Posts Tagged 'mortality'

Impacts of seawater pH buffering on the larval microbiome and carry-over effects on later-life disease susceptibility in Pacific oysters

Ocean acidification upwelling events and the resulting lowered aragonite saturation state of seawater have been linked to high mortality of marine bivalve larvae in hatcheries. Major oyster seed producers along North America’s west coast have mitigated impacts via seawater pH buffering (e.g., addition of soda ash). However, little consideration has been given to whether such practice may impact the larval microbiome, with potential carry-over effects on immune competency and disease susceptibility in later-life stages. To investigate possible impacts, Pacific oysters (Crassostrea gigas) were reared under soda ash pH buffered or ambient pH seawater conditions for the first 24 h of development. Both treatment groups were then reared under ambient pH conditions for the remainder of the developmental period. Larval microbiome, immune status (via gene expression), growth, and survival were assessed throughout the developmental period. Juveniles and adults arising from the larval run were then subjected to laboratory-based disease challenges to investigate carry-over effects. Larvae reared under buffered conditions showed an altered microbiome, which was still evident in juvenile animals. Moreover, reduced survival was observed in both juveniles and adults of the buffered group under a simulated marine heatwave and Vibrio exposure compared with those reared under ambient conditions. Results suggest that soda ash pH buffering during early development may compromise later-life stages under stressor conditions, and illustrate the importance of a long-view approach with regard to hatchery husbandry practices and climate change mitigation.

Continue reading ‘Impacts of seawater pH buffering on the larval microbiome and carry-over effects on later-life disease susceptibility in Pacific oysters’

Effects of hypoxia and acidification on Calanus pacificus: behavioral changes in response to stressful environments

Copepods, which play major roles in marine food webs and biogeochemical cycling, frequently undergo diel vertical migration (DVM), swimming downwards during the day to avoid visual predation and upwards at night to feed. Natural water columns that are stratified with chemical stressors at depth, such as hypoxia and acidification, are increasing with climate change. Understanding behavioral responses of copepods to these stresses—in particular, whether copepods alter their natural migration—is important to anticipating impacts of climate change on marine ecosystems. We conducted laboratory experiments using stratified water columns to measure the effects of bottom water hypoxia and pH on mortality, distribution, and swimming behaviors of the calanoid copepod Calanus pacificus. When exposed to hypoxic (0.65 mg O2 l-1) bottom waters, the height of C. pacificus from the bottom increased 20% within hypoxic columns, and swimming speed decreased 46% at the bottom of hypoxic columns and increased 12% above hypoxic waters. When exposed to low pH (7.48) bottom waters, swimming speeds decreased by 8 and 9% at the base of the tanks and above acidic waters, respectively. Additionally, we found a 118% increase in ‘moribund’ (immobile on the bottom) copepods when exposed to hypoxic, but not acidic, bottom waters. Some swimming statistics differed between copepods collected from sites with versus without historical hypoxia and acidity. Observed responses suggest potential mechanisms underlying in situ changes in copepod population distributions when exposed to chemical stressors at depth.

Continue reading ‘Effects of hypoxia and acidification on Calanus pacificus: behavioral changes in response to stressful environments’

Epigenetic-associated phenotypic plasticity of the ocean acidification-acclimated edible oyster in the mariculture environment

For marine invertebrates with pelagic-benthic life cycle, larval exposure to ocean acidification (OA) can affect adult performance in response to another environmental stressor. This carry-over effect has the potential to alter phenotypic traits. However, molecular mechanisms that mediate “OA” triggered carry-over effects have not been explored despite such information being key to improve species fitness and management strategies for aquafarming. This study integrated genome-wide DNA methylome and transcriptome to examine epigenetic modification-mediated carry-over OA impacts on phenotypic traits of the ecologically and commercially important oyster species Crassostrea hongkongensis under field conditions. Larvae of C. hongkongensis were exposed to control pH8.0 and low pH7.4 conditions mimicking OA scenario before being outplanted as post-metamorphic juveniles at two mariculture field sites with contrasting environmental stressors for nine months. The larval carry-over OA effect was found to have persistent impacts on the growth and survival trade-off traits on the outplanted juveniles, although the beneficial or adverse effect depended on the environmental conditions at the outplanted sites. The site-specific plasticity was demonstrated with a diverse DNA methylation-associated gene expression profile, with signal transduction and endocrine system being the most common and highly enriched functions. The highly methylated exons prevailed in the key genes related to general metabolic and endocytic responses and these genes are evolutionarily conserved in various marine invertebrates in response to OA. These results suggest that oysters with prior larval exposure history to OA had the capability to trigger rapid local adaptive responses via epigenetic modification to cope with multiple stressors in field.

Continue reading ‘Epigenetic-associated phenotypic plasticity of the ocean acidification-acclimated edible oyster in the mariculture environment’

Crustacean ecology in a changing climate

Whilst crustaceans occupy a diversity of ecological niches and have adapted to many environmental challenges, relatively little is known on how the predicted changes associated with climate change will impact individuals, communities, species and ecosystems globally. Direct oceanic change to seawater temperature, pH, alkalinity, oxygen level and salinity and indirect impacts on weather, seasonality, food availability and changes in ecological networks will put pressure upon crustaceans to acclimate. There is now emerging evidence that behaviour, physiology, fitness and ultimately reproduction and survival of coastal crustaceans is altered under experimental climate change conditions, with most studies showing negative impacts. Nevertheless measurable endpoints, multigenerational and ecosystem studies are to date extremely rare and the full impact of climate change stress upon crustaceans is nowhere near fully understood.

Continue reading ‘Crustacean ecology in a changing climate’

Impacts of global environmental change on fish and fisheries of the Northeastern Pacific Ocean

Marine fishes’ intolerance to global change conditions can affect the abundance and distribution of ecologically and economically important species, reshape the structure of trophic webs, and profoundly impact the human communities that rely on fished species for their livelihood and culture. Only by understanding the vulnerability of fished species and fishing communities to global change can we take effective adaptive action and implement climate-ready fisheries management. In this dissertation, I investigate the vulnerability of eight commercially important fished species and one fishing community to global change in the Northeastern Pacific Ocean. In chapter one, I expose Lingcod (Ophiodon elongatus), a benthic egg layer, to temperature, oxygen, and pH conditions we expect to see in the Central California Current System (CCS) by the year 2050 and 2100. I examine both the lethal and sublethal effects of these two multistressor climate change scenarios by measuring differences in metabolic rate, hatching success, and larval quality between treatments. In chapter two, I use a species distribution modeling approach to evaluate how historical (1982-2019) and projected (2030 through end-of-century) warming in the Eastern Bering Sea (EBS), Alaska, affects predator-prey interactions for some of the most commercially valuable fisheries in the U.S. These species include: 1) Pacific Cod (Gadus macrocephalus), 2) Pacific Halibut (Hippoglossus stenolepis), 3) Arrowtooth Flounder, 4) Walleye Pollock (Gadus chalcogrammus), 5) Tanner Crab (Chionoecetes bairdi), 6) Snow Crab (Chionoecetes opilio), and 7) Alaskan Pink Shrimp (Pandalus eous). In chapter three, I use social network analyses to depict the resilience and adaptability of the California Market Squid fishery (Doryteuthis opalescens), the most valuable in the state, to climate perturbations and project changes in habitat suitability by the year 2100 in the CCS. By using all of these vulnerability assessment tools, we can begin to prepare U.S. west coast fisheries for global environmental change.

Continue reading ‘Impacts of global environmental change on fish and fisheries of the Northeastern Pacific Ocean’

Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis)

Graphical abstract.


  • Climate change can affect nutritional quality and physiology of marine organisms.
  • Growth, metabolism and excretion were assessed under acidification and warming.
  • Weight gain, metabolic rates and energy intake increased under future climate conditions.
  • The highest energy budget fractions were allocated to growth and faecal excretion.
  • Juvenile Senegalese sole is resilient to climate change-related scenarios.


Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = −0.3 units equivalent to ΔpCO2 ~ +600 μatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48–63 %), followed by excretion through faeces (36–51 %), respiration (approximately 1 %) and ammonia excretion (0.1–0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.

Continue reading ‘Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis)’

Marine heatwave impacts on newly-hatched planktonic larvae of an estuarine crab

Graphical abstract.


  • Larvae survival was affected by temperature increase regardless of pH conditions.
  • Larvae heart beating and abdominal contractions were affected by temperature and pH.
  • Over the past 38 years Santos/São Vicente coast had a mean SST increase of 0.85 °C.
  • Higher intensity and duration of heatwaves are expected to reduce larval recruitment.


Climate change is imposing constant and more severe environmental challenges to coastal and marine species. Regional climate and species acclimation capacity determine the communities’ ecological response to stressors. Marine heatwave events are of serious threat to species fitness and survivorship, even more to the sensitive early-history stages of ectotherms. By combining modeled regional historical data and climate change predictions with manipulative experiments, we evaluated the potential impact of marine heatwaves in a widespread and abundant planktonic larvae of the fiddler crab Leptuca thayeri. Larvae survival was affected by temperature increase with lowest survival probability under higher temperature treatments regardless of pH conditions. Larval physiology was affected by both temperature increase and pH conditions. With heatwaves becoming more frequent, hotter, and lasting longer in the region, we could expect potential reductions in the larval recruitment and stocks with cascade ecological negative effects on estuarine habitats.

Continue reading ‘Marine heatwave impacts on newly-hatched planktonic larvae of an estuarine crab’

Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification (update)

The ability of coral populations to recover from disturbance depends on larval dispersion and recruitment. While ocean warming and acidification effects on adult corals are well documented, information on early life stages is comparatively scarce. Here, we investigate whether ocean warming and acidification can affect the larval and recruit development of the Mediterranean azooxanthellate coral Astroides calycularis. Larvae and recruits were raised for 9 months at ambient (23 C) and warm (26 C) temperatures and ambient (8.0) and low pH (7.7, on the total scale). The timing of the larval metamorphosis, growth of the recruit polyp by linear extension and budding, and skeletal characteristics of the 9-month-old polyps were monitored. Settlement and metamorphosis were more successful and hastened under a warm temperature. In contrast, low pH delayed the metamorphosis and affected the growth of the recruits by reducing the calcified area of attachment to the substrate as well as by diminishing the skeleton volume and the number of septa. However, skeleton density was higher under low pH and ambient temperature. The warm temperature and low-pH treatment had a negative impact on the survival, settlement, and growth of recruits. This study provides evidence of the threat represented by ocean warming and acidification for the larval recruitment and the growth of recruits of A. calycularis.

Continue reading ‘Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification (update)’

Towards modelling cold-water coral reef-scale crumbling: including morphological variability in mechanical surrogate models

The structural complexity of cold-water corals is threatened by ocean acidification. Increased porosity and weakening of structurally critical parts of the reef framework may lead to rapid physical collapse on an ecosystem scale, reducing their potential for biodiversity support. We can use computational models to describe the mechanisms leading to reef-crumbling. How-ever, the implementation of such models into an efficient predictive tool that allows us to determine risk and timescales of reef collapse is missing. Here, we identified possible surrogate models to represent the branching architecture of the cold-water coral species Lophelia pertusa. For length scales greater than 13 cm, a continuum finite element mechanical approach can be used to analyse mechanical competence whereas at smaller length scales, mechanical surrogate models need to explicitly account for the statistical differences in the structure. We showed large morphological variations between L. pertusa colonies and branches, as well as dead and live skeletal structures, which need to be considered for the development of rapid monitoring tools for predicting risk of cold-water coral reefs crumbling. This will allow us to investigate timescales of changes, including the impact of exposure times to acidified waters on reef-crumbling.

Continue reading ‘Towards modelling cold-water coral reef-scale crumbling: including morphological variability in mechanical surrogate models’

Interaction between reduced pH and multiple stressors affects the physiology of the fiddler crab Leptuca thayeri (Rathbun, 1900) (Decapoda: Brachyura: Ocypodidae)

Increasing ocean acidification combined with other impacts may cause changes in homeostatic mechanisms of intertidal invertebrates. Stressors do not act in isolation, and experimental work is needed to assess their synergistic potential. We evaluated the effect of exposure to multiple stressors on the survival, osmoregulation, metabolism, Q10, excretion, hepatosomatic index, and energy substrate oxidation on of the fiddler crab Leptuca thayeri (Rathbun, 1900). Crabs were exposed to two pH values (7.0, 6.3) combined with temperatures (20, 25, 30, 35, 40 °C) and these pH values combined with salinities (10, 20, 30, 40, and 50 psu) during acute exposure. All individuals died at 40 °C. Crabs osmoregulated, suggesting that the factors evaluated did not affect salt absorption or secretion. Individuals were weak hyperosmorregulators at lower salinities in the pH 7 control, but they became strong hyperosmoregulators at acidified pH 6.3. Alterations in oxygen consumption and hepatosomatic index were observed in individuals exposed to the acidified pH combined with temperatures or salinities, compared to those kept in the control pH. Q10 was elevated under an acidified pH, with crabs using proteins and lipids as energy substrates. The interaction between reduced pH and temperature or salinity thus affected physiological mechanisms related to the energetic metabolism, but elevated temperatures are more limiting because they affected survival. These physiological effects of acute exposure offer clues about extreme climatic events, which have a short duration but can affect the related energy demands.

Continue reading ‘Interaction between reduced pH and multiple stressors affects the physiology of the fiddler crab Leptuca thayeri (Rathbun, 1900) (Decapoda: Brachyura: Ocypodidae)’

Camouflage and exploratory avoidance of newborn cuttlefish under warming and acidification

Ocean warming and acidification have been shown to elicit deleterious effects on cephalopod mollusks, especially during early ontogeny, albeit effects on behavior remain largely unexplored. This study aimed to evaluate, for the first time, the effect of end-of-the-century projected levels of ocean warming (W; + 3 °C) and acidification (A; 980 µatm pCO2) on Sepia officinalis hatchlings’ exploratory behavior and ability to camouflage in different substrate complexities (sand and black and white gravel). Cuttlefish were recorded in open field tests, from which mobility and exploratory avoidance behavior data were obtained. Latency to camouflage was registered remotely, and pixel intensity of body planes and background gravel were extracted from photographs. Hatching success was lowered under A and W combined (AW; 72.7%) compared to control conditions (C; 98.8%). Motion-related behaviors were not affected by the treatments. AW delayed camouflage response in the gravel substrate compared to W alone. Moreover, cuttlefish exhibited a higher contrast and consequently a stronger disruptive pattern under W, with no changes in background matching. These findings suggest that, although climate change may elicit relevant physiological challenges to cuttlefish, camouflage and mobility of these mollusks are not undermined under the ocean of tomorrow. 

Continue reading ‘Camouflage and exploratory avoidance of newborn cuttlefish under warming and acidification’

Impact of ocean acidification on the physiology of digestive gland of razor clams Sinonovacula constricta

Ocean acidification (OA) can have widespread implications for marine bivalves. While our current understanding of OA effects on the physiological performance is increasing, very little is known about the physiology of digestive gland of marine bivalves in response to OA. Here, we examined how the digestive system of razor clams (Sinonovacula constricta) responded to OA. Following 35-day exposure to CO2-driven seawater acidification, no significant decreases in phenotypic traits, such as dry body weight gain, specific growth rate, condition index and survival rate, as well physiological functions, such as activities of antioxidant and digestive enzymes, were observed, demonstrating the resistance of razor clams under acidified conditions. Histological results showed that some direct damages on the structure of digestive gland was observed, including degradation of digestive tubular, atrophy of epithelial cells, loose cell arrangement, even diffuse. This study provides insights into the digestive performance of marine bivalves in a rapidly acidifying ocean.

Continue reading ‘Impact of ocean acidification on the physiology of digestive gland of razor clams Sinonovacula constricta

The effects of alkalinity on production performance and biochemical responses of spiny lobster Panulirus homarus reared in recirculating aquaculture system

Spiny lobsters (Panulirus sp.) were valuable and one of the most popular Indonesian export commodities. Some approaches were made to increase the quantity and quality of cultivated spiny lobsters. Land-based mariculture with Recirculating Aquaculture System (RAS) was applied to increase lobster harvesting and optimize environmental quality by adjusting water alkalinity. This study aimed to determine the optimum level of alkalinity for spiny lobsters Panulirus homarus rearing in RAS. This study investigated the effects of applying four water alkalinity levels (Control, 125, 200, and 275 mg L-1 CaCO3) on the biochemical responses of P. homarus observed in the hemolymph in terms of Total Hemocyte Count (THC), glucose, total protein, calcium, and pH levels.

Furthermore, we also studied the alkalinity effects on lobster production performance parameters in terms of body weight gain, body length, Survival Rate (SR), Specific Growth Rate (SGR), and Feed Conversion Ratio (FCR). Lobsters with an initial weight rate of 58.05±1.69 g and an initial total length rate of 115.33±1.52 mm were reared for 60 days in a recirculation system. Results of water quality parameters such as ammonia, nitrite, nitrate, dissolved oxygen, temperature, and salinity during the study were available for lobster rearing. Different alkalinity levels affected the biochemical responses and production performance of lobsters. The best alkalinity level to reared Panulirus sp. in the recirculation system during this study was 200 mg L-1 CaCO3 so that it could achieve the highest survival rate of 86.67% with SGR 0.60±0.01 % day-1.

Continue reading ‘The effects of alkalinity on production performance and biochemical responses of spiny lobster Panulirus homarus reared in recirculating aquaculture system’

Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Warming and ocean acidification are currently critical global change drivers for marine ecosystems due to their complex and irreversible effects on the ecology and evolution of marine communities. Changes in the chemistry and the temperature of the ocean impact the biological performance of marine resources by affecting their energy budget and thus imposing energetic restrictions and trade-offs on their survival, growth, and reproduction. In this study, we evaluated the interplaying effects of increased pCO2 levels and temperature on the economically relevant clam Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range along the coast of Chile. Juvenile clams collected from southern Chile were exposed to a 90-day experimental set-up emulating the current and a future scenario projeced to the end of the current century for both high pCO2/low-pH and temperature (10 and 15°C) projected for the Chilean coast. Clams showed physiological plasticity to different projected environmental scenarios without mortality. In addition, our results showed that the specimens under low-pH conditions were not able to meet the energetic requirements when increased temperature imposed high maintenance costs, consequently showing metabolic depression. Indeed, although the calcification rate was negative in the high-pCO2 scenario, it was the temperature that determined the amount of shell loss. These results indicate that the studied clam can face environmental changes for short-term periods modifying energetic allocation on maintenance and growth processes, but with possible long-term population costs, endangering the sustainability of an important benthic artisanal fisheries resource.

Continue reading ‘Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Cold-water coral ecosystems under future ocean change: live coral performance vs. framework dissolution and bioerosion

Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr < 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs.

Continue reading ‘Cold-water coral ecosystems under future ocean change: live coral performance vs. framework dissolution and bioerosion’

Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis

Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.

Continue reading ‘Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis’

Saving Nemo: extinction risk, conservation status, and effective management strategies for anemonefishes

Anemonefishes share a number of life history and ecological traits, and some unfortunate links to human-induced stress, that expose some of the 28 species to the risk of extinction. The biodiversity hotspot for anemonefishes extends across Southeast Asia to the western Pacific, including many countries where there are high levels of human impact and few effective management strategies. Anemonefish biodiversity is threatened by anemone bleaching, direct effects of ocean warming and acidification, collection for the aquarium trade, and coastal development. These risks are exacerbated by extreme habitat specialization, the mutual anemonefish–anemone relationship, low abundance, low population connectivity, small geographic ranges, and shallow depth ranges. Many species exhibit two or three of these traits, with small range species often associated with fewer anemone hosts and narrower depth ranges, exposing them to double or triple jeopardy. While all species have not been assessed by the IUCN, our detailed analysis of area of occupancy indicates that three species are extremely close to the threshold for being classified as Critically Endangered. Marine reserves have been effective in protecting species from exploitation and helping sustain marginal populations across generations, but effective population sizes are often very small and recovery can be slow. Additional management efforts need to focus on sustainable collecting practices and the protection and restoration of critical anemone habitats.

Continue reading ‘Saving Nemo: extinction risk, conservation status, and effective management strategies for anemonefishes’

Gregarious larval settlement mediates the responses of new recruits of the reef coral Acropora austera to ocean warming and acidification

Gregarious larval settlement represents an important window for chimera formation in reef corals, yet it remains largely unknown how aggregated settlement and early chimerism could modify the performance and responses of coral recruits under elevated temperature and pCO2. In this study, single and aggregated recruits of the broadcast spawning coral Acropora austera were exposed to contrasts of two temperatures (28 versus 30.5°C) and pCO2 levels (~500 versus 1000 μatm) for two weeks, and algal symbiont infection success, survivorship and growth were assessed. Results showed that symbiont infection success was mainly affected by temperature and recruit type, with reduced symbiont infection at increased temperature and consistently higher infection success in chimeric recruits compared to single recruits. Furthermore, although chimeric recruits with larger areal size had significantly higher survivorship in all treatments, the polyp-specific growth rates were considerably lower in chimeric entities than individual recruits. More importantly, the recruit type significantly influenced the responses of recruit polyp-specific growth rates to elevated temperature, with chimeras exhibiting lowered skeletal lateral growth under elevated temperature. These results demonstrate the benefits and costs associated with gregarious larval settlement for juvenile corals under ocean warming and acidification, and highlight the ecological role of larval settlement behavior in mediating the responses of coral recruits to climate change stressors.

Continue reading ‘Gregarious larval settlement mediates the responses of new recruits of the reef coral Acropora austera to ocean warming and acidification’

Intergenerational effects of ocean acidification on reproductive traits of an estuarine copepod

Graphical abstract

Copepods are an important part of the marine food web because of their high biomass productivity and nutrient turnover rate compared to other zooplankton in the marine ecosystem. Despite their great ecological role in the ocean, there is only limited information available on the consequences of ocean acidification (OA) induced by the future increase in CO2 on the planet. More specifically, there is almost no information about the impact of OA on the European copepod Calanipeda aquaedulcis Kritschagin, 1873. Therefore, the present investigation hypothesized that OA would not produce negative multigenerational effects on the survival and reproductive performance of this copepod species. Here we assessed, the multigenerational (F1 and F2) effect of OA on eight important reproductive traits (maturity, prosome length, fertility, egg release, hatching success, survival rate, reproductive performance, and the total number of adults per generation). For this study, C. aquaedulcis were collected from the Guadalquivir River (southwest of Spain) and were exposed to four different pH gradients (pH 8.1 as control and pH 7.5, 7.0, 6.5 as acidified conditions) to mimic the future seawater acidification scenarios. The survival rate from nauplius to adult, C. aquaedulcis was significantly reduced by pHs and across generations. Besides, results also indicated that there were marked effects on fertility, reflected by a significantly lower number of eggs per female in each generation. Similarly, hatching success also showed a decreasing pattern towards low pH, and importantly, F1 females had lower hatching success than F0 females. While a beneficial parental effect was detected in the offspring in response to OA, it was insufficient to offset the negative effects caused by it. The findings presented here appear to have ecological significance, as decreasing the reproductive performance of copepods may have a negative impact on the marine food web, as ichthyofaunal feeding and growth are heavily reliant on this component of the food web.

Continue reading ‘Intergenerational effects of ocean acidification on reproductive traits of an estuarine copepod’

A transcriptomic analysis of phenotypic plasticity in Crassostrea virginica larvae under experimental acidification

Graphical abstract

Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO(~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.

Continue reading ‘A transcriptomic analysis of phenotypic plasticity in Crassostrea virginica larvae under experimental acidification’

  • Reset


OA-ICC Highlights

%d bloggers like this: