Archive for the 'Science' Category

Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza

Highlights

• Coculture did not affect growth rate of U. linza but decreased it for S. costatum.

• Elevated CO2 relieved the inhibitory effect of U. linza on growth of S. costatum.

• At elevated CO2, higher temperature increased the growth rate of S. costatum.

• At elevated CO2, higher temperature reduced the growth rate of U. linza.

• Coculture did not affect respiration of U. linza but stimulated it for S. costatum.

Abstract

Red tide and green tide are two common algal blooms that frequently occur in many areas in the global oceans. The algae causing red tide and green tide often interact with each other in costal ecosystems. However, little is known on how future CO2-induced ocean acidification combined with temperature variation would affect the interaction of red and green tides. In this study, we cultured the red tide alga Skeletonema costatum and the green tide alga Ulva linza under ambient (400 ppm) and future CO2 (1000 ppm) levels and three temperatures (12, 18, 24 °C) in both monoculture and coculture systems. Coculture did not affect the growth rate of U. linza but significantly decreased it for S. costatum. Elevated CO2 relieved the inhibitory effect of U. linza on the growth of S. costatum, particularly for higher temperatures. At elevated CO2, higher temperature increased the growth rate of S. costatum but reduced it for U. linza. Coculture with U. linza reduced the net photosynthetic rate of S. costatum, which was relieved by elevated CO2. This pattern was also found in Chl a content, indicating that U. linza may inhibit growth of S. costatum via harming pigment synthesis and thus photosynthesis. In monoculture, higher temperature did not affect respiration rate of S. costatum but increased it in U. linza. Coculture did not affect respiration of U. linza but stimulated it for S. costatum, which was a signal of responding to biotic and/abiotic stress. The increased growth of S. costatum at higher temperature and decreased inhibition of U. linza on S. costatum at elevated CO2 suggest that red tides may have more advantages over green tides in future warmer and CO2-enriched oceans.

Continue reading ‘Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza’

Investigating the response of sea urchin early developmental stages to multiple stressors related to climate change

Within climate change biology, the red sea urchin Mesocentrotus franciscanus has
remained relatively overlooked despite its sizeable ecological and economic importance, particularly within the context of multi-stressor effects. I assembled and described a developmental transcriptome for M. franciscanus, providing a useful molecular resource with which to study this organism. I then examined both the physiological and molecular mechanisms that underlie the response of early developmental stage (EDS) M. franciscanus to different combinations of pH levels and temperatures that represented ecologically
relevant present and future ocean conditions. Elevated pCO2 levels decreased embryo body size, but at the prism embryo stage, warmer temperatures helped to offset this via an increase in body size. Warmer temperatures also slightly increased the thermal tolerance of prism stage embryos. Neither pCO2 nor temperature stressors affected prism metabolic rate as measured by rate of oxygen consumption. Gene expression patterns differed by developmental stage and by temperature exposure. Elevated temperatures led to an upregulation of cellular stress response genes. Under colder temperatures, the embryos
exhibited an up-regulation of epigenetic genes related to histone modifications.
There was a comparatively minimal transcriptomic response to different pCO2 levels. Examining the physiological and molecular responses of EDS M. franciscanus to multiple stressors provided much needed information regarding a species of significant ecological and economic value by examining its capacity to respond to stressors related to climate change and ocean acidification under an ecologically relevant context.

I also investigated the role of transgenerational plasticity (TGP), in which the
environmental conditions experienced by parents affect progeny phenotypes. TGP may provide a valuable mechanism by which organisms can keep pace with relatively rapid environmental change. Adult S. purpuratus were conditioned to two divergent, but ecologically relevant pH levels and temperatures throughout gametogenesis. The adults were spawned and crossed, and their progeny were raised under different pH levels to determine if maternal conditioning impacted the response of the progeny to low pH stress. I investigated maternal provisioning, a mechanism of TGP, by measuring the size, total protein content, and total lipid content of the eggs that they produced. Acclimatization of the
adult urchins to simulated upwelling conditions (combined low pH, low temperature) appeared to increase maternal provisioning of lipids to the eggs but did not affect egg size or protein content. I also investigated the physiology and gene expression of progeny responding to low pH stress, which were affected more by maternal conditioning than by offspring pH treatment. Maternal conditioning to simulated upwelling resulted in larger offspring body sizes. Additionally, I found the progeny expressed differential regulatory
patterns of genes related to epigenetic modifications, ion transport, metabolic processes and ATP production. This work showed that adult exposure to upwelling conditions can improve the resilience of EDS progeny to low pH levels.

Continue reading ‘Investigating the response of sea urchin early developmental stages to multiple stressors related to climate change’

Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: from Changjiang (Yangtze River) Estuary to the East China Sea

Seasonal variations in the transports of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) from the Lower Changjiang (Yangtze) River/Estuary to the East China Sea (ECS) were investigated based on a series of field surveys in 2015–2017, including monthly samplings at Datong Station and seasonal mapping cruises in the Changjiang Estuary and the adjacent northwestern ECS. In comparison with historical data sets, the Changjiang TAlk flux varied around a nearly stable average over the past 55 years. This is much different from some American rivers, where TAlk export fluxes increased for a century long. To assess effects of riverine carbonate inputs on coastal carbonate chemistry, we compared several cases showing freshwater‐dilution‐induced decline in coastal aragonite saturation state (Ωarag), including rainwater dilution and riverine water dilution. Without riverine carbonate inputs, the effect of a unit of salinity decrease (due to rainwater dilution) on Ωarag was expected to be counteracted by a DIC removal of 10 μmol kg–1 relative to the baseline value along relevant conservative mixing line, when coastal Ωarag was close to a critical value of 1.5. Considering terrestrial carbonate inputs from Changjiang, however, the freshwater‐dilution‐induced coastal Ωarag suppression decreased by 12%. Our data also showed that, more than 10% of wet‐season DIC flux discharged from the Changjiang Estuary was sequestered by biological activities in nearshore areas, while the TAlk flux was rarely affected. This biological alteration effectively transformed the terrestrial carbonate system from a feature of DIC:TAlk >1.0 to the usual seawater feature of DIC:TAlk <0.9.

Continue reading ‘Export flux, biogeochemical effects, and the fate of a terrestrial carbonate system: from Changjiang (Yangtze River) Estuary to the East China Sea’

Impact of ocean acidification and warming on mitochondrial enzymes and membrane lipids in two Gadoid species

Mitochondrial respiration is a multi-step pathway that involves matrix and membrane-associated enzymes and plays a key role in acclimation to variable environmental conditions, but until now it has not been clear which of these steps would be most important in acclimation to changing temperatures and CO2 levels. Considering scenarios of ocean warming and acidification we assessed the role and limitation to phenotypic plasticity in the hearts of two Gadoid species adapted to different thermal ranges: the polar cod (Boreogadus saida), an Arctic stenotherm, and the Northeast Arctic population of Atlantic cod (NEAC, Gadus morhua), a cold eurytherm. We analysed the capacity of single enzymes involved in mitochondrial respiration [citrate synthase (CS), succinate dehydrogenase (SDH), cytochrome c oxidase (CCO)], the capacity of the electron transport system and the lipid class composition of the cellular membranes. Juveniles of the two species were held for four months at four temperatures (0, 3, 6, 8 °C for polar cod and 3, 8, 12, 16 °C for NEAC), at both ambient and elevated PCO2 (400 µatm and 1170 µatm, respectively). Polar cod showed no changes in mitochondrial enzyme capacities and in the relative lipid class composition in response to altered temperature or elevated PCO2. The lack of cardiac cellular plasticity together with evidence at the whole-animal level coming from other studies is indicative of little or no ability to overcome stenothermy, in particular during acclimation to 8 °C. In contrast, eurythermal NEAC exhibited modifications of membrane composition towards a more rigid structure and altered enzyme capacities to preserve functionality at higher temperatures. Furthermore, in NEAC, the capacities of SDH, CCO and CS were increased by high levels of CO2 if combined with high temperatures (12 and 16 °C), suggesting the compensation of an inhibitory effect. These results indicate that the cold eurythermal species (NEAC) is able to alter its mitochondrial function to a far greater extent than the Arctic stenotherm (polar cod), indicating greater resilience to variable environmental conditions. This difference in plasticity may underpin differences in the resilience to climate change and affect future species distributions and, eventually, survival.

Continue reading ‘Impact of ocean acidification and warming on mitochondrial enzymes and membrane lipids in two Gadoid species’

Spatiotemporal changes of ocean carbon species in the western North Pacific using parameterization technique

We constructed parameterizations for the estimation of dissolved inorganic carbon (DIC) and pH in the western North Pacific, including Japanese coastal regions. Parameterizations, determined as a function of potential temperature (θ) and dissolved oxygen (DO), provided strong correlations with direct measurements for DIC [the coefficient of determination (R2) = 0.99; the root mean square error (RMSE) = 8.49 µmol kg−1] and pH (R2 = 0.98, RMSE = 0.030). Predicted DIC and pH values were consistent with previous independent hydrographic observations, generally within 3 µmol kg−1 for DIC and 0.010 for pH. By applying these parameterizations to climatological seasonal θ and DO data and time-series θ and DO data from autonomous profiling floats (Argo) in the western North Pacific, large spatiotemporal variations in DIC and pH were demonstrated. Results indicated that the rate of increase in anthropogenic DIC above a depth of 400 m along 30° N in the western North Pacific was + 0.86 ± 0.11 µmol kg−1 year−1 between 1994 and 2004. This decreased by + 0.58 ± 0.05 µmol kg−1 year−1 after 2004 partly due to increasing anthropogenic nitrogen input, suggesting that the decrease has induced the slowdown of ocean acidification in the western North Pacific. The declining trend in anthropogenically induced ocean pH was found to be 0.0021 ± 0.0016 during 1994–2013.

Continue reading ‘Spatiotemporal changes of ocean carbon species in the western North Pacific using parameterization technique’

Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda)

Minuca mordax is a model for studies on ocean acidification and sea-level rise because lives in mangroves and riverbanks with low pH. We investigated the physiology of the crabs exposed to differents pH (6.5 and 5.8) and salinity (25, 30, 35, 40 45S). There was not mortality or alterations in the hypo-osmoregulation, suggesting that the factors did not affect salt absorption/secretion. Reduced pH changed metabolism, ammonia excretion, and hepatosomatic index in relation to the animals kept in control pH. At elevated salinities, metabolism increased when animals were kept in control pH, but it decreased when they were exposed to acidified pH. energy substrate, varied between proteins to a mixture of proteins and lipids. Important physiological parameters, related to the catabolism of amino acids and to the energy demand are changed and the consequences might include alterations in growth and reproduction due to the energy channeling to limiting processes of homeostasis.

Continue reading ‘Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda)’

Response of N2O production rate to ocean acidification in the western North Pacific

Ocean acidification, induced by the increase in anthropogenic CO2 emissions, has a profound impact on marine organisms and biogeochemical processes. The response of marine microbial activities to ocean acidification might play a crucial role in the future evolution of air–sea fluxes of biogenic gases such as nitrous oxide (N2O), a strong GHG and the dominant stratospheric ozone-depleting substance. Here, we examine the response of N2O production from nitrification to acidification in a series of incubation experiments conducted in subtropical and subarctic western North Pacific. The experiments show that when pH was reduced, the N2O production rate during nitrification measured at subarctic stations increased significantly while nitrification rates remained stable or decreased. Contrary to previous findings, these results suggest that the effect of ocean acidification on N2O production during nitrification and nitrification rates are probably uncoupled. Collectively, these results suggest that if seawater pH continues to decline at the same rate, ocean acidification could increase marine N2O production during nitrification in the subarctic North Pacific by 185 to 491% by the end of the century.

Continue reading ‘Response of N2O production rate to ocean acidification in the western North Pacific’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,298,066 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book