Posts Tagged 'molecular biology'

Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp.

Ocean acidification (OA) as a result of increased anthropogenic CO2 input into the atmosphere carries consequences for all ocean life. Low pH can cause a shift in coral-associated microbial communities of pCO2-sensitive corals, however, it remains unknown whether the microbial community is also influenced in corals known to be more tolerant to high pCO2/low pH. This study profiles the bacterial communities associated with the tissues of the pCO2-tolerant coral, massive Porites spp., from two natural CO2 seep sites in Papua New Guinea. Amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene revealed that microbial communities remained stable across CO2 seep sites (pH = 7.44–7.85) and adjacent control sites (ambient pH = 8.0–8.1). Microbial communities were more significantly influenced by reef location than pH, with the relative abundance of dominant microbial taxa differing between reefs. These results directly contrast with previous findings that increased CO2 has a strong effect on structuring microbial communities. The stable structure of microbial communities associated with the tissues of massive Porites spp. under high pCO2/low pH conditions confirms a high degree of tolerance by the whole Porites holobiont to OA, and suggest that pH tolerant corals such as Porites may dominate reef assemblages in an increasingly acidic ocean.

Continue reading ‘Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp.’

Living in a multi-stressors environment: an integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification

• VFX toxicity was influenced by exposure route, as well as by abiotic stressors
• VFX water exposure induced more severe biomarker responses than VFX feed exposure
• Muscle, liver and brain biomarker responses were significantly affected by warming
• Biomarker changes due to acidification were more evident in fish gills
• The combination of the three stressors simultaneously increased stress severity
• The importance of assessing potential interaction between stressors was evidenced

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species’ physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT°C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = −0.4 units), using an integrated multi-biomarker response (IBR) approach.

Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.

Continue reading ‘Living in a multi-stressors environment: an integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification’

Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2

Heterosigma akashiwo is a raphidophyte known for forming ichthyotoxic blooms. In order to predict the potential impacts of rising CO2 on H. akashiwo it is necessary to understand the factors influencing growth rates over a range of CO2 concentrations. Here we examined the physiology and gene expression response of H. akashiwo to concentrations from 200 to 1000 ppm CO2. Growth rate data were combined from this and previous studies and fit with a CO2 limitation-inhibition model that revealed an apparent growth optimum around 600–800 ppm CO2. Physiological changes included a significant increase in C:N ratio at ∼800 ppm CO2 and a significant decrease in hydrogen peroxide concentration at ∼1000 ppm. Whole transcriptome sequencing of H. akashiwo revealed sharp distinctions in metabolic pathway gene expression between ∼600 and ∼800 ppm CO2. Hierarchical clustering by co-expression identified groups of genes with significant correlations to CO2 and growth rate. Genes with significant differential expression with CO2 included carbon concentrating mechanism genes such as beta-carbonic anhydrases and a bicarbonate transporter, which may underpin shifts in physiology. Genes involved in cell motility were significantly changed by both elevated CO2 and growth rate, suggesting that future ocean conditions could modify swimming behavior in this species.

Continue reading ‘Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2’

Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change

Marine crabs inhabit shallow coastal/estuarine habitats particularly sensitive to climate change, and yet we know very little about the diversity of their responses to environmental change. We report the effects of a rarely studied, but increasingly prevalent, combination of environmental factors, that of near-future pCO2 (~1000 µatm) and a physiologically relevant 20% reduction in salinity. We focused on two crab species with differing abilities to cope with natural salinity change, and revealed via physiological and molecular studies that salinity had an overriding effect on ion exchange in the osmoregulating shore crab, Carcinus maenas. This species was unaffected by elevated CO2, and was able to hyper-osmoregulate and maintain haemolymph pH homeostasis for at least one year. By contrast, the commercially important edible crab, Cancer pagurus, an osmoconformer, had limited ion-transporting capacities, which were unresponsive to dilute seawater. Elevated CO2 disrupted haemolymph pH homeostasis, but there was some respite in dilute seawater due to a salinity-induced metabolic alkalosis (increase in HCO3− at constant pCO2). Ultimately, Cancer pagurus was poorly equipped to compensate for change, and exposures were limited to 9 months. Failure to understand the full spectrum of species-related vulnerabilities could lead to erroneous predictions of the impacts of a changing marine climate.

Continue reading ‘Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change’

The impact of ocean acidification on the byssal threads of the blue mussel (Mytilus edulis)

Blue mussel (Mytilus edulis) produce byssal threads to anchor themselves to the substrate. These threads are always exposed to the surrounding environmental conditions. Understanding how environmental pH affects these threads is crucial in understanding how climate change can affect mussels. This work examines three factors (load at failure, thread extensibility, and total thread counts) that indicate the performance of byssal threads as well as condition index to assess impacts on the physiological condition of mussels held in artificial seawater acidified by the addition of CO2. There was no significant variation between the control (~786 μatm CO2 / ~7.98 pH/ ~2805 μmol kg-1 total alkalinity) and acidified (~2555 μatm CO2 / ~7.47 pH/ ~2650 μmol kg-1 total alkalinity) treatment groups in any of these factors. The results of this study suggest that ocean acidification by CO2 addition has no significant effect on the quality and performance of threads produced by M. edulis.

Continue reading ‘The impact of ocean acidification on the byssal threads of the blue mussel (Mytilus edulis)’

The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica

Phaeocystis antarctica is an integral player of the phytoplankton community of the Southern Ocean (SO), the world’s largest high-nutrient low-chlorophyll region, and faces chronic iron (Fe) limitation. As the SO is responsible for 40% of anthropogenic CO2 uptake, P. antarctica must also deal with ocean acidification (OA). However, mechanistic studies investigating the effects of Fe limitation and OA on trace metal (TM) stoichiometry, transcriptomic, and photophysiological responses of this species, as well as on the Fe chemistry, are lacking. This study reveals that P. antarctica responded strongly to Fe limitation by reducing its growth rate and particulate organic carbon (POC) production. Cellular concentrations of all TMs, not just Fe, were greatly reduced, suggesting that Fe limitation may drive cells into secondary limitation by another TM. P. antarctica was able to adjust its photophysiology in response to Fe limitation, resulting in similar absolute electron transport rates across PSII. Even though OA-stimulated growth in Fe-limited and -replete treatments, the slight reduction in cellular POC resulted in no net effect on POC production. In addition, relatively few genes were differentially expressed due to OA. Finally, this study demonstrates that, under our culture conditions, OA did not affect inorganic Fe or humic-acid-like substances in seawater but triggered the production of humic-acid-like substances by P. antarctica. This species is well adapted to OA under all Fe conditions, giving it a competitive advantage over more sensitive species in a future ocean.

Continue reading ‘The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica’

In situ responses of the sponge microbiome to ocean acidification

Climate change is causing rapid changes in reef structure, biodiversity, and function, though most sponges are predicted to tolerate conditions projected for 2100. Sponges maintain intimate relationships with microbial symbionts, with previous studies suggesting that microbial flexibility may be pivotal to success under ocean acidification. We performed a reciprocal transplantation of the coral reef sponges Coelocarteria singaporensis and Stylissa cf. flabelliformis between a control reef site and an adjacent CO2 vent site in Papua New Guinea to explore how the sponge microbiome responds to ocean acidification. Microbial communities of C. singaporensis, which differed initially between sites, did not shift towards characteristic control or vent microbiomes, even though relative abundances of Chloroflexi and Cyanobacteria increased and that of Thaumarchaeota decreased seven months after transplantation to the control site. Microbial communities of S. cf. flabelliformis, which were initially stable between sites, did not respond specifically to transplantation but collectively exhibited a significant change over time, with a relative increase in Thaumarchaeota and decrease in Proteobacteria in all treatment groups. The lack of a community shift upon transplantation to the vent site suggests that microbial flexibility, at least in the adult life-history stage, does not necessarily underpin host survival under ocean acidification.

Continue reading ‘In situ responses of the sponge microbiome to ocean acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,905 hits


Ocean acidification in the IPCC AR5 WG II

OUP book