Posts Tagged 'brachiopods'

Biomineralization: integrating mechanism and evolutionary history

Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.

Continue reading ‘Biomineralization: integrating mechanism and evolutionary history’

Lithium elemental and isotope systematics of modern and cultured brachiopods: implications for seawater evolution

Lithium has proven a powerful tracer of weathering processes and chemical seawater evolution. Skeletal components of marine calcifying organisms, and in particular brachiopods, present promising archives of Li signatures. However, Li incorporation mechanisms and potential influence from biological processes or environmental conditions require a careful assessment. In order to constrain Li systematics in brachiopod shells, we present Li concentrations and isotope compositions for 11 calcitic brachiopod species collected from six different geographic regions, paralleled with data from culturing experiments where brachiopods were grown under varying environmental conditions and seawater chemistry (pH–pCO2, temperature, Mg/Ca ratio). The recent brachiopod specimens collected across different temperate and polar environments showed broadly consistent δ7Li values ranging from 25.2 to 28.1‰ (with mean δ7Li of 26.9 ± 1.5‰), irrespective of taxonomic rank, indicating that incorporation of Li isotopes into brachiopod shells is not strongly affected by vital effects related to differences among species. This results in Δ7Licalcite–seawater values (per mil difference in 7Li/6Li between brachiopod calcite shell and seawater) from −2.9‰ to −5.8‰ (with mean Δ7Licalcite–seawater value of −3.6‰), which is larger than the Δ7Licalcite–seawater values calculated based on data from planktonic foraminifera (~0‰ to ~−4‰). This range of values is further supported by results from brachiopods cultured experimentally. Under controlled culturing conditions simulating the natural marine environment, the Δ7Licalcite–seawater for Magellania venosa was −2.5‰ and not affected by an increase in temperature from 10 to 16 °C. In contrast, a decrease in Mg/Ca (or Li/Ca) ratio of seawater by addition of CaCl2 as well as elevated pCO2, and hence low-pH conditions, resulted in an increased Δ7Licalcite-seawater up to −4.6‰. Collectively, our results indicate that brachiopods represent valuable archives and provide an envelope for robust Li-based reconstruction of seawater evolution over the Phanerozoic.

Continue reading ‘Lithium elemental and isotope systematics of modern and cultured brachiopods: implications for seawater evolution’

Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean

Understanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the oceans. Seawater pH levels have already decreased by 0.1 and are predicted to decline by ~ 0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). These negative effects may become even exacerbated by increasing sea temperatures. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make predictions about how OA might affect different taxa. We consider their geographic range, skeletal mineralogy, biological traits and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate shows response variation depending on mineralogical composition. Species-specific responses due to mineralogical composition suggest taxa with calcitic, aragonitic and HMC skeletons may be more vulnerable to the expected carbonate chemistry alterations, and low magnesium calcite (LMC) species may be mostly resilient. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits and physiological processes are also expected to influence species specific responses.

Continue reading ‘Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean’

Ocean acidification during the early Toarcian extinction event: evidence from boron isotopes in brachiopods

The loss of carbonate production during the Toarcian Oceanic Anoxic Event (T-OAE, ca. 183 Ma) is hypothesized to have been at least partly triggered by ocean acidification linked to magmatism from the Karoo-Ferrar large igneous province (southern Africa and Antarctica). However, the dynamics of acidification have never been directly quantified across the T-OAE. Here, we present the first record of temporal evolution of seawater pH spanning the late Pliensbachian and early Toarcian from the Lusitanian Basin (Portugal) reconstructed on the basis of boron isotopic composition (δ11B) of brachiopod shells. δ11B declines by ~1‰ across the Pliensbachian-Toarcian boundary (Pl-To) and attains the lowest values (~12.5‰) just prior to and within the T-OAE, followed by fluctuations and a moderately increasing trend afterwards. The decline in δ11B coincides with decreasing bulk CaCO3 content, in parallel with the two-phase decline in carbonate production observed at global scales and with changes in pCO2 derived from stomatal indices. Seawater pH had declined significantly already prior to the T-OAE, probably due to the repeated emissions of volcanogenic CO2. During the earliest phase of the T-OAE, pH increased for a short period, likely due to intensified continental weathering and organic carbon burial, resulting in atmospheric CO2 drawdown. Subsequently, pH dropped again, reaching the minimum in the middle of the T-OAE. The early Toarcian marine extinction and carbonate collapse were thus driven, in part, by ocean acidification, similar to other Phanerozoic events caused by major CO2 emissions and warming.

Continue reading ‘Ocean acidification during the early Toarcian extinction event: evidence from boron isotopes in brachiopods’

Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification

Organisms with long generation times require phenotypic plasticity to survive in changing environments until genetic adaptation can be achieved. Marine calcifiers are particularly vulnerable to ocean acidification due to dissolution and a reduction in shell-building carbonate ions. Long-term experiments assess organisms’ abilities to acclimatise or even adapt to environmental change. Here we present an unexpected compensatory response to extensive shell dissolution in a highly calcium-carbonate-dependent organism after long-term culture in predicted end-century acidification and warming conditions. Substantial shell dissolution with decreasing pH posed a threat to both a polar (Liothyrella uva) and a temperate (Calloria inconspicua) brachiopod after 7 months and 3 months exposure, respectively, with more extensive dissolution in the polar species. This impact was reflected in decreased outer primary layer thickness in the polar brachiopod. A compensatory response of increasing inner secondary layer thickness, and thereby producing a thicker shell was exhibited by the polar species. Less extensive dissolution in the temperate brachiopod did not affect shell thickness. Increased temperature did not impact shell dissolution or thickness. Brachiopod ability to produce a thicker shell when extensive shell dissolution occurs suggests this marine calcifier has great plasticity in calcification providing insights into how similar species might cope under future environmental change.

Continue reading ‘Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification’

Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions

In the last few decades and in the near future CO2-induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g. brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences for biomineral formation remain poorly understood. Only a few studies have addressed the impact of ocean acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789). These were grown in the natural environment as well as in controlled culturing experiments under different pH conditions (ranging from 7.35 to 8.15±0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy. Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low-pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2 source in the culture set-up. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.

Continue reading ‘Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions’

Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction

CO2-induced ocean acidification and associated decrease of seawater carbonate saturation state contributed to multiple environmental crises in Earth’s history, and currently poses a major threat for marine calcifying organisms. Owing to their high abundance and good preservation in the Phanerozoic geological record, brachiopods present an advantageous taxon of marine calcifiers for palaeo-proxy applications as well as studies on biological mechanism to cope with environmental change. To investigate the geochemical and physiological responses of brachiopods to prolonged low-pH conditions we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years. Our experiments demonstrate that brachiopods form their calcite shells under strong biological control, which enables them to survive and grow under low-pH conditions and even in seawater strongly undersaturated with respect to calcite (pH = 7.35, Ωcal = 0.6). Using boron isotope (δ11B) systematics including MC-ICP-MS as well as SIMS analyses, validated against in vivo microelectrode measurements, we show that this resilience is achieved by strict regulation of the calcifying fluid pH between the epithelial mantle and the shell. We provide a culture-based δ11B−pH calibration, which as a result of the internal pH regulatory mechanisms deviates from the inorganic borate ion to pH relationship, but confirms a clear yet subtle pH dependency for brachiopods. At a micro-scale level, the incorporation of 11B appears to be principally driven by a physiological gradient across the shell, where the δ11B values of the innermost calcite record the internal calcifying fluid pH while the composition of the outermost layers is also influenced by seawater pH. These findings are of consequence to studies on biomineralisation processes, physiological adaptations as well as past climate reconstructions.

Continue reading ‘Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction’

Variation in brachiopod microstructure and isotope geochemistry under low pH–ocean acidification–conditions

Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification  on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic–rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.
Continue reading ‘Variation in brachiopod microstructure and isotope geochemistry under low pH–ocean acidification–conditions’

Mapping of recent brachiopod microstructure: a tool for environmental studies

Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state.

Continue reading ‘Mapping of recent brachiopod microstructure: a tool for environmental studies’

A 120‐year record of resilience to environmental change in brachiopods

The inability of organisms to cope in changing environments poses a major threat to their survival. Rising carbon dioxide concentrations, recently exceeding 400 μatm, are rapidly warming and acidifying our oceans. Current understanding of organism responses to this environmental phenomenon is based mainly on relatively short‐ to medium‐term laboratory and field experiments, which cannot evaluate the potential for long‐term acclimation and adaptation, the processes identified as most important to confer resistance. Here, we present data from a novel approach that assesses responses over a centennial timescale showing remarkable resilience to change in a species predicted to be vulnerable. Utilising museum collections allows the assessment of how organisms have coped with past environmental change. It also provides a historical reference for future climate change responses. We evaluated a unique specimen collection of a single species of brachiopod (Calloria inconspicua) collected every decade from 1900 to 2014 from one sampling site. The majority of brachiopod shell characteristics remained unchanged over the past century. One response, however, appears to reinforce their shell by constructing narrower punctae (shell perforations) and laying down more shell. This study indicates one of the most calcium‐carbonate‐dependent species globally to be highly resilient to environmental change over the last 120 years and provides a new insight for how similar species might react and possibly adapt to future change.

Continue reading ‘A 120‐year record of resilience to environmental change in brachiopods’

Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833)

Marine calcifiers are amongst the most vulnerable organisms to ocean acidification due to reduction in the availability of carbonate ions for skeletal/shell deposition. However, there are limited long-term studies on the possible impacts of increased pCO2 on these taxa. A 7 month CO2 perturbation experiment was performed on one of the most calcium carbonate dependent species, the Antarctic brachiopod Liothyrella uva, which inhabits the Southern Ocean where carbonate ion saturation levels are amongst the lowest on Earth. The effects of the predicted environmental conditions in 2050 and 2100 on the growth rate and ability to repair shell in L. uva were tested with four treatments; a low temperature control (0 °C, pH 7.98), a pH control (2 °C, pH 8.05), mid-century scenario (2 °C, pH 7.75) and end-century scenario (2 °C, pH 7.54). Environmental change impacts on shell repair are rarely studied, but here repair was not affected by either acidified conditions or temperature. Growth rate was also not impacted by low pH. Elevated temperature did, however, increase growth rates. The ability of L. uva to continue, and even increase shell production in warmer and acidified seawater suggests that this species can acclimate to these combined stressors and generate suitable conditions for shell growth at the site of calcification.

Continue reading ‘Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833)’

Climate-forced change in Hudson Bay seawater composition and temperature, Arctic Canada

Global climate change impacts marine ecosystems, directly and indirectly, especially in the Arctic and Antarctic. We show the first long-term (1920-2011) time-series of oceanographic change in Hudson Bay, an arctic marine ecosystem, based on coupled brachiopod-calcite stable and clumped isotope results. Long-term decrease in brachiopod δ13C parallels that of seawater-DIC in Hudson Bay, and after considering its seasonal sea ice coverage, it is similar to that of the 13C-Suess effect observed in the North Atlantic and other regions. Acidification of Hudson Bay seawater leads warming by about 10-20 years, and with intensified warming from the 1970’s to 2010’s closely coupled to earlier sea-ice breakup. Post-industrial warming of Hudson Bay is initially slow, but in later years, faster and of greater magnitude than of the coeval global oceans. Our observations for the past 90 years suggest that climate-forced change contributed to an average increase of about 0.1 °C and 3.6 °C in sea-surface water temperature of Hudson Bay over the first 50 and subsequent 40 years, respectively. This 3.7 °C post-industrial warming of Hudson Bay seawater is about six times the 0.67 °C increase observed during the past 100 years in global ocean sea-surface temperature, which is about double the postulated increase of about 2 °C for polar regions. Our results are consistent with the general notion that polar marine environments, such as Hudson Bay, can serve as sensitive indicators of change in climate, and of change still to come for lower latitude ecosystems.

Continue reading ‘Climate-forced change in Hudson Bay seawater composition and temperature, Arctic Canada’

Boron, carbon, and oxygen isotopic composition of brachiopod shells: intra-shell variability, controls, and potential as a paleo-pH recorder

The boron isotopic composition of biogenic carbonates has been used to reconstruct seawater pH and atmospheric pCO2 on Pleistocene and Cenozoic timescales. Because of their excellent preservation and extensive fossil record throughout the Phanerozoic, brachiopods are a promising candidate for extending the boron isotope record as far back as the Cambrian. Here we present stable carbon, oxygen, and boron isotopic measurements of modern Terebratulid brachiopod calcite in comparison with environmental pH estimates calculated from oceanographic data. Geochemical transects along the length and depth of single shells confirm previously published trends in carbon and oxygen isotopic composition. In the outer surface (primary and outermost secondary layers), δ11B covaries with δ13C and δ18O, with more negative values in the outer and more positive values in the middle of the shell. However, δ11B deviates from δ13C and δ18O in the inner part of the secondary layer, where the δ13C and δ18O values are more positive and near equilibrium, whereas δ11B returns to more negative values. Comparison of different specimens of the species Terebratalia transversa (Sowerby, 1846) and Laqueus californianus (Küster, 1844) microsampled from the middle part of the fibrous secondary layer demonstrate a clear correlation to ambient pH with a sensitivity similar to other empirical calibration curves for cultured planktic foraminifers, corals, and inorganic calcite. The relationship in other species is less clear and significantly offset, necessitating the use of single species or a cross-calibration method with other species in paleo-pH reconstructions.

Continue reading ‘Boron, carbon, and oxygen isotopic composition of brachiopod shells: intra-shell variability, controls, and potential as a paleo-pH recorder’

Marine invertebrate skeleton size varies with latitude, temperature, and carbonate saturation: implications for global change and ocean acidification

There is great concern over the future effects of ocean acidification on marine organisms, especially for skeletal calcification, yet little is known of natural variation in skeleton size and composition across the globe, and this is a prerequisite for identifying factors currently controlling skeleton mass and thickness. Here taxonomically-controlled latitudinal variations in shell morphology and composition were investigated in bivalve and gastropod molluscs, brachiopods and echinoids. Total inorganic content, a proxy for skeletal CaCO3, decreased with latitude, decreasing seawater temperature and decreasing seawater carbonate saturation state (for CaCO3 as calcite (Ωcal)) in all taxa. Shell mass decreased with latitude in molluscs and shell inorganic content decreased with latitude in buccinid gastropods. Shell thickness decreased with latitude in buccinid gastropods (excepting the Australian temperate buccinid) and echinoids, but not brachiopods and laternulid clams. In the latter the polar species had the thickest shell. There was no latitudinal trend in shell thickness within brachiopods. The variation in trends in shell thickness by taxon suggests that in some circumstances ecological factors may override latitudinal trends. Latitudinal gradients may produce effects similar to those of future CO2-driven ocean acidification on CaCO3 saturation state. Responses to latitudinal trends in temperature and saturation state may therefore be useful in informing predictions of organism responses to ocean acidification over long-term adaptive timescales.

Continue reading ‘Marine invertebrate skeleton size varies with latitude, temperature, and carbonate saturation: implications for global change and ocean acidification’

Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification

Antarctic calcified macroorganisms are particularly vulnerable to ocean acidification because many are weakly calcified, the dissolution rates of calcium carbonate are inversely related to temperature, and high latitude seas are predicted to become undersaturated in aragonite by the year 2100. We examined the post-mortem dissolution rates of aragonitic and calcitic shells from four species of Antarctic benthic marine invertebrates (two bivalves, one limpet, one brachiopod) and the thallus of a limpet shell-encrusting coralline alga exposed to acidified pH (7.4) or non-acidified pH (8.2) seawater at a constant temperature of 4°C. Within a period of only 14–35 days, shells of all four species held in pH 7.4 seawater had suffered significant dissolution. Despite calcite being 35% less soluble in seawater than aragonite, there was surprisingly, no consistent pattern of calcitic shells having slower dissolution rates than aragonitic shells. Outer surfaces of shells held in pH 7.4 seawater exhibited deterioration by day 35, and by day 56 there was exposure of aragonitic or calcitic prisms within the shell architecture of three of the macroinvertebrate species. Dissolution of coralline algae was confirmed by differences in weight loss in limpet shells with and without coralline algae. By day 56, thalli of the coralline alga held in pH 7.4 displayed a loss of definition of the conceptacle pores and cracking was evident at the zone of interface with limpet shells. Experimental studies are needed to evaluate whether there are adequate compensatory mechanisms in these and other calcified Antarctic benthic macroorganisms to cope with anticipated ocean acidification. In their absence, these organisms, and the communities they comprise, are likely to be among the first to experience the cascading impacts of ocean acidification.
Continue reading ‘Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification’


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: