Posts Tagged 'mesocosms'

Ocean warming and CO2-driven acidification can alter the toxicity of metal-contaminated sediments to the meiofauna community


  • Contamination interacted with warming but the effect on density was taxon dependent.
  • Warming increased metal effects in nematods and copepods, and decreased in acoelomorphs.
  • Copepod densities were lower, and acoelomorphs higher, in the high CO2/low pH scenario.
  • Global change studies should consider multispecies exposures in multi-stressor scenarios.


Interactive effects of trace metal contamination, ocean warming, and CO2-driven acidification on the structure of a meiofaunal benthic community was assessed. Meiofauna microcosm bioassays were carried out in controlled conditions in a full factorial experimental design which included three fixed factors: metal contamination in the sediment (3 levels of a mixture of Cu, Pb, Zn, and Hg), temperature (26 and 28 °C) and pH (7.6 and 8.1). Metal contamination caused a sharp decrease in the densities of the most abundant meiobenthic groups and interacted with temperature rise, exacerbating deleterious effects for Nematoda and Copepoda, but mitigating effects for Acoelomorpha. CO2-driven acidification resulted in increased acoelomorphs density, but only in sediments with lower levels of metals. Copepod densities, in turn, were lower in the CO2-driven acidification scenario regardless of contamination or temperature. The results obtained in the present study showed that temperature rise and CO2-driven acidification of coastal ocean waters, at environmentally relevant levels, interacts with trace metals in marine sediments, differently affecting the major groups of benthic biota.

Continue reading ‘Ocean warming and CO2-driven acidification can alter the toxicity of metal-contaminated sediments to the meiofauna community’

Ocean acidification has a strong effect on communities living on plastic in mesocosms

We conducted a mesocosm experiment to examine how ocean acidification (OA) affects communities of prokaryotes and eukaryotes growing on single-use drinking bottles in subtropical eutrophic waters of the East China Sea. Based on 16S rDNA gene sequencing, simulated high CO2 significantly altered the prokaryotic community, with the relative abundance of the phylum Planctomycetota increasing by 49%. Under high CO2, prokaryotes in the plastisphere had enhanced nitrogen dissimilation and ureolysis, raising the possibility that OA may modify nutrient cycling in subtropical eutrophic waters. The relative abundance of pathogenic and animal parasite bacteria also increased under simulated high CO2. Our results show that elevated CO2 levels significantly affected several animal taxa based on 18S rDNA gene sequencing. For example, Mayorella amoebae were highly resistant, whereas Labyrinthula were sensitive to OA. Thus, OA may alter plastisphere food chains in subtropical eutrophic waters.

Scientific Significance Statement

Plastic waste in the ocean is an urgent environmental concern and has given rise to a novel habitat, known as the “plastisphere.” Under ocean acidification (OA), changes in plastisphere community composition may alter plastic degradation, deposition, and passage through food webs, but these have not been studied yet. This is the first study about the effects of simulated high CO2 on the plastisphere using a mesocosm. We discovered that after 1 month the beta diversity of prokaryotic communities living on single-use plastic drinking bottles was significantly different under different carbon dioxide concentrations, with more pathogens at high CO2. Based on function prediction analysis, the relative abundance of bacterial taxa involved in nitrogen and nitrate respiration and ureolysis was significantly higher under simulated high CO2. We conclude that OA has significant effects on the plastisphere and its predicted functions.

Continue reading ‘Ocean acidification has a strong effect on communities living on plastic in mesocosms’

Climate change effects on marine species across trophic levels

Climate change and anthropogenic activities are producing a range of new selection pressures, both abiotic and biotic, on marine organisms. While there are numerous studies that have investigated the response of individual marine organisms to climate change, few studies have focused on differences in organismal responses across trophic levels. Such trophic differences in response to climate change may disrupt ecological interactions and thereby threaten marine ecosystem function. In addition, predation is known as a strong driver that impacts individuals and populations. Despite this, we still do not have a comprehensive understanding of how different trophic levels respond to climate change stressors, predation and their combined effects in marine ecosystems.

The main focus of this thesis is to identify whether marine trophic levels respond differently to climatic stressors and predation. To explore these questions, I have used a combination of traditional mesocosm experiments, together with a statistical method called meta-analysis. I initiated the research by study the responses of marine gastropods at two trophic levels to ocean acidification and predation using long-term mesocosm experiments together with a gastropod-specific meta-analyses. I focused on the amount of phenotypic plasticity in morphological traits of snails when exposed to the two stressors. In order to generalise and test these assumptions among a greater number of marine taxa, I used the meta-analysis approach to investigate the effects of ocean acidification and warming, as well as their combined effects on four marine trophic levels. Finally, to study the individual and combined effects of ocean acidification and predation with respect to inducible defences, I again applied a mesocosm experiment and used blue mussels as a model species.

By using long-term mesocosm experiments and the gastropod-specific meta-analysis on marine gastropods from two trophic levels, I showed that these trophic levels varied in their responses to both ocean acidification and predation. Gastropods at lower trophic levels exhibited greater phenotypic plasticity against predation, while those from higher trophic levels showed stronger tolerance to ocean acidification. Next, by using a meta-analysis, including a large number of species and taxa, examining the effects of ocean acidification and warming, I revealed that top-predators and primary producers were most tolerant to ocean acidification compared to other trophic levels. Herbivores on the other hand, were the most vulnerable trophic level against abiotic stress. Again, using the meta-analysis approach, but this time incorporating only factorial experimental data that included the interactive effects of ocean acidification and ocean warming, I showed that higher trophic levels again were the most tolerant trophic level, and herbivores being most sensitive, with respect to the combined effect of the two stressors. Contrary to previous discussions in the literature concerning multiple climate-related stressors, antagonistic and additive effects occurred most frequently, while synergistic effects were less common and which decreased with increasing trophic rank. Finally, by conducting a fully-factorial experiment using blue mussels, I found that mussels with previous experience contact with predator has developed greater inducible defences than ones without previous experience. However, levels of ocean acidification may mask predator cues, or obstruct shell material, and consequently disrupt blue mussels inducible defence from crab predation.

In summary, marine trophic levels respond differently to both biotic and climatic stressors. Higher trophic levels, together with primary producers, were often more robust against abiotic stress and may therefore be better prepared for future oceans compare species from lower trophic levels. These results may provide vital information for: implementing effective climate change mitigation, to understand which stressors to act on, and when and where to intervene for prioritizing conservation actions.

Continue reading ‘Climate change effects on marine species across trophic levels’

Responses of free-living planktonic bacterial communities to experimental acidification and warming

Climate change driven by human activities encompasses the increase in atmospheric CO2 concentration and sea-surface temperature. Little is known regarding the synergistic effects of these phenomena on bacterial communities in oligotrophic marine ecosystems that are expected to be particularly vulnerable. Here, we studied bacterial community composition changes based on 16S rRNA sequencing at two fractions (0.1–0.2 and >0.2 μm) during a 10- day fully factorial mesocosm experiment in the eastern Mediterranean where the pH decreased by ~0.3 units and temperature increased by ~3 °C to project possible future changes in surface waters. The bacterial community experienced significant taxonomic differences driven by the combined effect of time and treatment; a community shift one day after the manipulations was noticed, followed by a similar state between all mesocosms at the third day, and mild shifts later on, which were remarkable mainly under sole acidification. The abundance of Synechococcus increased in response to warming, while the SAR11 clade immediately benefited from the combined acidification and warming. The effect of the acidification itself had a more persistent impact on community composition. This study highlights the importance of studying climate change consequences on ecosystem functioning both separately and simultaneously, considering the ambient environmental parameters.

Continue reading ‘Responses of free-living planktonic bacterial communities to experimental acidification and warming’

Season-specific impacts of two projected climate scenarios on intertidal seaweed communities

Predictions regarding the ecological impacts of future climate change often lack nuance when they rely on studies that focus on a single species under one future scenario. The inclusion of factors such as seasonality, multiple projected climate scenarios, and community-level interactions, which can alter how climate related stressors affect a species, will lead to more holistic and well-informed predictions. Rockweeds, such as Silvetia compressa, whose canopies support diverse understory communities, can have strong responses to climate change when in conjunction with these other factors due to narrow tolerance thresholds and tightly coupled species interactions. Therefore, we chose to assess the impacts of climate change on Silvetia by subjecting simplified Silvetia assemblages to elevated temperature and pCO2 in a mesocosm environment. Due to the uncertainty of future climate trajectories and the potential interactions with seasonality, we tested these stressors under two IPCC projected climate scenarios (RCP 2.6 & 4.5) in both the summer and winter. This was coupled with a field experiment involving Silvetia removal to simulate the effect of climate mediated Silvetia loss on natural assemblages. We found that Silvetia abundance declined under RCP 4.5 in both seasons, and this loss of canopy led to shifts in the understory algal assemblage. In contrast, Silvetia increased under RCP 2.6 in the winter, which resulted in an understory assemblage comparable to those observed under ambient conditions. These results indicate that while most future scenarios will reduce present-day Silvetia communities, some scenarios may lead to their recovery. Given these varied results, future experimental climate change research on similarly structured communities should consider seasonality, multiple climate change scenarios, and species interactions in their designs.

Continue reading ‘Season-specific impacts of two projected climate scenarios on intertidal seaweed communities’

Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification

Seagrass meadows are important marine ecosystems for mitigating ocean acidification because of their ability to raise the pH of seawater during the day. This ability may decrease as a result of the loss of these meadows, which is primarily caused by human activities and climate change. Here, we test the effect of seagrass cover loss on seawater carbonate chemistry to understand how the loss of seagrass meadows affects their ability to mitigate ocean acidification. pH, dissolved inorganic carbon (DIC), partial pressure of carbon dioxide (pCO2), and aragonite saturation state (ΩAr) were measured in experimental tidal pools with varying proportions of seagrass coverage: 0% (mimicking a complete loss of seagrass meadows); 1%–29% (mimicking the greatest loss of seagrass meadows); 30%–59% (mimicking a moderate loss of seagrass meadows); and 60%–100% (mimicking the lowest loss of seagrass meadows). It was found that as seagrass cover decreased, pH and ΩAr levels in seawater decreased proportionally during the day, while pCO2 and DIC increased. Additionally, correlation analysis showed a strong significant positive correlation between the seagrass cover and pH (rs = 0.9096, p < 0.0001) and ΩAr (rs = 0.9031, p < 0.0001), as well as a strong significant negative correlation between the seagrass cover and pCO2 (rs = −0.9068, p < 0.0001) and DIC (rs = −0.8947, p < 0.0001). These results imply that the 7% annual global loss in seagrass meadows may limit seagrass meadows’ ability to raise the pH of their surrounding seawater during the day, reducing their potential to mitigate ocean acidification. The study recommends that management strategies that minimize anthropogenic activities that cause seagrass loss be implemented in order for seagrass meadows to continue mitigating ocean acidification within their ecosystem and nearby ecosystems.

Continue reading ‘Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification’

Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana

The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.

Continue reading ‘Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana’

Population-specific vulnerability to ocean change in a multistressor environment

Variation in environmental conditions across a species’ range can alter their responses to environmental change through local adaptation and acclimation. Evolutionary responses, however, may be challenged in ecosystems with tightly coupled environmental conditions, where changes in the covariance of environmental factors may make it more difficult for species to adapt to global change. Here, we conduct a 3-month-long mesocosm experiment and find evidence for local adaptation/acclimation in populations of red sea urchins, Mesocentrotus franciscanus, to multiple environmental drivers. Moreover, populations differ in their response to projected concurrent changes in pH, temperature, and dissolved oxygen. Our results highlight the potential for local adaptation/acclimation to multivariate environmental regimes but suggest that thresholds in responses to a single environmental variable, such as temperature, may be more important than changes to environmental covariance. Therefore, identifying physiological thresholds in key environmental drivers may be particularly useful for preserving biodiversity and ecosystem functioning.

Continue reading ‘Population-specific vulnerability to ocean change in a multistressor environment’

Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research

After three decades of coral research on the impacts of climate change, there is a wide consensus on the adverse effects of heat-stress, but the impacts of ocean acidification (OA) are not well established. Using a review of published studies and an experimental analysis, we confirm the large species-specific component of the OA response, which predicts moderate impacts on coral physiology and pigmentation by 2100 (scenario-B1 or SSP2-4.5), in contrast with the severe disturbances induced by only +2 °C of thermal anomaly. Accordingly, global warming represents a greater threat for coral calcification than OA. The incomplete understanding of the moderate OA response relies on insufficient attention to key regulatory processes of these symbioses, particularly the metabolic dependence of coral calcification on algal photosynthesis and host respiration. Our capacity to predict the future of coral reefs depends on a correct identification of the main targets and/or processes impacted by climate change stressors.

Continue reading ‘Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research’

Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community (update)

Ocean alkalinity enhancement (OAE) is a proposed method to counteract climate change by increasing the alkalinity of the surface ocean and thus the chemical storage capacity of seawater for atmospheric CO2. The impact of OAE on marine ecosystems, including phytoplankton communities which make up the base of the marine food web, is largely unknown. To investigate the influence of OAE on phytoplankton communities, we enclosed a natural plankton community from coastal Tasmania for 22 d in nine microcosms during a spring bloom. Microcosms were split into three groups, (1) the unperturbed control, (2) the unequilibrated treatment where alkalinity was increased (+495 ± 5.2 µmol kg−1) but seawater CO2 was not in equilibrium with atmospheric CO2, and (3) the equilibrated treatment where alkalinity was increased (+500 ± 3.2 µmol kg−1) and seawater CO2 was in equilibrium with atmospheric CO2. Both treatments have the capacity to increase the inorganic carbon sink of seawater by 21 %. We found that simulated OAE had significant but generally moderate effects on various groups in the phytoplankton community and on heterotrophic bacteria. More pronounced effects were observed for the diatom community where silicic acid drawdown and biogenic silica build-up were reduced at increased alkalinity. Observed changes in phytoplankton communities affected the temporal trends of key biogeochemical parameters such as the organic matter carbon-to-nitrogen ratio. Interestingly, the unequilibrated treatment did not have a noticeably larger impact on the phytoplankton (and heterotrophic bacteria) community than the equilibrated treatment, even though the changes in carbonate chemistry conditions were much more severe. This was particularly evident from the occurrence and peak of the phytoplankton spring bloom during the experiment, which was not noticeably different from the control. Altogether, the inadvertent effects of increased alkalinity on the coastal phytoplankton communities appear to be rather limited relative to the enormous climatic benefit of increasing the inorganic carbon sink of seawater by 21 %. We note, however, that more detailed and widespread investigations of plankton community responses to OAE are required to confirm or dismiss this first impression.

Continue reading ‘Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community (update)’

Biological responses of the predatory blue crab and its hard clam prey to ocean acidification and low salinity

How ocean acidification (OA) interacts with other stressors is understudied, particularly for predators and prey. We assessed long-term exposure to decreased pH and low salinity on (1) juvenile blue crab Callinectes sapidus claw pinch force, (2) juvenile hard clam Mercenaria mercenaria survival, growth, and shell structure, and (3) blue crab and hard clam interactions in filmed mesocosm trials. In 2018 and 2019, we held crabs and clams from the Chesapeake Bay, USA, in crossed pH (low: 7.0, high: 8.0) and salinity (low: 15, high: 30) treatments for 11 and 10 wk, respectively. Afterwards, we assessed crab claw pinch force and clam survival, growth, shell structure, and ridge rugosity. Claw pinch force increased with size in both years but weakened in low pH. Clam growth was negative, indicative of shell dissolution, in low pH in both years compared to the control. Growth was also negative in the 2019 high-pH/low-salinity treatment. Clam survival in both years was lowest in the low-pH/low-salinity treatment and highest in the high-pH/high-salinity treatment. Shell damage and ridge rugosity (indicative of deterioration) were intensified under low pH and negatively correlated with clam survival. Overall, clams were more severely affected by both stressors than crabs. In the filmed predator-prey interactions, pH did not substantially alter crab behavior, but crabs spent more time eating and burying in high-salinity treatments and more time moving in low-salinity treatments. Given the complex effects of pH and salinity on blue crabs and hard clams, projections about climate change on predator-prey interactions will be difficult and must consider multiple stressors.

Continue reading ‘Biological responses of the predatory blue crab and its hard clam prey to ocean acidification and low salinity’

Effects of the ocean acidification on the functional structure of coral reef nematodes

A mesocosm experiment was designed to study the effects of acidification on the phytal nematofauna of a coral reef. We hypothesized that phytal nematodes are responsive to different seawater acidification levels and that their assemblage structure and functional indicators (combination of maturity index and trophic diversity index) are useful to evaluate the effects of acidification. Artificial substrate units (ASU) were first colonized in a coral reef zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil) to obtain standardized assemblage samples. ASUs were transferred to laboratory and exposed to control and three levels of seawater acidification (pH reduced by 0.3, 0.6 and 0.9 units below field levels) and collected after 15 and 30 d. Contrary to our expectations that acidification may change the taxonomic structure of nematodes, while the functional structure may deviate from the expected under high levels of acidification, we found that univariate functional indicators of the community (index of trophic diversity and maturity index) did not show significant differences between the control and experimental treatments throughout the exposure period. It is probably because the frequent exposure of shallow-water nematodes to rather large environmental variations leads the faunal response to acidification to be complex and subtle. On the other hand, the density of the life-history strategy groups 3 and 4 and the structure of nematode assemblages were significantly affected by different pH levels throughout the exposure period. Both history strategy groups include all kinds of feeding groups. These results suggest that the impact of pH changes predicted by the years 2100 and 2300 may be strong enough to provide different traits or life-history strategies of nematodes to take advantage under changing conditions.

Continue reading ‘Effects of the ocean acidification on the functional structure of coral reef nematodes’

Marine gastropods at higher trophic level show stronger tolerance to ocean acidification

Climate change and anthropogenic activities are producing a range of new selection pressures, both abiotic and biotic, on marine organisms. Although it is known that climate change can differentially affect fitness-related traits at different trophic levels of the food web, it is not clear if different trophic levels will respond via phenotypic plasticity in the form of maintenance of phenotypes in the face of abiotic and biotic environmental stress similarly. To answer this question, we combined a mesocosm experiment (120 days) using a food web comprising three gastropod species from two trophic levels (grazers and meso-predators) and a meta-analysis including 38 studies to address whether different trophic levels exhibit similar phenotypic responses to abiotic and biotic variables. Abiotic (ocean acidification) and biotic (predation) stress significantly influenced body mass, shell mass, shell thickness and shell strength in both grazers and meso-predators in the mesocosm experiment, with the magnitude of OA effects greater on the meso-predator than the grazers; a result supported by the meta-analysis. In contrast, both mesocosm experiment and meta-analysis found that predation risk induced stronger responses in shell morphology for grazers compared to meso-predators. Together, our findings indicate that higher trophic level species are better able to maintain aspects of their phenotype under OA, suggesting that they may show greater tolerance to climate change effects in general, while lower trophic levels express higher levels of plastic inducible defences to maintain function when under threat of predation. By using marine snails as a model, our study provides new knowledge for understanding how changing environmental conditions may alter biological interactions, and increases our understanding of how climate change may affect ecological communities in which gastropods play a key role.

Continue reading ‘Marine gastropods at higher trophic level show stronger tolerance to ocean acidification’

Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: insights and challenges

The influence of global change on Southern Ocean productivity will have major ramifications for future management of polar life. A prior laboratory study investigated the response of a batch-cultured subantarctic diatom to projected change simulating conditions for 2100 (increased temperature/CO2/irradiance/iron; decreased macronutrients), showed a twofold higher chlorophyll-derived growth rate driven mainly by temperature and iron. We translated this design to the field to understand the phytoplankton community response, within a subantarctic foodweb, to 2100 conditions. A 7-d shipboard study utilizing 250-liter mesocosms was conducted in March 2016. The outcome mirrors lab-culture experiments, yielding twofold higher chlorophyll in the 2100 treatment relative to the control. This trend was also evident for intrinsic metrics including nutrient depletion. Unlike the lab-culture study, photosynthetic competence revealed a transient effect in the 2100 mesocosm, peaking on day 3 then declining. Metaproteomics revealed significant differences in protein profiles between treatments by day 7. The control proteome was enriched for photosynthetic processes (c.f. 2100) and exhibited iron-limitation signatures; the 2100 proteome exposed a shift in cellular energy production. Our findings of enhanced phytoplankton growth are comparable to model simulations, but underlying mechanisms (temperature, iron, and/or light) differ between experiments and models. Batch-culture approaches hinder cross-comparison of mesocosm findings to model simulations (the latter are akin to “continuous-culture chemostats”). However, chemostat techniques are problematic to use with mesocosms, as mesozooplankton will evade seawater flow-through, thereby accumulating. Thus, laboratory, field, and modeling approaches reveal challenges to be addressed to better understand how global change will alter Southern Ocean productivity.

Continue reading ‘Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: insights and challenges’

Impact of atmospheric dry deposition of nutrients on phytoplankton pigment composition and primary production in the coastal Bay of Bengal

Atmospheric deposition of pollutants decreases pH and increases the nutrient concentration in the surface water. To examine its impact on coastal phytoplankton composition and primary production, monthly atmospheric aerosol samples were mixed with coastal waters in the microcosm experiments. These experiments suggested that the biomass of Bacillariophyceae, Dinophyceae and Chlorophyceae were increased and primary production of the coastal waters increased by 3 to 19% due to the addition of aeolian nutrients. The increase in primary production displayed significant relation with a concentration of sulphate and nitrate in the atmospheric aerosols suggesting that both decreases in pH and fertilization enhanced primary production. The impact of acidification on primary production was found to be 22%, whereas 78% was contributed by the nutrient increase. The atmospheric pollution is increasing rapidly over the northern Indian Ocean since past two decades due to rapid industrialization. Hence, it is suggested that the impact of atmospheric pollution on the coastal ecosystem must be included in the numerical models to predict possible changes in the coastal ecosystem due to climate change.

Continue reading ‘Impact of atmospheric dry deposition of nutrients on phytoplankton pigment composition and primary production in the coastal Bay of Bengal’

Amino acid nitrogen stable isotopes as biomarkers of coastal phytoplankton assemblages and food web interactions

Marine phytoplankton and zooplankton face rapidly changing environments in the face of global warming and climate change. We investigated the effect of warmer water and lower pH conditions—projected for New Zealand coastal waters at the start of the next century—on both phytoplankton and zooplankton in a 20 d mesocosm experiment to determine whether amino acid stable isotopes could be used as biomarkers of environmental change. We also assessed whether key environmental drivers, such as those linked to climate change, altered the processing of amino acids at the base of the food web. Despite changes in phytoplankton biomass and community composition, we found no significant difference in either particulate organic matter (POM) bulk or amino acid-specific δ15N values, indicating that the trophic status of POM was not significantly influenced by lower pH and warming. Threonine δ15N values were the most sensitive to changes in the phytoplankton community and showed correlations with diatoms (positive) and small flagellates (negative), demonstrating potential as a biomarker for detecting changes related to these phytoplankton groups and thus making threonine a promising indirect indicator of climate change. Finally, δ15NPhe values tracked changes in the lower food web, likely due to faster turnover times, showing its valuable role as a tracer of the nitrogen baseline, even during accelerated metabolism in zooplankton.

Continue reading ‘Amino acid nitrogen stable isotopes as biomarkers of coastal phytoplankton assemblages and food web interactions’

The influence of climate change on marine bacterioplankton communities and greenhouse gases in New Zealand waters

Bacterioplankton communities play a fundamental role in the cycling of carbon and nitrogen in the oceans. Cycling of these nutrients by bacterioplankton also contributes to the production of nitrous oxide and methane, resulting in the oceans being a net source of both these greenhouse gases. Climate change is impacting the oceans through warming and acidification resulting in alteration of planktonic ecosystems, via changes in productivity, biomass, and species composition. The response of marine bacterioplankton communities to the direct effects of ocean warming and lowered pH, and to the indirect effects of changes in phytoplankton and zooplankton, has implications for biogeochemical cycling and therefore the production of nitrous oxide and methane. This thesis investigates the impact of both direct and indirect climate pressures by determining the influence of ocean warming and lowered pH on bacterioplankton and the production of methane and nitrous oxide in New Zealand coastal waters. It also assesses how open ocean bacterioplankton communities and dissolved methane and nitrous oxide are influenced by water mass properties and, in particular, how they may be affected by climate-induced changes in the distribution and abundance of salps, a dominant group of zooplankton.

To determine the impact of lower pH and warming on bacterioplankton community, production and abundance, coastal water was manipulated in three mesocosm experiments to projected future ocean temperature and pH. The experiments ran for 18-21 days using 4000-Litre mesocosms filled with coastal water and associated plankton communities, with pH and temperature continuously regulated. High-throughput sequencing of the 16S rRNA gene was used to determine bacterioplankton community composition and leucine incorporation was used to measure bacterial production during the experiments. Minor but significant increases in alpha diversity were seen under low pH and warming. However, overall results from the mesocosm experiments indicate resilience to ocean warming and low pH in coastal bacterioplankton communities, with no significant impacts on production, abundance or beta-diversity found. Bacterioplankton communities in coastal sites are likely to experience high natural variability, which may result in lack of sensitivity to projected climate change.

Continue reading ‘The influence of climate change on marine bacterioplankton communities and greenhouse gases in New Zealand waters’

Stable adult growth but reduced asexual fecundity in Marginopora vertebralis, under global climate change scenarios

Large benthic foraminifera are an integral component of shallow-water tropical habitats and like many marine calcifiers are susceptible to ocean acidification (OA) and ocean warming (OW). In particular, the prolific Symbiodiniaceae-bearing and high-magnesium calcite Marginopora vertebralis has a low threshold compared to several diatom-bearing and low-magnesium calcite species. In this multi-year mesocosm experiment we tested three RPC 8.5 climate change scenarios (i) present day, (ii) the year 2050, and (iii) 2100. To enable a realistic epiphytic association these experiments were uniquely conducted using natural carbonate substrate, living calcifying alga, and seagrass. In contrast to previous studies, we detected no reduction in surface-area growth under future climate conditions compared with present day conditions. In terms of calcification, M. vertebralis’ epiphytic association to primary producers (i.e., calcifying algae and seagrasses) potentially ameliorates the effects of OA by buffering against declines in boundary layer pH during periods of photosynthesis (i.e., CO2 removal). Importantly for population maintenance, we observed a strong reduction in asexual fecundity under the 2100 scenario. We propose the additional energy needed to maintain growth might be one reason for drastically reduced asexual reproduction. The other possibility could be due to the +2°C temperature increase, which interfered with the environmental synchronization that triggered asexual multiple fission. We conclude that the low levels of reproduction will reduce populations in a high CO2 environment and reduce a valuable source of CaCO3 sediment production.

Continue reading ‘Stable adult growth but reduced asexual fecundity in Marginopora vertebralis, under global climate change scenarios’

Assessing the effects of ocean warming and acidification on the seagrass Thalassia hemprichii

Seagrass beds serve as important carbon sinks, and it is thought that increasing the quantity and quality of such sinks could help to slow the rate of global climate change. Therefore, it will be important to (1) gain a better understanding of seagrass bed metabolism and (2) document how these high-productivity ecosystems are impacted by climate change-associated factors, such as ocean acidification (OA) and ocean warming (OW). A mesocosm-based approach was taken herein in which a tropical, Western Pacific seagrass species Thalassia hemprichii was cultured under either control or OA-simulating conditions; the temperature was gradually increased from 25 to 31 °C for both CO2 enrichment treatments, and it was hypothesized that this species would respond positively to OA and elevated temperature. After 12 weeks of exposure, OA (~1200 ppm) led to (1) increases in underground biomass and root C:N ratios and (2) decreases in root nitrogen content. Rising temperatures (25 to 31 °C) increased the maximum quantum yield of photosystem II (Fv:Fm), productivity, leaf growth rate, decomposition rate, and carbon sequestration, but decreased the rate of shoot density increase and the carbon content of the leaves; this indicates that warming alone does not increase the short-term carbon sink capacity of this seagrass species. Under high CO2 and the highest temperature employed (31 °C), this seagrass demonstrated its highest productivity, Fv:Fm, leaf growth rate, and carbon sequestration. Collectively, then, it appears that high CO2 levels offset the negative effects of high temperature on this seagrass species. Whether this pattern is maintained at temperatures that actually induce marked seagrass stress (likely beginning at 33–34 °C in Southern Taiwan) should be the focus of future research.

Continue reading ‘Assessing the effects of ocean warming and acidification on the seagrass Thalassia hemprichii’

Enhanced silica export in a future ocean triggers global diatom decline

Diatoms account for up to 40% of marine primary production and require silicic acid to grow and build their opal shell3. On the physiological and ecological level, diatoms are thought to be resistant to, or even benefit from, ocean acidification. Yet, global-scale responses and implications for biogeochemical cycles in the future ocean remain largely unknown. Here we conducted five in situ mesocosm experiments with natural plankton communities in different biomes and find that ocean acidification increases the elemental ratio of silicon (Si) to nitrogen (N) of sinking biogenic matter by 17 ± 6 per cent under pCO2 conditions projected for the year 2100. This shift in Si:N seems to be caused by slower chemical dissolution of silica at decreasing seawater pH. We test this finding with global sediment trap data, which confirm a widespread influence of pH on Si:N in the oceanic water column. Earth system model simulations show that a future pH-driven decrease in silica dissolution of sinking material reduces the availability of silicic acid in the surface ocean, triggering a global decline of diatoms by 13–26 per cent due to ocean acidification by the year 2200. This outcome contrasts sharply with the conclusions of previous experimental studies, thereby illustrating how our current understanding of biological impacts of ocean change can be considerably altered at the global scale through unexpected feedback mechanisms in the Earth system.

Continue reading ‘Enhanced silica export in a future ocean triggers global diatom decline’

  • Reset


OA-ICC Highlights

%d bloggers like this: