Posts Tagged 'laboratory'

Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.

Continue reading ‘Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions’

Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans

Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne‘ohe Bay, Hawai‘i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne‘ohe Bay to conspecifics from a nearby control site and show that corals from Kāne‘ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.

Continue reading ‘Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans’

Reduced impact of ocean acidification on growth and swimming performance of newly hatched tropical sharks (Chiloscyllium plagiosum)

Sharks have been facing unprecedented pressure over the last decades, and ocean acidification may represent an additional threat, particularly during their most susceptible life stages. Hence, the present study aimed to investigate the effects of ocean acidification (control pCO2 ~ 400 μatm; high pCO2 ~ 900 μatm) on the growth, swimming performance and cholinergic system of juvenile white-spotted bamboo sharks (Chiloscyllium plagiosum). After 45 days of exposure, we observed that high CO2 did not affect most of the end-points studied. However, somatic growth rate and the percentage of time that sharks spent swimming was significantly reduced under high CO2 conditions. Moreover, AChE activity decreased in two of the seven brain macroareas analyzed, the telencephalon and optic lobes. As this near-threatened shark species showed small sub-lethal effects to high CO2 levels, we argue that within a longer time-frame they can potentially reduce individual performance with cascading consequences to shark population dynamics.

Continue reading ‘Reduced impact of ocean acidification on growth and swimming performance of newly hatched tropical sharks (Chiloscyllium plagiosum)’

The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica

Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples. A higher proportion of vitellogenic oocytes (65%) were also reabsorbed (oosorption) in the Year 2100 treatment. Lower pH appeared to advance the process of spermatogenesis with a higher percentage of later stage sperm compared to Control. There was a laboratory effect observed in all measurement types, however this only significantly affected the analyses of spermatogenesis. Based on the negative effect of acidification on oogenesis and increased rate of oosorption, successful spawning could be unlikely in an acidified ocean. If female gametes were spawned, they are likely to be insufficiently equipped to develop normally, based on the decreased overall size and therefore subsequent limited amount of lipids necessary for successful larval development.

Continue reading ‘The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica’

Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling

Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.

Continue reading ‘Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling’

Seawater acidification and emerging contaminants: a dangerous marriage for haemocytes of marine bivalves

Highlights

• Reduced pH and diclofenac affect haemocyte parameters in exposed mussels and clams.

• During exposure effects of pH persisted, those of diclofenac appeared later.

• Different patterns in haemocyte responses were observed in the two species.

• Interaction between pH and diclofenac was more evident in mussels.

Abstract

The combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on haemocyte parameters of the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum were investigated for the first time. Animals were maintained for one week (T0) in natural pH condition (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units). Bivalves were then exposed for additional 14 days (T1 and T2) to the three experimental pH values in both the presence and absence of environmentally realistic concentrations of diclofenac (0.05 and 0.50 μg/L). To assess potential impairment in immunosurveillance, haemocyte parameters (total haemocyte count, haemocyte volume and diameter, Neutral Red uptake, haemocyte proliferation and lysozyme activity) were measured after 7, 14 and 21 days of exposure to differing pH value or pH/diclofenac combinations. In both species, pH affected the whole haemocyte data set at all sampling times, influencing most of the parameters measured at T0 and T1 in clams, and at T2 in mussels. Conversely, in both species diclofenac affected the overall haemocyte response at T2 only. However, in R. philippinarum a higher number of haemocyte parameters were significantly influenced even at T1. A significant interaction between pH and diclofenac was mainly evident in mussels, affecting haemocyte size and lysozyme activity at both T1 and T2. Overall, the results obtained demonstrated that the experimental conditions tested can alter markedly haemocyte parameters in marine bivalves.

Continue reading ‘Seawater acidification and emerging contaminants: a dangerous marriage for haemocytes of marine bivalves’

Degradation of internal organic matter is the main control on pteropod shell dissolution after death

The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here we present the results from experiments conducted on two cruises to the Scotia Sea to directly test whether the breakdown of the organic pteropod body influences shell dissolution. We find that, on the timescales of three to thirteen days, the oxidation of organic matter within the shells of dead pteropods is a stronger driver of shell dissolution than the saturation state of seawater. Three to four days after death, shells became milky white and nano‐SEM images reveal smoothing of internal surface features and increased shell porosity, both indicative of aragonite dissolution. These findings have implications for the interpretation of the condition of pteropod shells from sediment traps and the fossil record, as well as for understanding the processes controlling particulate carbonate export from the surface ocean.

Continue reading ‘Degradation of internal organic matter is the main control on pteropod shell dissolution after death’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,242,876 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book