Posts Tagged 'mortality'

Modeling impact of varying pH due to carbondioxide on the dynamics of prey–predator species system

In this paper, we have considered a nonlinear mathematical model to investigate the effect of pH on prey–predator dynamics with Holling type II functional response. In the model, capture rate, handling time, growth rate and death rate are considered to be pH dependent. From the analysis of the model, it has been observed that as pH level goes below the normal tolerance limit of prey species then the equilibrium density of prey population decreases due to increase in capture rate and decrease in handling time by predator. Further, we have shown that as the growth rate of prey population decreases due to lowering of pH then the density of predator population also decreases and both the populations may tend to extinction if growth rate of prey population becomes negative due to lowering of pH on account of elevated carbondioxide concentration in the aquatic body. Moreover, it is noticed from the simulation that if the mortality of predator population increases because of decrease in pH level then the prey population gets advantage and in-turn their population increases.

Continue reading ‘Modeling impact of varying pH due to carbondioxide on the dynamics of prey–predator species system’

Diurnally fluctuating pCO2 modifies the physiological responses of coral recruits under ocean acidification

Diurnal pCO2 fluctuations have the potential to modulate the biological impact of ocean acidification (OA) on reef calcifiers, yet little is known about the physiological and biochemical responses of scleractinian corals to fluctuating carbonate chemistry under OA. Here, we exposed newly settled Pocillopora damicornis for 7 days to ambient pCO2, steady and elevated pCO2 (stable OA) and diurnally fluctuating pCO2 under future OA scenario (fluctuating OA). We measured the photo-physiology, growth (lateral growth, budding and calcification), oxidative stress and activities of carbonic anhydrase (CA), Ca-ATPase and Mg-ATPase. Results showed that while OA enhanced the photochemical performance of in hospite symbionts, it also increased catalase activity and lipid peroxidation. Furthermore, both OA treatments altered the activities of host and symbiont CA, suggesting functional changes in the uptake of dissolved inorganic carbon (DIC) for photosynthesis and calcification. Most importantly, only the fluctuating OA treatment resulted in a slight drop in calcification with concurrent up-regulation of Ca-ATPase and Mg-ATPase, implying increased energy expenditure on calcification. Consequently, asexual budding rates decreased by 50% under fluctuating OA. These results suggest that diel pCO2 oscillations could modify the physiological responses and potentially alter the energy budget of coral recruits under future OA, and that fluctuating OA is more energetically expensive for the maintenance of coral recruits than stable OA.

Continue reading ‘Diurnally fluctuating pCO2 modifies the physiological responses of coral recruits under ocean acidification’

Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma


• Adverse effects of elevated CO2 varied cross developmental stages of marine medaka.

• Embryo developmental delay to elevated CO2 showed in concentration-dependent manner.

• Middle stage of development was the most sensitive period to CO2 exposure for mortality.

• Despite transfer to clean water, CO2 exposed embryos could not be recovered.

• Key symptoms by elevated CO2 exposure encompassed mortality and cardiac edema.


The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0–4 d (early stage), 4–8 d (middle stage), and 8–12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.

Continue reading ‘Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma’

Ocean acidification and warming affect skeletal mineralization in a marine fish

Ocean acidification and warming are known to alter, and in many cases decrease, calcification rates of shell and reef building marine invertebrates. However, to date, there are no datasets on the combined effect of ocean pH and temperature on skeletal mineralization of marine vertebrates, such as fishes. Here, the embryos of an oviparous marine fish, the little skate (Leucoraja erinacea), were developmentally acclimatized to current and increased temperature and CO2 conditions as expected by the year 2100 (15 and 20°C, approx. 400 and 1100 µatm, respectively), in a fully crossed experimental design. Using micro-computed tomography, hydroxyapatite density was estimated in the mineralized portion of the cartilage in jaws, crura, vertebrae, denticles and pectoral fins of juvenile skates. Mineralization increased as a consequence of high CO2 in the cartilage of crura and jaws, while temperature decreased mineralization in the pectoral fins. Mineralization affects stiffness and strength of skeletal elements linearly, with implications for feeding and locomotion performance and efficiency. This study is, to my knowledge, the first to quantify a significant change in mineralization in the skeleton of a fish and shows that changes in temperature and pH of the oceans have complex effects on fish skeletal morphology.

Continue reading ‘Ocean acidification and warming affect skeletal mineralization in a marine fish’

Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host


  • The susceptibility of Crassostrea gigas to OsHV-1 increased at pH 7.8 in comparison to pH 8.1
  • The amount of OsHV-1 in oyster tissues was the same at both pH, suggesting the role of host metabolic response in differential survival
  • A lower activity of SOD and a basal activity of iNOS at pH 7.8, in comparison to pH 8.1, may have impaired the defence of oysters to OsHV-1 explaining the lower survival


Environmental change in the marine realm has been accompanied by emerging diseases as new pathogens evolve to take advantage of hosts weakened by environmental stress. Here we investigated how an exposure to reduced seawater pH influenced the response of the oyster Crassostrea gigas to an infection by the Ostreid herpesvirus type I (OsHV-1). Oysters were acclimated at pH 8.1 or pH 7.8 and then exposed to OsHV-1. Their survival was monitored and oyster tissues were sampled for biochemical analyses. The survival of oysters exposed to OsHV-1 at pH 7.8 was lower (33.5%) than that of their counterparts at pH 8.1 (44.8%) whereas levels of OsHV-1 DNA were similar. Energetic reserves, fatty acid composition and prostaglandin levels in oyster did not vary consistently with pH, infection or their interactions. However, there was a reduction in the activities of superoxide dismutase (SOD) and nitric oxide synthase (iNOS) in oysters at low pH, which is associated with the observed difference in survival.

Continue reading ‘Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host’

Divergent responses of Atlantic cod to ocean acidification and food limitation

In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) was found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35‐36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2‐treatments (ambient: 503 μatm, elevated: 1179 μatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments, will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life‐stages of fish.

Continue reading ‘Divergent responses of Atlantic cod to ocean acidification and food limitation’

Effects of ocean acidification on the transcriptome of larval Atlantic cod and impacts of parental acclimation

Ocean acidification, caused by the uptake of carbon dioxide (CO2) from the atmosphere, is impacting many marine organisms. This dissertation investigated the effects of direct exposure and parental acclimation to simulated ocean acidification on the larval stages of Atlantic cod (Gadus morhua, L.). For this, ocean acidification levels predicted for the year 2100 were applied on cod eggs from hatch to 36 days post hatch in in vivo laboratory experiments. The direct exposure experiment clearly showed that Atlantic cod larvae were severely affected by simulated ocean acidification on a phenotypic level (chapter 1). Changes in growth, bone and gill development as well as increased frequency of organ damages were observed under predicted ocean acidification levels compared to controls. Then, the underlying molecular phenotype was assessed, using whole transcriptome sequencing (RNA-Seq), to couple transcriptomic mechanisms to the observed phenotypes (chapter 2). Transcriptome analysis revealed 1413 differentially expressed genes in late larval stages, corresponding to the observed changes in growth and developmental patterns, leading to the conclusion that these changes represent an accelerated development under ocean acidification. Surprisingly, only few genes (3 and 16, respectively) were differentially expressed in the early larval stages. An experiment set to address the effects of long-term parental acclimation (5 month) was performed to assess whether or not this kind of acclimation can mediate the identified detrimental direct effects on the larvae (chapter 3). However, none of the previously observed phenotypes under ocean acidification were found in this experiment, making it impossible to draw any conclusion on the effectiveness of parental acclimation on larval susceptibility to simulated ocean acidification. A concluding meta-analysis between experiments shows that the larvae of Atlantic Cod are to be considered vulnerable to simulated ocean acidification.

Continue reading ‘Effects of ocean acidification on the transcriptome of larval Atlantic cod and impacts of parental acclimation’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,056 hits


Ocean acidification in the IPCC AR5 WG II

OUP book