Posts Tagged 'mortality'

Adult Antarctic krill proves resilient in a simulated high CO2 ocean

Antarctic krill (Euphausia superba) have a keystone role in the Southern Ocean, as the primary prey of Antarctic predators. Decreases in krill abundance could result in a major ecological regime shift, but there is limited information on how climate change may affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Here we show that, in the laboratory, adult krill are able to survive, grow, store fat, mature, and maintain respiration rates when exposed to near-future ocean acidification (1000–2000 μatm pCO2) for one year. Despite differences in seawater pCO2 incubation conditions, adult krill are able to actively maintain the acid-base balance of their body fluids in near-future pCO2, which enhances their resilience to ocean acidification.

Continue reading ‘Adult Antarctic krill proves resilient in a simulated high CO2 ocean’

Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)

The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30% bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.

Continue reading ‘Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)’

The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve (updated)

Coastal ecosystems can experience acidification via upwelling, eutrophication, riverine discharge, and climate change. While the resulting increases in pCO2 can have deleterious effects on calcifying animals, this change in carbonate chemistry may benefit some marine autotrophs. Here, we report on experiments performed with North Atlantic populations of hard clams (Mercenaria mercenaria), eastern oysters (Crassostrea virginica), bay scallops (Argopecten irradians), and blue mussels (Mytilus edulis) grown with and without North Atlantic populations of the green macroalgae, Ulva. In six of seven experiments, exposure to elevated pCO2 levels ( ∼ 1700µatm) resulted in depressed shell- and/or tissue-based growth rates of bivalves compared to control conditions, whereas rates were significantly higher in the presence of Ulva in all experiments. In many cases, the co-exposure to elevated pCO2 levels and Ulva had an antagonistic effect on bivalve growth rates whereby the presence of Ulva under elevated pCO2 levels significantly improved their performance compared to the acidification-only treatment. Saturation states for calcium carbonate (Ω) were significantly higher in the presence of Ulva under both ambient and elevated CO2 delivery rates, and growth rates of bivalves were significantly correlated with Ω in six of seven experiments. Collectively, the results suggest that photosynthesis and/or nitrate assimilation by Ulva increased alkalinity, fostering a carbonate chemistry regime more suitable for optimal growth of calcifying bivalves. This suggests that large natural and/or aquacultured collections of macroalgae in acidified environments could serve as a refuge for calcifying animals that may otherwise be negatively impacted by elevated pCO2 levels and depressed Ω.

Continue reading ‘The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve (updated)’

Assessing the impacts of ocean acidification on adhesion and shell formation in the barnacle Amphibalanus amphitrite

Barnacles are dominant members of marine intertidal communities. Their success depends on firm attachment provided by their proteinaceous adhesive and protection imparted by their calcified shell plates. Little is known about how variations in the environment affect adhesion and shell formation processes in barnacles. Increased levels of atmospheric CO2 have led to a reduction in the pH of ocean waters (i.e., ocean acidification), a trend that is expected to continue into the future. Here, we assessed if a reduction in seawater pH, at levels predicted within the next 200 years, would alter physiology, adhesion, and shell formation in the cosmopolitan barnacle Amphibalanus (=Balanus) amphitrite. Juvenile barnacles, settled on silicone substrates, were exposed to one of three static levels of pHT, 8.01, 7.78, or 7.50, for 13 weeks. We found that barnacles were robust to reduced pH, with no effect of pH on physiological metrics (mortality, tissue mass, and presence of eggs). Likewise, adhesive properties (adhesion strength and adhesive plaque gross morphology) were not affected by reduced pH. Shell formation, however, was affected by seawater pH. Shell mass and base plate area were higher in barnacles exposed to reduced pH; barnacles grown at pHT 8.01 exhibited approximately 30% lower shell mass and 20% smaller base plate area as compared to those at pHT 7.50 or 7.78. Enhanced growth at reduced pH appears to be driven by the increased size of the calcite crystals that comprise the shell. Despite enhanced growth, mechanical properties of the base plate (but not the parietal plates) were compromised at the lowest pH level. Barnacle base plates at pHT 7.50 broke more easily and crack propagation, measured through microhardness testing, was significantly affected by seawater pH. Other shell metrics (plate thickness, relative crystallinity, and atomic disorder) were not affected by seawater pH. Hence, a reduction in pH resulted in larger barnacles but with base plates that would crack more readily. It is yet to be determined if such changes would alter the survival of A. amphitrite in the field, but changes in the abundance of this ecologically dominant species would undoubtedly affect the composition of biofouling communities.

Continue reading ‘Assessing the impacts of ocean acidification on adhesion and shell formation in the barnacle Amphibalanus amphitrite’

Vulnerability of juvenile hermit crabs to reduced seawater pH and shading

Highlights

• Local impacts may potentially increase effects of global environmental changes.
• We assessed combined effects of reduced pH and shading caused by harbor structures.
• Reduced seawater pH and shading affected behavioral responses of hermit crabs.
• Multiple stressors induced high mortality and reduced growth.
• Maintenance of local populations may be impaired by the impact of both stressors.

Abstract

Multiple simultaneous stressors induced by anthropogenic activities may amplify their impacts on marine organisms. The effects of ocean acidification, in combination with other anthropogenic impacts (apart from temperature) are poorly understood, especially in coastal regions. In these areas, shading caused by infrastructure development, such as harbor construction, may potentially interact with CO2-induced pH reduction and affect invertebrate populations. Here, we evaluated the effects of reduced pH (7.6) and shading (24h in darkness) on mortality, growth, calcification and displacement behavior to live predator (danger signal) and dead gastropod (resource availability signal) odors using juveniles of the hermit crab Pagurus criniticornis collected in Araçá Bay (São Paulo state, Southeastern Brazil). After a 98 day experimental period, both stressors had a significant interaction effect on mortality, and an additive effect on total growth. No difference in calcification was recorded among treatments, indicating that individuals were able to maintain calcification under reduced pH conditions. When exposed to odor of live predators, crab responses were only affected by shading. However, an interactive effect between both stressors was observed in response to gastropod odor, leading to reduced displacement behavior. This study shows how local disturbance impacts may enhance the effects of global environmental change on intertidal crustacean populations.

Continue reading ‘Vulnerability of juvenile hermit crabs to reduced seawater pH and shading’

Interactive effects of acidification, hypoxia, and thermal stress on growth, respiration, and survival of four North Atlantic bivalves

We investigated the individual and interactive effects of coastal and climate change stressors (elevated temperatures, acidification, and hypoxia) on the growth, survival, and respiration rates of 4 commercially and ecologically important North Atlantic bivalves: bay scallops Argopecten irradians, Eastern oysters Crassostrea virginica, blue mussels Mytilus edulis, and hard clams Mercenaria mercenaria. Month-long experiments were performed on multiple cohorts of post-set juveniles using conditions commonly found during summer months within eutrophied, shallow, temperate, coastal environments (24-31°C; 2-7 mg O2 l-1; pHT, total scale, 7.2-8.0). Elevated temperatures most consistently altered the performance of the bivalves, with both positive and negative physiological consequences. Low levels of dissolved oxygen (DO) and pH individually reduced the survival, shell growth, and/or tissue weight of each bivalve, with A. irradians being the most vulnerable species. Low DO also significantly increased respiration rates of A. irradians and M. mercenaria, evidencing a compensatory physiological response to hypoxia. M. edulis and M. mercenaria both displayed size-dependent vulnerability to acidification, with smaller individuals being more susceptible. The combination of low DO and low pH often interacted antagonistically to yield growth rates higher than would be predicted from either individual stressor, potentially suggesting that some anaerobic metabolic pathways may function optimally under hypercapnia. Elevated temperature and low pH interacted both antagonistically and synergistically, producing outcomes that could not be predicted from the responses to individual stressors. Collectively, this study revealed species- and size-specific vulnerabilities of bivalves to coastal stressors along with unpredicted interactions among those stressors.

Continue reading ‘Interactive effects of acidification, hypoxia, and thermal stress on growth, respiration, and survival of four North Atlantic bivalves’

Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus

This study aimed to elucidate the influence of environment pH on survival, growth, energy allocation and oxidative damage of juvenile Scophthalmus maximus (19.89±0.25 g). Six pH treatments (6.3±0.2、6.8±0.2、7.3±0.2、7.8±0.2、8.3±0.2、8.8±0.2) lasting for eight weeks were included. Measurements of survival (SR), feed conversion ratio (FCR), specific growth rate (SGR), weight gain rate (WGR), energy allocation, liver superoxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde concentration (MDA) were done. Results show that SR did not vary from pH 6.3 to 7.8, but reduced then significantly (P < 0.05); FCR raised remarkably (P < 0.05) while SGR and WGR decreased pronouncedly (P < 0.05). Most of the food energy was used in metabolism, followed by growth, feces loss and nitrogenous excretion. Energy deposited for growth showed a decreasing tendency when pH raised; while for metabolism showed a reverse trend. SOD showed insignificant difference from pH 6.3 to 7.8, but the activities then elevated obviously (P 0.05). CAT kept stable between pH 6.3 and 7.3, then sharply increased (P 0.05). Subsequent decrease in MDA was found from pH 6.3 to 8.3 then the concentration smoothly increased. Overall, our results indicate that a pH in the range of 6.8 to 7.8 is recommended in the growth environment in cultivation of juvenile turbot.

Continue reading ‘Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,853 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book