Posts Tagged 'brachiopods'

Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification

Organisms with long generation times require phenotypic plasticity to survive in changing environments until genetic adaptation can be achieved. Marine calcifiers are particularly vulnerable to ocean acidification due to dissolution and a reduction in shell-building carbonate ions. Long-term experiments assess organisms’ abilities to acclimatise or even adapt to environmental change. Here we present an unexpected compensatory response to extensive shell dissolution in a highly calcium-carbonate-dependent organism after long-term culture in predicted end-century acidification and warming conditions. Substantial shell dissolution with decreasing pH posed a threat to both a polar (Liothyrella uva) and a temperate (Calloria inconspicua) brachiopod after 7 months and 3 months exposure, respectively, with more extensive dissolution in the polar species. This impact was reflected in decreased outer primary layer thickness in the polar brachiopod. A compensatory response of increasing inner secondary layer thickness, and thereby producing a thicker shell was exhibited by the polar species. Less extensive dissolution in the temperate brachiopod did not affect shell thickness. Increased temperature did not impact shell dissolution or thickness. Brachiopod ability to produce a thicker shell when extensive shell dissolution occurs suggests this marine calcifier has great plasticity in calcification providing insights into how similar species might cope under future environmental change.

Continue reading ‘Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification’

Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions

In the last few decades and in the near future CO2-induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g. brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences for biomineral formation remain poorly understood. Only a few studies have addressed the impact of ocean acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789). These were grown in the natural environment as well as in controlled culturing experiments under different pH conditions (ranging from 7.35 to 8.15±0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy. Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low-pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2 source in the culture set-up. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.

Continue reading ‘Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions’

Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction

CO2-induced ocean acidification and associated decrease of seawater carbonate saturation state contributed to multiple environmental crises in Earth’s history, and currently poses a major threat for marine calcifying organisms. Owing to their high abundance and good preservation in the Phanerozoic geological record, brachiopods present an advantageous taxon of marine calcifiers for palaeo-proxy applications as well as studies on biological mechanism to cope with environmental change. To investigate the geochemical and physiological responses of brachiopods to prolonged low-pH conditions we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years. Our experiments demonstrate that brachiopods form their calcite shells under strong biological control, which enables them to survive and grow under low-pH conditions and even in seawater strongly undersaturated with respect to calcite (pH = 7.35, Ωcal = 0.6). Using boron isotope (δ11B) systematics including MC-ICP-MS as well as SIMS analyses, validated against in vivo microelectrode measurements, we show that this resilience is achieved by strict regulation of the calcifying fluid pH between the epithelial mantle and the shell. We provide a culture-based δ11B−pH calibration, which as a result of the internal pH regulatory mechanisms deviates from the inorganic borate ion to pH relationship, but confirms a clear yet subtle pH dependency for brachiopods. At a micro-scale level, the incorporation of 11B appears to be principally driven by a physiological gradient across the shell, where the δ11B values of the innermost calcite record the internal calcifying fluid pH while the composition of the outermost layers is also influenced by seawater pH. These findings are of consequence to studies on biomineralisation processes, physiological adaptations as well as past climate reconstructions.

Continue reading ‘Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction’

Variation in brachiopod microstructure and isotope geochemistry under low pH–ocean acidification–conditions

Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification  on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic–rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.
Continue reading ‘Variation in brachiopod microstructure and isotope geochemistry under low pH–ocean acidification–conditions’

Mapping of recent brachiopod microstructure: a tool for environmental studies

Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state.

Continue reading ‘Mapping of recent brachiopod microstructure: a tool for environmental studies’

A 120‐year record of resilience to environmental change in brachiopods

The inability of organisms to cope in changing environments poses a major threat to their survival. Rising carbon dioxide concentrations, recently exceeding 400 μatm, are rapidly warming and acidifying our oceans. Current understanding of organism responses to this environmental phenomenon is based mainly on relatively short‐ to medium‐term laboratory and field experiments, which cannot evaluate the potential for long‐term acclimation and adaptation, the processes identified as most important to confer resistance. Here, we present data from a novel approach that assesses responses over a centennial timescale showing remarkable resilience to change in a species predicted to be vulnerable. Utilising museum collections allows the assessment of how organisms have coped with past environmental change. It also provides a historical reference for future climate change responses. We evaluated a unique specimen collection of a single species of brachiopod (Calloria inconspicua) collected every decade from 1900 to 2014 from one sampling site. The majority of brachiopod shell characteristics remained unchanged over the past century. One response, however, appears to reinforce their shell by constructing narrower punctae (shell perforations) and laying down more shell. This study indicates one of the most calcium‐carbonate‐dependent species globally to be highly resilient to environmental change over the last 120 years and provides a new insight for how similar species might react and possibly adapt to future change.

Continue reading ‘A 120‐year record of resilience to environmental change in brachiopods’

Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833)

Marine calcifiers are amongst the most vulnerable organisms to ocean acidification due to reduction in the availability of carbonate ions for skeletal/shell deposition. However, there are limited long-term studies on the possible impacts of increased pCO2 on these taxa. A 7 month CO2 perturbation experiment was performed on one of the most calcium carbonate dependent species, the Antarctic brachiopod Liothyrella uva, which inhabits the Southern Ocean where carbonate ion saturation levels are amongst the lowest on Earth. The effects of the predicted environmental conditions in 2050 and 2100 on the growth rate and ability to repair shell in L. uva were tested with four treatments; a low temperature control (0 °C, pH 7.98), a pH control (2 °C, pH 8.05), mid-century scenario (2 °C, pH 7.75) and end-century scenario (2 °C, pH 7.54). Environmental change impacts on shell repair are rarely studied, but here repair was not affected by either acidified conditions or temperature. Growth rate was also not impacted by low pH. Elevated temperature did, however, increase growth rates. The ability of L. uva to continue, and even increase shell production in warmer and acidified seawater suggests that this species can acclimate to these combined stressors and generate suitable conditions for shell growth at the site of calcification.

Continue reading ‘Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,265,823 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book