Posts Tagged 'mortality'

Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress

To understand how Ulva species might respond to salinity stress during future ocean acidification we cultured a green tide alga Ulva linza at various salinities (control salinity, 30 PSU; medium salinity, 20 PSU; low salinity, 10 PSU) and CO2 concentrations (400 and 1000 ppmv) for over 30 days. The results showed that, under the low salinity conditions, the thalli could not complete its whole life cycle. The specific growth rate (SGR) of juvenile thalli decreased significantly with reduced salinity but increased with a rise in CO2. Compared to the control, medium salinity also decreased the SGR of adult thalli at low CO2 but did not affect it at high CO2. Similar patterns were also found in relative electron transport rate (rETR), non-photochemical quenching, saturating irradiance, and Chl b content. Although medium salinity reduced net photosynthetic rate and maximum rETR at each CO2 level, these negative effects were significantly alleviated at high CO2 levels. In addition, nitrate reductase activity was reduced by medium salinity but enhanced by high CO2. These findings indicate that future ocean acidification would enhance U. linza’s tolerance to low salinity stress and may thus facilitate the occurrence of green tides dominated by U. linza.

Continue reading ‘Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress’

Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions

Ocean acidification (OA) has had significant negative effects on oyster populations on the west coast of North America over the past decade. Many studies have focused on the physiological challenges experienced by young oyster larvae in high pCO2/low pH seawater with reduced aragonite saturation state (Ωarag), which is characteristic of OA. Relatively few, by contrast, have evaluated these impacts upon fitness traits across multiple larval stages and between discrete oyster populations. In this study, we conducted 2 replicated experiments, in 2015 and 2016, using larvae from naturalized ‘wild’ and selectively bred stocks of the Pacific oyster Crassostrea gigas from the US Pacific Northwest and reared them in ambient (~400 µatm) or high (~1600 µatm) pCO2 seawater from fertilization through final metamorphosis to juvenile ‘spat.’ In each year, high pCO2 seawater inhibited early larval development and affected the timing, but not the magnitude, of mortality during this stage. The effects of acidified seawater on metamorphosis of pediveligers to spat were variable between years, with no effect of seawater pCO2 in the first experiment but a ~42% reduction in spat in the second. Despite this variability, larvae from selectively bred oysters produced, on average, more (+ 55 and 37%) and larger (+ 5 and 23%) spat in ambient and high pCO2 seawater, respectively. These findings highlight the variable and stage-specific sensitivity of larval oysters to acidified seawater and the influence that genetic factors have in determining the larval performance of C. gigas exposed to high pCO2 seawater.

Continue reading ‘Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions’

An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors

Environmental biomarkers, also known as early warning signals, have increasingly
become a subject of interest in environmental studies. The common sea star, Archaster typicus, found in shallow sandy habitats associated with coral reefs in Singapore, was utilised to study the effects of varying treatment conditions of salinity, temperature and pH. Treatment conditions were derived from predicted future scenarios of thermal and ocean acidification conditions. Experiments were conducted to determine physiological responses of sea stars that were subjected to treatments over 24h (acute) and 120h (chronic) exposures. The biomarker responses examined included righting behaviour (time taken to right after being overturned), burrowing time and feeding responses (time
taken to close stomach/mouth plate) in experimental sea stars. To validate results of physiological biomarkers, two other biomarker responses were measured from coelomic fluid extracted from the experimental sea stars. These were the cellular lysosome integrity response (Neutral Red Retention time, NRRT) and the biochemical Ferric Reducing Antioxidant Power (FRAP) assay. In acute exposure experiments, results indicated that sea stars exhibited significant differences in physiological responses under various salinity, temperature and pH treatments. At chronic exposure regimes, lethal effects were more evident, with higher mortality rates observed in all salinity and temperature treatment regimes. Results from salinity treatments showed that physiological responses in sea stars were significantly impaired at treatments of 15‰ and 50‰ salinities. Significant results were observed in NRRT and burrowing behavioural assays in temperature treatments. Treatments with pH of 7.4 and 7.2 at the acute exposure duration resulted in a significant impairment of righting ability. The acute and chronic effects of salinity fluctuations, ocean warming and acidification on A
2 typicus were most consistently observed in the righting and burrowing behaviour assays. This indication of reduced fitness together with reduced cellular responses show a reduction in survival ability in the sea star under low salinity, high temperature and low pH conditions. Further studies could thus help us understand the effects of global warming on the physiology of organisms in various shallow water habitats.

Continue reading ‘An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors’

Effects of seawater acidification on early development of clam Cyclina sinensis

Anthropogenic emission of atmospheric carbon dioxide (CO2) has led to a rapid increase in atmospheric CO2 concentration. Increasing atmospheric CO2 can reduce seawater pH and carbonate ions, which may adversely affect the survival of the larvae of calcareous animals. Cyclina sinensis is a commercially and ecologically important species in several Asian countries. Living in coast shallow waters, this species has experienced the coastal environmental changes frequently throughout its life cycle. In this study, we simulated possible future seawater pH values including 8.2, 7.8 and 7.4 and examined the effects of ocean acidification on the early development of C. sinensis. Clam embryos were incubated for 48 h (2 d) in control and high-CO2 seawater to compare embryogenesis, larval growth and swimming behavior. Fertilization rate was quite sensitive to pH, and moderate acidification could induce a significant decrease in fertilization rate. However, only extreme acidification could bring significant negative effect to hatching rate, body size, and average path velocity of trochophora. Moreover, with seawater acidification, C. sinensis needs much more time to reach the same developmental stage, which increases the risk of larva survival. Together with recent studies demonstrating negative impacts of high CO2 on fertilization and larva swimming behavior, the results imply a future decrease of C. sinensis populations in oceans if its acclimation to the predicted environmental alteration does not occur.

Continue reading ‘Effects of seawater acidification on early development of clam Cyclina sinensis’

Assessing the impact of elevated pCO2 within and across generations in a highly invasive fouling mussel (Musculista senhousia)

Highlights

• Asian date mussels are sensitive to elevated pCO2 during gonadal ripening.

• Transgenerational phenotypic plasticity occurred through all life history stages.

• Maternal provisioning and metabolic adaptation serve as key mechanisms.

• Mussels hold the great ability to rapidly adapt to changing ocean conditions.

Abstract

Marine biofouling by the swiftly spreading invasive mussel (Musculista senhousia) has caused serious ecological and economic consequences in the global coastal waters. However, the fate of this highly invasive fouling species in a rapidly acidifying ocean remains unknown. Here, we demonstrated the impacts of ocean acidification within and across generations, to understand whether M. senhousia has the capacity to acclimate to changing ocean conditions. During the gonadal development, exposure of mussels to elevated pCO2 caused significant decreases of survival, growth performance and condition index, and shifted the whole-organism energy budget by inflating energy expenses to fuel compensatory processes, eventually impairing the success of spawning. Yet, rapid transgenerational acclimation occurred during the early life history stage and persisted into adulthood. Eggs spawned from CO2-exposed mussels were significantly bigger compared with those from non-CO2-exposed mussels, indicating increased maternal provisioning into eggs and hence conferring larvae resilience under harsh conditions. Larvae with a prior history of transgenerational exposure to elevated pCO2 developed faster and had a higher survival than those with no prior history of CO2 exposure. Transgenerational exposure significantly increased the number of larvae completing metamorphosis. While significant differences in shell growth were no longer observed during juvenile nursery and adult grow-out, transgenerationally exposed mussels displayed improved survival in comparison to non-transgenerationally exposed mussels. Metabolic plasticity arose following transgenerational acclimation, generating more energy available for fitness-related functions. Overall, the present study demonstrates the remarkable ability of M. senhousia to respond plastically and acclimate rapidly to changing ocean conditions.

Continue reading ‘Assessing the impact of elevated pCO2 within and across generations in a highly invasive fouling mussel (Musculista senhousia)’

pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia

Highlights
• The highest and the lowest growth rates of G. changii was at pH 6.61 and pH 9.30, respectively.
• G. changii survived poorly under high pH with partial thallus degradation.
• Photosynthetic pigments and agar production were significantly affected by pH.

Abstract

Changes in coastal water pH alter inorganic carbon chemistry and impose abiotic stress on photosynthetic marine organisms. The red algal cell wall contains sulfated agar which protects them against environmental stresses. In this study, we investigated the effects of three different pHs (6.61, 8.04 and 9.30) on Gracilaria changii cultured in artificial seawater for 3 and 6 days, respectively. The growth rate of G. changii was the highest and the lowest at pH 6.61 and pH 9.30, respectively. Partial thallus degradation was observed in seaweeds treated at pH 9.30. Upon a 3-day treatment, the levels of allophycocyanin, total phycobilins in G. changii cultured at pH 6.61, and all photosynthetic pigments in G. changii cultured at pH 9.30, were significantly lower than those cultured at pH 8.04. G. changii exposed to pH 9.30 for 6 days also had significantly lower levels of chlorophyll a and allophycocyanin than those treated at pH 8.04. A six-day treatment at pH 6.61 caused a decline in the content of chlorophyll a and carotenoids, but an increase in the levels of phycoerythrin, phycocyanin, and total phycobilins, compared to those treated at pH 8.04. G. changii samples treated at pH 6.61 and pH 9.30 have a higher agar content compared to those cultured at 8.04. Gel strength was significantly lower in seaweed cultured at pH 9.30, compared to those cultured at pH 8.04. Gelling temperature and 3,6-anhydrogalactose content of agar were significantly affected by different pHs, but no significant changes were found in the melting temperature, gel syneresis and sulfate content of agar upon treatments. These information enhance our knowledge on physiological response and agar production in G. changii at different pHs, and useful for optimization of seaweed cultivation system in future.

Continue reading ‘pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia’

Species-specific calcification response of Caribbean corals after 2-year transplantation to a low aragonite saturation submarine spring

Coral calcification is expected to decline as atmospheric carbon dioxide concentration increases. We assessed the potential of Porites astreoides, Siderastrea siderea and Porites porites to survive and calcify under acidified conditions in a 2-year field transplant experiment around low pH, low aragonite saturation (Ωarag) submarine springs. Slow-growing S. siderea had the highest post-transplantation survival and showed increases in concentrations of Symbiodiniaceae, chlorophyll a and protein at the low Ωarag site. Nubbins of P. astreoides had 20% lower survival and higher chlorophyll a concentration at the low Ωarag site. Only 33% of P. porites nubbins survived at low Ωarag and their linear extension and calcification rates were reduced. The density of skeletons deposited after transplantation at the low Ωarag spring was 15–30% lower for all species. These results suggest that corals with slow calcification rates and high Symbiodiniaceae, chlorophyll a and protein concentrations may be less susceptible to ocean acidification, albeit with reduced skeletal density. We postulate that corals in the springs are responding to greater energy demands for overcoming larger differences in carbonate chemistry between the calcifying medium and the external environment. The differential mortality, growth rates and physiological changes may impact future coral species assemblages and the reef framework robustness.

Continue reading ‘Species-specific calcification response of Caribbean corals after 2-year transplantation to a low aragonite saturation submarine spring’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,194 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book