Posts Tagged 'mortality'

The synergistic effects of elevated temperature and CO2-induced ocean acidification reduce cardiac performance and increase disease susceptibility in subadult, female American lobsters Homarus americanus H. Milne Edwards, 1837 (Decapoda: Astacidea: Nephropidae) from the Gulf of Maine

Increased greenhouse gas emissions have caused rapid ocean warming (OW) and reduced ocean pH via acidification (OA). Both OW and OA will likely impact marine crustaceans, but they are often examined in isolation. We conducted an environmental-stressor experiment to understand how exposure to current summer conditions (16 °C, pH 8.0), OW only (20 °C, pH 8.0), OA only (16 °C, pH 7.6), or both acidification and warming, OAW (20 °C, pH 7.6), differentially influence thermal physiology and immune response of female subadults of the American lobster, Homarus americanus H. Milne Edwards, 1837. Following a 42 d exposure, cardiac performance was assessed during an acute thermal stress, and lobsters were subjected to a subsequent 21 d pathogen challenge with the bacterium Aerococcus viridans var. homari, the causative agent of gaffkemia. Lobsters under OAW had significantly lower (P ≤ 0.02) Arrhenius break temperatures (ABT), an indicator of thermal limits of capacity, compared to lobsters exposed to all other treatments, suggesting these stressors act synergistically to reduce physiological performance. Individuals from the OW and OAW treatments also had significantly lower (P ≤ 0.035) total hemocyte counts (THCs), an indicator of immune response, and showed a reduced median time to death (by up to 5 d sooner) post A. viridans injection compared to lobsters exposed to current summer conditions. Moreover, nearly twice as many lobsters exposed to OAW lost at least one claw during the pathogen challenge compared to all other treatment groups, potentially increasing the risk of mortality due to secondary infection. Together, these results suggest that OAW will impact the physiology and immune response of subadult H. americanus, potentially influencing successful recruitment to the fishery.

Continue reading ‘The synergistic effects of elevated temperature and CO2-induced ocean acidification reduce cardiac performance and increase disease susceptibility in subadult, female American lobsters Homarus americanus H. Milne Edwards, 1837 (Decapoda: Astacidea: Nephropidae) from the Gulf of Maine’

Adaption potential of Crassostrea gigas to ocean acidification and disease caused by Vibrio harveyi

The survival and development of bivalve larvae is adversely impacted by ocean acidification and Vibrio infection, indicating that bivalves need to simultaneously adapt to both stressors associated with anthropogenic climate change. In this study, we use a half-dial breeding design to estimate heritability (h2) for survival to Vibrio harveyi infection and larval shell length to aragonite undersaturated and normal conditions in laboratory-reared Crassostrea gigas. Phenotypic differences were observed between families for these traits with heritability estimated to be moderate for survival to V. harveyi challenge (h2 = 0.25) and low for shell length in corrosive (Ωaragonite = 0.9, h2 = 0.15) and normal conditions (Ωaragonite = 1.6, h2 = 0.15). Predicted breeding values for larval shell length are correlated between aragonite-undersaturated and normal conditions (Spearman r = 0.63, p < 0.05), indicating that larger larvae tend to do better in corrosive seawater. Aquaculture hatcheries routinely cull slow-growing larvae to reduce and synchronize time taken for larvae to metamorphose to spat, thus inadvertently applying size-related selection for larger larvae. This indirect selection in the hatchery populations provides a plausible explanation why domesticated oyster populations are less sensitive to ocean acidification.

Continue reading ‘Adaption potential of Crassostrea gigas to ocean acidification and disease caused by Vibrio harveyi’

Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification

Highlights

• Seaweeds and diatoms on settlement plates created low pH and high pH conditions as they respired and photosynthesised.

• Low pH had adverse effects on growth and morphology of sea urchin post-larvae.

• High pH generally had little effect on growth and development, but reduced settlement rates.

• Controlling pH in invertebrate culture systems might improve settlement rates and post-settlement growth.

Abstract

Respiration, photosynthesis, and calcification of cultured organisms and biological substrata can substantially alter the pH and other carbonate parameters of water in aquaculture systems. One such example is the diel cycle of photosynthesis and respiration by diatoms and seaweeds growing on ‘settlement plates’ used to induce metamorphosis of invertebrate larvae and as food for post-larvae. We documented low pH and high pH conditions in nursery raceways and simulated settlement tanks that were as much as 0.26 pH units lower and 0.52 pH units higher than the pH of the source seawater supplied to the systems. To better understand whether the low pH and high pH conditions commonly found in aquaculture culture systems affected the success of the settlement stage of the sea urchin Centrostephanus rodgersii, we induced larvae to settle at pH 7.6, 7.8 (created by injecting CO2), 8.1 (ambient), 8.2, and 8.3 (created by raising total alkalinity), and followed post-settlement growth, development, and survival for 16 d. At metamorphosis, low pH significantly increased the occurrence of abnormalities and reduced the number and length of the sea urchins’ spines and pedicellaria, but did not affect settlement rate or size compared to ambient pH. In contrast, high pH generally had little effect on morphological traits, but settlement was significantly reduced by 14–26% compared to ambient and low pH treatments. After 16 d, juveniles in the low pH treatments were as much as 7% smaller, had 2–4 fewer and 9–13% shorter spines, and had less-developed digestive systems compared to juveniles in ambient or high pH treatments, and there was a non-significant trend towards lower survival in low pH treatments. Our results highlight that the low pH and high pH conditions in invertebrate settlement and nursery culture systems have the potential to hamper production through reduced settlement or growth rates. We need to understand the impacts of fluctuating pH in culture systems, especially day-night oscillations. Treating seawater with alkali chemicals to stabilise pH and counter acidification should be done with caution. Due to the potential for deleterious effects on settlement, dosage regimens will need to be optimised.

Continue reading ‘Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification’

CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages

In North America, studies regarding effects of CO2-induced low pH in bivalve aquaculture are largely restricted to the US Pacific coast. Studies on species from the northwest Atlantic are lacking. Furthermore, information on the roles of intergenerational exposure and biological sex in bivalve responses to low pH, particularly in an aquaculture-specific context, is scant. We tested if short-term (1 month) exposure to CO2-induced reductions in pHNBS affected the reproductive development of male and female eastern oysters (Crassostrea virginica) during hatchery-specific reproductive conditioning and whether maternal and/or paternal exposure influenced larval responses. Reduced pH (7.5–7.7) increased the rate of reproductive development in both males and females. There was no indication of intergenerational effects; adult pH conditions did not affect early larval development. In contrast, low pH conditions experienced by gametes during spawning, fertilization, and embryo incubation (48 h) resulted in higher larval survival (+6–8% from control), reduced shell height (−2 to 3 µm), and increased deformities (abnormal shell shape; +3–5%). We suggest that local adaptation to acidic land runoff may account for the positive effects of low pH observed in this study. Bioeconomic assessments are now needed to understand the implications of reduced pH on aquaculture operations in these regions of Atlantic Canada.

Continue reading ‘CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages’

Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation

Crustose coralline algae (CCA) are vital to coral reefs worldwide, providing structural integrity and inducing the settlement of important invertebrate larvae. CCA are known to be impacted by changes in their environment, both during early development and adulthood. However, long-term studies on either life history stage are lacking in the literature, therefore not allowing time to explore the acclimatory or potential adaptive responses of CCA to future global change scenarios. Here, we exposed a widely distributed, slow growing, species of CCA, Sporolithon cf. durum, to elevated temperature and pCO2 for five months and their first set of offspring (F1) for eleven weeks. Survival, reproductive output, and metabolic rate were measured in adult S. cf. durum, and survival and growth were measured in the F1 generation. Adult S. cf. durum experienced 0% mortality across treatments and reduced their O2 production after five months exposure to global stressors, indicating a possible expression of plasticity. In contrast, the combined stressors of elevated temperature and pCO2 resulted in 50% higher mortality and 61% lower growth on germlings. On the other hand, under the independent elevated pCO2 treatment, germling growth was higher than all other treatments. These results show the robustness and plasticity of S. cf. durum adults, indicating the potential for them to acclimate to increased temperature and pCO2. However, the germlings of this species are highly sensitive to global stressors and this could negatively impact this species in future oceans, and ultimately the structure and stability of coral reefs.

Continue reading ‘Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation’

Antagonistic interactions and clutch-dependent sensitivity induce variable responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos and paralarvae

Ocean acidification (OA) and warming seas are significant concerns for coastal systems and species. The Atlantic longfin squid, Doryteuthis pealeii, a core component of the Northwest Atlantic trophic web, has demonstrated impacts, such as reduced growth and delayed development, under high chronic exposure to acidification (2200 ppm), but the combined effects of OA and warming have not been explored in this species. In this study, D. pealeii egg capsules were reared under a combination of several acidification levels (400, 2200, and 3500 ppm) and temperatures (20 and 27°C). Hatchlings were measured for a range of metrics [dorsal mantle length (DML), yolk sac volume (YV), malformation, and hatching success] in three trials over the 2016 breeding season (May – October). Although notable resistance to stressors was seen, highlighting variability within and between clutches, reduced DML and malformation of the embryos occurred at the highest OA exposure. Surprisingly, increased temperatures did not appear to exacerbate OA impacts, although responses were variable. Time to hatching, which increased with acidification, decreased much more drastically under warming and, further, decreased or removed delays caused by acidification. Hatching success, while variable by clutch, showed consistent patterns of greater late stage loss of embryos under acidification and greater early stage loss under warming, highlighting the potential difference in timing between these stressors for this system, i.e., that acidification stress builds up and causes impacts over time within the egg capsule as the embryos grow and respire. High OA-exposed hatchlings from the warmer conditions often showed reduced impacts compared to those reared in ambient temperatures. This may be due to the increased developmental rate and subsequently reduced OA exposure time of embryos in the higher temperature treatment. These results indicate a substantive potential plasticity to multiple stressors during the embryonic development of this species of squid, but do not predict how this species would fare under these future ocean scenarios.

Continue reading ‘Antagonistic interactions and clutch-dependent sensitivity induce variable responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos and paralarvae’

The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions

Bull kelp (Nereocystis leutkeana) forests along the coast for northern California have decreased dramatically as a result of a ‘perfect storm’ of multiple environmental stressors. The disappearance of a predatory sea star and subsequent increase in purple sea urchins (Strongylocentrotus purpuratus) and the recurrence of marine heat waves have caused these once diverse ecosystems to be rapidly converted into relative species-depauperate urchin barrens. By examining the interactive effects of both a rapidly changing abiotic environment and the increase in urchin grazing pressure that is affecting this vital ecosystem, we can better understand its ultimate fate and make better-informed decisions to manage and protect it. As once large and persistent kelp forests are converted into fragmented landscapes of small kelp patches, kelp’s ability to take up dissolved inorganic carbon and reduce nearby acidity and increase both dissolved oxygen and bio-available calcium carbonate may be reduced, preventing it from serving as an environmental stress-free ‘oasis’ of reduced environmental stresses for local marine organisms and affecting ecosystem dynamics. In my first chapter, I examined whether small, fragmented kelp patches are able to retain their ability to alter local seawater chemistry to the same extent a large persistent kelp forests that have been studied previously. I found that in the canopies of small kelp patches, multiple parameters of carbonate chemistry fluctuated more than in the kelp benthos and in adjacent urchin barrens, consistent with metabolic activity by the kelp. Further, kelp fragments increased pH and aragonite saturation and decreased pCO2 during the day to a similar degree as large, intact kelp forests. These results suggest that small kelp patches could mitigate OA stress during the day and serve as spatial and temporal refugia for canopy-dwelling organisms. I also found that the benthic environment in kelp forests and adjacent urchin barrens is subject to unbuffered decreases in temperature, dissolved oxygen and pH. Thus, in chapter two, I assessed how current-day and future-predicted fluctuations in the duration and magnitude of these upwelling-associated stressors would impact the grazing, growth, and survivorship of purple urchins from kelp forest and urchin barren habitats. With upwelling predicted to increase in both intensity and duration with global climate change, understanding whether urchins from different habitats are differentially affected by upwelling-related stressors will give insight into how current and future stressors may be able to help ‘tip the scales’ and convert the increasing number of urchin barrens back into healthy productive kelp forests. I found condition-dependent susceptibility in urchins to increased magnitude and duration upwelling-related stressors. Grazing and gonadal development in kelp forest urchins was most negatively affected by distant future upwelling conditions, whereas in urchin barren urchins, grazing and survival were sensitive to exposure to upwelling in general, and also to increase in magnitudes of acidity, hypoxia, and temperature across both upwelling and non-upwelling events in the future. These results have important implications for population dynamics of urchins and their interactions with bull kelp, which could strongly affect ecosystem dynamics and transitions between kelp forests and urchin barrens. Taken together, the two chapters my thesis provide valuable insight into the potential resilience of bull kelp, a critical foundation species in northeastern Pacific coastal habitats, in the face of a rapidly changing multi-stressor environment.

Continue reading ‘The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions’

Unique genomic and phenotypic responses to extreme and variable pH conditions in purple urchin larvae

Environmental variation experienced by a species across space and time can promote the maintenance of genetic diversity that may be adaptive in future global change conditions. Selection experiments have shown that purple sea urchin, Strongylocentrotus purpuratus, populations have adaptive genetic variation for surviving pH conditions at the “edge” (pH 7.5) of conditions experienced in nature. However, little is known about whether populations have genetic variation for surviving low-pH events beyond those currently experienced in nature or how variation in pH conditions affects organismal and genetic responses. Here, we quantified survival, growth, and allele frequency shifts in experimentally selected developing purple sea urchin larvae in static and variable conditions at three pH levels: pH 8.1 (control), pH 7.5 (edge-of-range), and pH 7.0 (extreme). Variable treatments recovered body size relative to static treatments, but resulted in higher mortality, suggesting a potential tradeoff between survival and growth under pH stress. However, within each pH level, allele frequency changes were overlapping between static and variable conditions, suggesting a shared genetic basis underlying survival to mean pH regardless of variability. In contrast, genetic responses to pH 7.5 (edge) versus pH 7.0 (extreme) conditions were distinct, indicating a unique genetic basis of survival. In addition, loci under selection were more likely to be in exonic regions than regulatory, indicating that selection targeted protein-coding variation. Loci under selection in variable pH 7.5 conditions, more similar to conditions periodically experienced in nature, performed functions related to lipid biosynthesis and metabolism, while loci under selection in static pH 7.0 conditions performed functions related to transmembrane and mitochondrial processes. While these results are promising in that purple sea urchin populations possess genetic variation for surviving extreme pH conditions not currently experienced in nature, they caution that increased acidification does not result in a linear response but elicits unique physiological stresses and survival mechanisms.

Continue reading ‘Unique genomic and phenotypic responses to extreme and variable pH conditions in purple urchin larvae’

Fish embryo vulnerability to combined acidification and warming coincides with a low capacity for homeostatic regulation

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly hatched larvae. Treatment-related embryo mortality until hatching (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacity. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (−30% expression) indicate some potential for short-term acclimatization, although this is probably associated with energetic trade-offs. Interestingly, whole-larvae enzyme activity (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.

Continue reading ‘Fish embryo vulnerability to combined acidification and warming coincides with a low capacity for homeostatic regulation’

Effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clams (Tridacna squamosa)

This study aims to determine the effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clam (Tridacna squamosa). Juvenile fluted giant clam put into an aquarium which is given a combination of CO2 pressure treatment (415, 1000 and 1800 ppm) and temperature (30, 32, and 34°C). Measuring the length, width and height of the shell perform in every two weeks for five times. CaCO3 content and shell strength was test at the end of the study. The best growth of shell length, shell width, and shell height in the treatment of CO2 concentrations of 415 ppm and temperatures of 30°C were 23.28 mm, 11.51 mm and 0.69 mm respectively. Survival live also obtained in the treatment of CO2 concentrations of 415 ppm and temperatures of 30°C and CO2 concentrations of 415 ppm and temperatures of 32°C each of 100%. The strength of the shell and CaCO3 content decreased in the treatment of CO2 concentration and high temperatures. Higher concentration of CO2 and increased temperature negatively affected the growth of length, width, survival of scales, reduced strength and the CaCO3 content of shell.

Continue reading ‘Effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clams (Tridacna squamosa)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,357,954 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book