Archive for the 'Science' Category

Net community metabolism and seawater carbonate chemistry scale non-intuitively with coral cover

Coral cover and reef health have been declining globally as reefs face local and global stressors including higher temperature and ocean acidification (OA). Ocean warming and acidification will alter rates of benthic reef metabolism (i.e., primary production, respiration, calcification, and CaCO3 dissolution), but our understanding of community and ecosystem level responses is limited in terms of functional, spatial, and temporal scales. Furthermore, dramatic changes in coral cover and benthic metabolism could alter seawater carbonate chemistry on coral reefs, locally alleviating or exacerbating OA. This study examines how benthic metabolic rates scale with changing coral cover (0-100%), and the subsequent influence of these coral communities on seawater carbonate chemistry based on mesocosm experiments in Bermuda and Hawaii. In Bermuda, no significant differences in benthic metabolism or seawater carbonate chemistry were observed for low (40%) and high (80%) coral cover due to large variability within treatments. In contrast, significant differences were detected between treatments in Hawaii with benthic metabolic rates increasing with increasing coral cover. Observed increases in daily net community calcification and nighttime net respiration scaled proportionally with coral cover. This was not true for daytime net community organic carbon production rates, which increased the most between 0 to 20% coral cover and then less so between 20% to 100%. These differences in scaling resulted in larger diel variability in seawater carbonate chemistry as coral cover increased. To place the results of the mesocosm experiments into a broader context, in situ seawater carbon dioxide (CO2) at three reef sites in Bermuda and Hawaii were also evaluated; reefs with higher coral cover experienced a greater range of diel CO2 levels, complementing the mesocosm results. The results from this study highlight the need to consider the natural complexity of reefs and additional biological and physical factors that influence seawater carbonate chemistry on larger spatial and longer temporal scales. Coordinated efforts combining various research approaches (e.g. experiments, field studies, and models) will be required to better understand how benthic metabolism integrates across functional, spatial, and temporal scales, and for making predictions on how coral reefs will respond to climate change.

Continue reading ‘Net community metabolism and seawater carbonate chemistry scale non-intuitively with coral cover’

What a decade (2006-15) of journal abstracts can tell us about trends in ocean and coastal sustainability challenges and solutions

Text mining and analytics may offer possibilities to assess scientists’ professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD) framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014-15 relative to the 2006-13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists’ written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them.

Continue reading ‘What a decade (2006-15) of journal abstracts can tell us about trends in ocean and coastal sustainability challenges and solutions’

Bacterial community responses during a possible CO2 leaking from sub-seabed storage in marine polluted sediments

Carbon capture and storage (CCS) is a viable option to reduce high concentrations of CO2 and mitigate their negative effects. This option has associated risks such as possible CO2 leakage from the storage sites. So far, negative effects deriving from a CO2 release have been reported for benthic macrofauna in both polluted and nonpolluted sediments. However, bacterial communities has no considered. In this work, risk assessment was carried out in order to evaluate the possible effects in a contaminated area considering bacterial responses (total number of cells, respiring activity, changes in the bacterial community composition and diversity). Four microcosms were placed into an integrated CO2 injection system with a non-pressurized chamber to simulate four different pH treatments (pH control 7.8, 7, 6.5 and 6). Results showed an impact on bacterial communities because of the CO2 treatment. Changes in respiring activity, community composition groups and diversity were found. This study highlights the use of respiring bacteria activity not only as bioindicator for environmental risk assessment and monitoring purposes but also as a bioindicador during a CO2 leakage event or CO2 enrichment process among all the responses studied.

Continue reading ‘Bacterial community responses during a possible CO2 leaking from sub-seabed storage in marine polluted sediments’

Impact of climate change on direct and indirect species interactions

Recent marine climate change research has largely focused on the response of individual species to environmental changes including warming and acidification. The response of communities, driven by the direct effects of ocean change on individual species as well the cascade of indirect effects, has received far less study. We used several rocky intertidal species including crabs, whelks, juvenile abalone, and mussels to determine how feeding, growth, and interactions between species could be shifted by changing ocean conditions. Our 10 wk experiment revealed many complex outcomes which highlight the unpredictability of community-level responses. Contrary to our predictions, the largest impact of elevated CO2 was reduced crab feeding and survival, with a pH drop of 0.3 units. Surprisingly, whelks showed no response to higher temperatures or CO2 levels, while abalone shells grew 40% less under high CO2 conditions. Massive non-consumptive effects of crabs on whelks showed how important indirect effects can be in determining climate change responses. Predictions of species outcomes that account solely for physiological responses to climate change do not consider the potentially large role of indirect effects due to species interactions. For strongly linked species (e.g. predator-prey or competitor relationships), the indirect effects of climate change are much less known than direct effects, but may be far more powerful in reshaping future marine communities.

Continue reading ‘Impact of climate change on direct and indirect species interactions’

A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy

In a country that houses a mere 4 million people, it is no wonder that agriculture has become the main facet of New Zealand’s economy. However, while the sheep and produce have flourished from land protection laws, marine life has struggled in recent years due to an increase in oceanic carbon levels. In an area of the Pacific that is so rich in coral reefs, Great White breeding areas, and a plethora of fish species, any upset of the natural preexisting chemical balance has a tangible impact. New Zealand is dealing with a crisis with huge economic and ecological ramifications. I study the exact adverse effects that ocean acidification has had on the economy of New Zealand. The scientific process of how ocean acidification occurs is a building block of this understanding as well as the Gross Domestic Product (GDP) of the country. The rise of marine pH levels is inextricably linked to the downturn of prosperity in New Zealand’s agricultural sector. My solutions address stricter policies in regards to fishing and emissions regulations to augment the regulation of established New Zealand commercial fishing laws. In this thesis, my goal is to highlight that ocean acidification is a climate problem that affects the entire New Zealand population. By putting these effects into economic terms, I hope to urge change in the “business as usual” way countries conduct themselves, starting with policy makers whose focus is growing their GDP. To illustrate this point effectively, I utilize the disciplines of chemistry, economics, and politics to analyze the trends and consequences of ocean acidification.

Continue reading ‘A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy’

The combined effects of increased temperature and ocean acidification on the early life history stages of Caribbean coral and its implication for the recovery potential of Florida reefs

The early life history stages of coral are an essential component determining the recovery potential of coral reefs through sexual reproduction and recruitment. The pelagic larval phase is inherent in all coral species regardless of differing reproductive strategies and is the only time in coral life history where large scale movement is possible allowing for the repopulation of reef areas both within and outside the natal reef habitat. In the face of climate change, the larval dispersal and recruitment phase will take place in a warmer more acidic ocean if we continue on the path of unabated fossil fuel emissions. While much research has focused on how increased temperature or ocean acidification affect coral larvae independently, our understanding of how these factors interact to shape larval response is limited, especially in regards to Caribbean coral species.

To gain a better understanding of how the early life history stages of Caribbean coral may be affected by climate change, this dissertation investigates the effects of increased temperature (2.5 °C above historical averages in the Florida Keys) and carbon dioxide levels (900-1000 parts per million CO2) on corals from the Florida Reef tract by investigating the effects on larval metabolism, survivorship, settlement, and post-settlement growth and survival. Additionally, a coupled biophysical model was developed to determine the potential changes in connectivity that may result from the biological effects of increased temperature and ocean acidification on the larval phase. The larval respiratory response of three Caribbean coral species revealed Orbicella faveolata as the most environmentally responsive with significant increases in respiration after 1 day exposure to increased temperature (68% greater than control conditions) with a counteracting effect of ocean acidification significantly decreasing respiration. The changes in metabolism over time correlated with decreased time to competency under elevated temperature in O. faveolata larvae, resulting in a greater number of settlers (76% greater than control) and a relative increase in local retention and self-recruitment rates as revealed by the biophysical model (5 and 7% greater than control respectively). However, when increased temperature occurred in combination with elevated CO2 levels, respiration was not significantly increased relative to control conditions and development of competency is minimally impacted. This resulted in a smaller increase in settlers (13% greater than control) and no significant changes in connectivity patterns. The post-settlement phase was similarly impacted with counteracting effects of increased temperature and ocean acidification on recruit growth.

Overall, this dissertation reveals the potential for adaptation to increased temperature in at least one important coral species (Orbicella faveolata) that is greatly diminished when encountered in combination with ocean acidification. These results encourage the reduction of carbon emissions to give coral species the chance to adapt to elevated temperatures through the recruitment of more resilient individuals without the additional stress of ocean acidification.

Continue reading ‘The combined effects of increased temperature and ocean acidification on the early life history stages of Caribbean coral and its implication for the recovery potential of Florida reefs’

Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard

Ocean acidification induces strong behavioural alterations in marine fish as a consequence of acid-base regulatory processes in response to increasing environmental CO2 partial pressure. While these changes have been investigated in tropical and temperate fish species, nothing is known about behavioural effects on polar species. In particular, fishes of the Arctic Ocean will experience much greater acidification and warming than temperate or tropical species. Also, possible interactions of ocean warming and acidification are still understudied. Here we analysed the combined effects of warming and acidification on behavioural patterns of 2 fish species co-occurring around Svalbard, viz. polar cod Boreogadus saida and Atlantic cod Gadus morhua. We found a significant temperature effect on the spontaneous activity of B. saida, but not of G. morhua. Environmental CO2 did not significantly influence activity of either species. In contrast, behavioural laterality of B. saida was affected by CO2 but not by temperature. Behavioural laterality of G. morhua was not affected by temperature or CO2; however, in this species, a possible temperature dependency of CO2 effects on relative laterality may have been missed due to sample size restrictions. This study indicates that fish in polar ecosystems may undergo some, albeit less intense, behavioural disturbances under ocean acidification and in combination with ocean warming than observed in tropical species. It further accentuates species-specific differences in vulnerability.

Continue reading ‘Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,000,802 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book