the IPCC (Intergovernmental Panel on Climate Change) under the business-as-usual CO₂ emissions scenario. The ecological impact of ocean acidification alters seawater chemical speciation and disrupts vital biogeochemical cycling processes for various chemicals and compounds. Whereby the unidentified potential fallout of this is the cascading effects on the microbial communities within the benthic sediments. These microorganisms drive the marine ecosystem through a network of vast biogeochemical cycling processes aiding in the moderation of ecosystem-wide primary productivity and fundamentally regulating the global climate. The benthic sediments are determinably one of the largest and most diverse ecosystems on the planet. Marine sediments are also conceivably one of the most productive in terms of microbial activity and nutrient flux between the water-sediment interface (i.e., boundary layer). The absorption and sequestering of CO₂ from the atmosphere have demonstrated significant impacts on various marine taxa and their associated ecological processes. This is commonly observed in the reduction in calcium carbonate saturation states in most shell-forming organisms (i.e., plankton, benthic mollusks, echinoderms, and Scleractinia corals). However, the response of benthic sediment microbial communities to a reduction in global ocean pH remains considerably less well characterized. As these microorganisms operate as the lifeblood of the marine ecosystem, understanding their response and physiological plasticity to increased levels of CO₂ is of critical importance when it comes to investigating regional and global implications for the effects of ocean acidification.

Continue reading ‘The effects of ocean acidification on microbial nutrient cycling and productivity in coastal marine sediments’

Mangrove macroalgae increase their growth under ocean acidification: a study with Bostrychia (Rhodophyta) haplotypes from different biogeographic provinces

Increasing oceanic CO2 has caused a decrease in oceanic pH, a process termed ocean acidification (OA). OA may benefit fleshy macroalgae due to the increased availability of inorganic carbon sources for photosynthesis since they are tolerant of decreases in pH. In this study, we analyzed multiple physiological responses of Bostrychia montagnei and Bostrychia calliptera from two biogeographic provinces of Brazil (Tropical Southwestern Atlantic [TSA] and Warm Temperate Southwestern Atlantic [WTSA]) after culturing them at a set of bioreactors in three pH levels (7.2, 7.6, and 8.0). Two pH were decreased by CO2 enrichment into the culture medium. Molecular analyses using plastidial (rbcL-3P) and mitochondrial (COI-5P) DNA markers were also performed to identify genetic divergences between macroalgae from TSA and WTSA. Molecular evidence of COI-5P marker demonstrated that the specimens of both B. montagnei and B. calliptera from TSA and WTSA constitute different haplotypes, with a strong segregation between them. Macroalgae from both localities increased their growth in treatments of decreased pH with increased CO2 availability. Overall, physiological responses of the algae were not negatively affected by decreased pH. B. montagnei from TSA increased its polysaccharide and allophycocyanin content at pH 7.2, and B. montagnei from WTSA increased its low molecular weight carbohydrate content at pH 7.2 as well. Antioxidant activity — a proxy for physiological stress — was not affected by decreased pH. Our study indicates that haplotypes of B. montagnei and B. calliptera from TSA and WTSA can be relevant to CO2 sequestration in mangroves once they are tolerant of decreased pH and increase their growth under increased CO2 availability.

Continue reading ‘Mangrove macroalgae increase their growth under ocean acidification: a study with Bostrychia (Rhodophyta) haplotypes from different biogeographic provinces’

CO2 induced seawater acidification impacts survival and development of European eel embryos

Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1crfr2), stress/repair response (hsp70hsp90), water and solute transport (aqp1aqp3), acid-base regulation (nkcc1ancccar15), and inhibitory neurotransmission (GABAAα6bGabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.

Continue reading ‘CO2 induced seawater acidification impacts survival and development of European eel embryos’

A calcification-related calmodulin-like protein in the oyster Crassostrea gigas mediates the enhanced calcium deposition induced by CO2 exposure

Highlights

  • A novel and calcification-related gene CgCaLP was identified.
  • The protein level of CgCaLP in hemocytes increased, but decreased in gill and mantle after CO2 exposure.
  • CgCaLP translocated to the outer mantle epithelium cells under CO2 exposure.
  • Calcium-rich deposites were observed in the outer mantle epithelium cells.

Abstract

Calcium transportation and homeostasis are essential for marine bivalves to maintain basic metabolism and build their shells. Calmodulin-like proteins (CaLPs) are important calcium sensors and buffers and can respond to ocean acidification (OA) in marine calcifiers. However, no further study of their physiological function in calcium metabolism under elevated CO2 has been performed. Here, we identified a novel CaLP (designated CgCaLP) in the Pacific oyster Crassostrea gigas and demonstrated its participation in the calcification process: the mRNA expression level of CgCaLP peaked at the trochophore larval stage and remained high at stages when shells were shaped; the mRNA and protein of CgCaLP were more highly expressed in mantle tissue than in other tissues. Under elevated CO2 levels, the protein expression level of CgCaLP in hemocytes increased, while in contrast, significantly decreased protein levels were detected in gill and mantle tissues. Shell dissolution caused the imbalance of calcium in hemocytes and decreased calcium absorption and transportation demand in gill and mantle tissues, inducing the molecular function allocation of CgCaLP under CO2 exposure. Despite the decreased protein level in mantle tissue, CgCaLP was found to translocate to outer mantle epithelium (OME) cells where condensed calcium-rich deposits (CRDs) were detected. We further demonstrated that CgCaLP mRNA and protein expression levels could respond to seawater Ca2+ availability, suggesting that the calcium deposition capacity of oysters might be enhanced to fight against shell dissolution problems and that CgCaLP might serve as an essential participator of the process. In summary, CgCaLP might enhance calcium deposition under CO2 exposure and thus play a significant and flexible molecular function involved in a compensation strategy of oysters to fight against the acidified ocean.

Continue reading ‘A calcification-related calmodulin-like protein in the oyster Crassostrea gigas mediates the enhanced calcium deposition induced by CO2 exposure’

Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification

Plastics are accumulating in the world’s oceans, while ocean waters are becoming acidified by increased CO2. We compared metagenome of biofilms on tethered plastic bottles in subtidal waters off Japan naturally enriched in CO2, compared to normal ambient CO2 levels. Extending from an earlier amplicon study of bacteria, we used metagenomics to provide direct insights into changes in the full range of functional genes and the entire taxonomic tree of life in the context of the changing plastisphere. We found changes in the taxonomic community composition of all branches of life. This included a large increase in diatom relative abundance across the treatments but a decrease in diatom diversity. Network complexity among families decreased with acidification, showing overall simplification of biofilm integration. With acidification, there was decreased prevalence of genes associated with cell–cell interactions and antibiotic resistance, decreased detoxification genes, and increased stress tolerance genes. There were few nutrient cycling gene changes, suggesting that the role of plastisphere biofilms in nutrient processes within an acidified ocean may not change greatly. Our results suggest that as ocean CO2 increases, the plastisphere will undergo broad-ranging changes in both functional and taxonomic composition, especially the ecologically important diatom group, with possible wider implications for ocean ecology.

Continue reading ‘Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification’

Synergistic effects of ocean acidification and warming on coral host, Symbiodinium and nutrients exchange-based symbioses indicated by metatranscriptome

Global climate changes e.g. ocean acidification and warming caused by anthropogenic emission of CO2 are the greatest global threat to coral reef ecosystems. However, compared with the knowledge of Symbiodinium, little is known about the synergistic effects of combined ocean acidification and warming on the coral host and coral-Symbiodinium symbioses. In this study, metatranscriptomic analysis was performed to reveal the response of coral host and its symbiotic Symbiodinium to acidification (A), warming (H) and combined acidification and acidification (AH), using branching A. valida and massive G. fascicularis as models in a laboratory simulation system. RNA-Seq-based differently expressed genes (DEGs), together with coral’s morphological change, suggested the synergistic effects of AH on the coral host and coral-Symbiodinium symbioses, e.g. photosynthesis inhibition and negative effect on nutrients exchange between the host and its Symbiodinium. Particularly, AH showed a far greater impact on coral host than on Symbiodinium. These findings provide novel insights into the molecular mechanism of coral holobionts’ response to future extreme ocean acidification and warming, meanwhile highlight the molecular evidence for the different tolerance of branching and massive corals to environmental changes.

Continue reading ‘Synergistic effects of ocean acidification and warming on coral host, Symbiodinium and nutrients exchange-based symbioses indicated by metatranscriptome’

Phenotypic responses in fish behaviour narrow as climate ramps up

Natural selection alters the distribution of phenotypes as animals adjust their behaviour and physiology to environmental change. We have little understanding of the magnitude and direction of environmental filtering of phenotypes, and therefore how species might adapt to future climate, as trait selection under future conditions is challenging to study. Here, we test whether climate stressors drive shifts in the frequency distribution of behavioural and physiological phenotypic traits (17 fish species) at natural analogues of climate change (CO2 vents and warming hotspots) and controlled laboratory analogues (mesocosms and aquaria). We discovered that fish from natural populations (4 out of 6 species) narrowed their phenotypic distribution towards behaviourally bolder individuals as oceans acidify, representing loss of shyer phenotypes. In contrast, ocean warming drove both a loss (2/11 species) and gain (2/11 species) of bolder phenotypes in natural and laboratory conditions. The phenotypic variance within populations was reduced at CO2 vents and warming hotspots compared to control conditions, but this pattern was absent from laboratory systems. Fishes that experienced bolder behaviour generally showed increased densities in the wild. Yet, phenotypic alterations did not affect body condition, as all 17 species generally maintained their physiological homeostasis (measured across 5 different traits). Boldness is a highly heritable trait that is related to both loss (increased mortality risk) and gain (increased growth, reproduction) of fitness. Hence, climate conditions that mediate the relative occurrence of shy and bold phenotypes may reshape the strength of species interactions and consequently alter fish population and community dynamics in a future ocean.

Continue reading ‘Phenotypic responses in fish behaviour narrow as climate ramps up’

Intraspecific hybridization as a mitigation strategy of ocean acidification in marine bivalve noble scallop Chlamys nobilis

Highlights

  • OA significantly reduced the hatching rate, survival rate, growth rate of C. nobilis
  • Crossing of C. nobilis exhibited heterosis in terms of hatching rate, survival rate and growth rate under both ambient water and OA condition
  • Enhance OA adaptability mainly contributed by upregulation of genes involved in signal transduction, biological process maintenances, nucleic acid binding and post-translational modification

Abstract

The driving factors of climate change, especially ocean acidification (OA), have many detrimental impacts on marine bivalves. Hybridization is one of the important methods to improve environmental tolerance of animals and plants. In this study, we explored the feasibility of intraspecific hybridization as an OA mitigation strategy in noble scallop Chlamys nobilis (ecologically and economically important bivalve species). The results of this study revealed that exposure of C. nobilis to OA condition significantly reduced the hatching rate, survival rate, growth rate (shell height, shell length, shell width and shell weight), and total carotenoid content (TCC), as well as increased the deformity rate of C. nobilis larvae. Interestingly, under both ambient water and OA condition, the intraspecific hybridization of C. nobilis exhibited heterosis in terms of hatching rate, survival rate and growth rate (excepted for growth in shell length under OA). Transcriptome sequencing of C. nobilis (inbreed and hybrid under ambient and OA conditions) identified four main differentially expressed genes involved in signal transduction, biological process maintenances, nucleic acid binding and post-translational modification. In addition, the expression of these four genes in hybrid C. nobilis was significantly higher than that in inbreed C. nobilis. In conclusion, hybrid C. nobilis showed heterosis in growth rate and survival rate under both ambient water and acidified seawater condition, which may be the result of enhanced expression of genes related to signal transduction, DNA replication and post-translational modification.

Continue reading ‘Intraspecific hybridization as a mitigation strategy of ocean acidification in marine bivalve noble scallop Chlamys nobilis’

Comparative transcriptomics reveals altered species interaction between the bioeroding sponge Cliona varians and the coral Porites furcata under ocean acidification

Bioeroding sponges interact and compete with corals on tropical reefs. Experimental studies have shown global change alters this biotic interaction, often in favor of the sponge. Ocean acidification in particular increases sponge bioerosion and reduces coral calcification, yet little is known about the molecular basis of these changes. We used RNA-Seq data to understand how acidification impacts the interaction between the bioeroding sponge, Cliona varians, and the coral, Porites furcata, at the transcriptomic level. Replicate sponge and coral genets were exposed to ambient (8.1 pH) and acidified (7.6 pH) conditions in isolation and in treatments where they were joined for 48hrs. The coral had a small gene expression response (tens of transcripts) to the sponge, suggesting it does little at the transcriptomic level to deter sponge overgrowth. By contrast, the sponge differentially expressed 7320 transcripts in response to the coral under ambient conditions and 3707 transcripts in response to acidification. Overlap in the responses to acidification and the coral, 2500 transcripts expressed under both treatments, suggests a similar physiological response to both cues. The sponge expressed 50x fewer transcripts in response to the coral under acidification, suggesting energetic costs of bioerosion, and other cellular processes, are lower for sponges under acidification. Our results suggest how acidification drives ecosystem-level changes in the accretion/bioerosion balance on coral reefs. This shift is not only the result of changes to the thermodynamic balance of these chemical reactions but also the result of active physiological responses of organisms to each other and their abiotic environment.

Continue reading ‘Comparative transcriptomics reveals altered species interaction between the bioeroding sponge Cliona varians and the coral Porites furcata under ocean acidification’

Circadian rhythm and neurotransmitters are potential pathways through which ocean acidification and warming affect the metabolism of thick-shell mussels

Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.

Continue reading ‘Circadian rhythm and neurotransmitters are potential pathways through which ocean acidification and warming affect the metabolism of thick-shell mussels’

Differential DNA methylation in Pacific oyster reproductive tissue associated with ocean acidification

Background There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change are experienced by coastal ecosystems. Environmentally-induced changes to the methylome can regulate gene expression, but methylome responses may be tissue- and species-specific. To assess how ocean acidification affects the Pacific oyster (Crassostrea gigas) epigenome, we exposed oysters to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for seven weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C->T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization.

Results Analysis of gonad methylomes revealed a total of 1,284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination — commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation.

Conclusions Our work suggests DNA methylation may have a regulatory role in gonad and larval development. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.

Continue reading ‘Differential DNA methylation in Pacific oyster reproductive tissue associated with ocean acidification’

Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod

Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod, Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments.

Continue reading ‘Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod’

Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximum Artemia capture rate. Survivorship was lowest in Montipora capitata and only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. Most M. capitata survivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions. Porites compressa and Porites lobata had the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals like Porites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. Since Porites corals are ubiquitous throughout the world’s oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.

Continue reading ‘Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH’

Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream

A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) of four weeks’ exposure to OA. Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the four-weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after four weeks’ exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after four weeks exposure, except for [Cl-] which remained elevated. This suggests that, in general, there is an early physiological response to OA and by four weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity.

Continue reading ‘Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream’

Ocean acidification alters developmental timing and gene expression of ion transport proteins during larval development in resilient and susceptible lineages of the Pacific oyster (Crassostrea gigas)

Ocean acidification (OA) adversely impacts initial shell formation of bivalve larvae. Despite many studies observing large differences in developmental success between distinct genetic populations of bivalves exposed to OA, few studies have investigated the molecular mechanisms that enable resilient larvae to build their initial shell in aragonite-undersaturated conditions. This knowledge is key to their ecological and economical conservation. Herein, we used a genetic-selection program for Crassostrea gigas to produce a resilient and susceptible larval lineage to OA. The resilient and susceptible larvae were sampled every 3 h over a 24-h period in aragonite-undersaturated and control conditions. The susceptible lineage failed to develop a larval shell in aragonite-undersaturated conditions, whereas 52% of the resilient lineage developed to D-larvae by 24 h post fertilisation. We measured the expression of 23 genes involved in initial shell formation by RT-qPCR, which revealed significant genotype-by-time and environment-by-time interactions for the transcription of these genes. Aragonite-undersaturated conditions upregulated a single gene encoding a protein involved in ion transport, Na+ K+ ATPase, in both the resilient and susceptible lineage. These results were corroborated by a second experiment involving 25 pair-mated C. gigas families exposed to aragonite-undersaturated and control conditions. Our findings indicate C. gigas have a fixed capacity to modulate expression of genes involved in initial shell formation in response to OA. Thus, phenotypic differences to OA between the resilient and susceptible lineage are likely explained by other cellular processes, such as bioenergetics or protein translation.

Continue reading ‘Ocean acidification alters developmental timing and gene expression of ion transport proteins during larval development in resilient and susceptible lineages of the Pacific oyster (Crassostrea gigas)’

Transformations of diatom-derived dissolved organic matter by Bacillus pumilus under warming and acidification conditions

Heterotrophic bacteria are assumed to play an important role in processing of phytoplankton-derived dissolved organic matter (DOM). Although the algae-derived organic matter is commonly studied, the transformation and processing of DOM by epiphytic bacteria for phytoplankton have rarely been investigated, especially under warming and acidification. In this study, Bacillus pumilus is used to explore the ecologically important marine diatom Skeletonema dohrnii-derived DOM under different conditions (temperature, 27°C and 31°C; pCO2, 400 and 1,000 ppm), utilizing fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC). Fluorescence regional integration and the peak selecting method are used to generate B, T, N, A, M, and C peaks in the EEM fluorescence spectroscopy. The main known fluorophores including that protein-like components (peaks B and T), unknown components (peak N), and humic-like component (peaks A, M, and C). Our experimental results showed that under higher temperature and pressure of CO2 (pCO2) conditions, S. dohrnii-derived DOM fluorescence was dominated by a protein-like signal that slower waning throughout the experiment, becoming an increasingly humic-like substance, implying that processing by the epiphytic bacteria (B. pumilus) produced more complex molecules. In addition, spectroscopic indices (e.g., fluorescence index, biological index, freshness index β/α, and humification index) were changed in varying degrees. This study reveals and confirms the direct participation of heterotrophic bacteria in the transformation and generation of algae-derived DOM in the laboratory, underlining the influence of global warming and ocean acidification on this process.

Continue reading ‘Transformations of diatom-derived dissolved organic matter by Bacillus pumilus under warming and acidification conditions’

Transcriptional response of the azooxanthellate octocoral Scleronephthya gracillimum to seawater acidification and thermal stress

The stress responses to increased seawater temperature and marine acidification were investigated using a microarray to reveal transcriptional changes in S. gracillimum. For the study, corals were exposed to different stress experiments; high temperature only (26 °C, 28 °C and 30 °C), low-pH only (pH 7.5, pH 7.0 and pH 6.5) and dual stress experiments (28 °C + pH 7.8, 28 °C + pH 7.5 and 28 °C + pH 7.0), mortality and morphological changes in 24 h exposure experiments were investigated. The survival rates of each experimental group were observed. The gene expression changes in single and dual stress exposed coals were measured and the differentially expressed genes were classified with gene ontology analysis. The top three enriched gene ontology terms of DEGs in response to dual stress were metal ion binding (23.4%), extracellular region (17.2%), and calcium ion binding (12.8%). The gene showing the greatest increase in expression as a response to the dual stress was hemagglutinin/amebocyte aggregation factor, followed by interferon-inducible GTPase 5 and the gene showing the greatest decrease as a response to the dual stress was Fas-associating death domain-containing protein, followed by oxidase 2. These results represented the transcriptomic study focused on the stress responses of the temperate asymbiotic soft coral exposed to single and dual stresses. The combined effect of thermal and acidification stress on corals triggered the negative regulation of ion binding and extracellular matrix coding genes and these genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.

Continue reading ‘Transcriptional response of the azooxanthellate octocoral Scleronephthya gracillimum to seawater acidification and thermal stress’

Microbial biofilms along a geochemical gradient at the shallow-water hydrothermal system of Vulcano Island, Mediterranean Sea

Shallow water hydrothermal vents represent highly dynamic environments where strong geochemical gradients can shape microbial communities. Recently, these systems are being widely used for investigating the effects of ocean acidification on biota as vent emissions can release high CO2 concentrations causing local pH reduction. However, other gas species, as well as trace elements and metals, are often released in association with CO2 and can potentially act as confounding factors. In this study, we evaluated the composition, diversity and inferred functional profiles of microbial biofilms in Levante Bay (Vulcano Island, Italy, Mediterranean Sea), a well-studied shallow-water hydrothermal vent system. We analyzed 16S rRNA transcripts from biofilms exposed to different intensity of hydrothermal activity, following a redox and pH gradient across the bay. We found that elevated CO2 concentrations causing low pH can affect the response of bacterial groups and taxa by either increasing or decreasing their relative abundance. H2S proved to be a highly selective factor shaping the composition and affecting the diversity of the community by selecting for sulfide-dependent, chemolithoautotrophic bacteria. The analysis of the 16S rRNA transcripts, along with the inferred functional profile of the communities, revealed a strong influence of H2S in the southern portion of the study area, and temporal succession affected the inferred abundance of genes for key metabolic pathways. Our results revealed that the composition of the microbial assemblages vary at very small spatial scales, mirroring the highly variable geochemical signature of vent emissions and cautioning for the use of these environments as models to investigate the effects of ocean acidification on microbial diversity.

Continue reading ‘Microbial biofilms along a geochemical gradient at the shallow-water hydrothermal system of Vulcano Island, Mediterranean Sea’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: