Posts Tagged 'mesocosms'

Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak

The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

Continue reading ‘Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak’

Seasonal variations of Fucus vesiculosus fertility under ocean acidification and warming in the western Baltic Sea

Ocean warming and acidification may substantially affect the reproduction of keystone species such as Fucus vesiculosus (Phaeophyceae). In four consecutive benthic mesocosm experiments, we compared the reproductive biology and quantified the temporal development of Baltic Sea Fucus fertility under the single and combined impact of elevated seawater temperature and pCO2 (1100 ppm). In an additional experiment, we investigated the impact of temperature (0–25°C) on the maturation of North Sea F. vesiculosus receptacles. A marked seasonal reproductive cycle of F. vesiculosus became apparent in the course of 1 year. The first appearance of receptacles on vegetative apices and the further development of immature receptacles of F. vesiculosus in autumn were unaffected by warming or elevated pCO2. During winter, elevated pCO2 in both ambient and warmed temperatures increased the proportion of mature receptacles significantly. In spring, warming and, to a lesser extent, elevated pCO2 accelerated the maturation of receptacles and advanced the release of gametes by up to 2 weeks. Likewise, in the laboratory, maturation and gamete release were accelerated at 15–25°C relative to colder temperatures. In summary, elevated pCO2 and/or warming do not influence receptacle appearance in autumn, but do accelerate the maturation process during spring, resulting in earlier gamete release. Temperature and, to a much lesser extent, pCO2 affect the temporal development of Fucus fertility. Thus, rising temperatures will mainly shift or disturb the phenology of F. vesiculosus in spring and summer, which may alter and/or hamper its ecological functions in shallow coastal ecosystems of the Baltic Sea.

Continue reading ‘Seasonal variations of Fucus vesiculosus fertility under ocean acidification and warming in the western Baltic Sea’

Effects of elevated CO2 on phytoplankton during a mesocosm experiment in the southern eutrophicated coastal water of China

There is a growing consensus that the ongoing increase in atmospheric CO2 level will lead to a variety of effects on marine phytoplankton and ecosystems. However, the effects of CO2 enrichment on eutrophic coastal waters are still unclear, as are the complex mechanisms coupled to the development of eutrophication. Here, we report the first mesocosm CO2 perturbation study in a eutrophic subtropical bay during summer by investigating the effect of rising CO2 on a model artificial community consisting of well-characterized cultured diatoms (Phaeodactylum tricornutum and Thalassiosira weissflogii) and prymnesiophytes (Emiliania huxleyi and Gephyrocapsa oceanica). These species were inoculated into triplicate 4 m3 enclosures with equivalent chlorophyll a (Chl-a) under present and higher partial pressures of atmospheric CO2 (pCO2 = 400 and 1000 ppmv). Diatom bloom events were observed in all enclosures, with enhanced organic carbon production and Chl-a concentrations under high CO2 treatments. Relative to the low CO2 treatments, the consumption of the dissolved inorganic nitrogen and uptake ratios of N/P and N/Si increased significantly during the bloom. These observed responses suggest more extensive and complex effects of higher CO2 concentrations on phytoplankton communities in coastal eutrophic environments.

Continue reading ‘Effects of elevated CO2 on phytoplankton during a mesocosm experiment in the southern eutrophicated coastal water of China’

Marine microbial gene abundance and community composition in response to ocean acidification and elevated temperature in two contrasting coastal marine sediments

Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2) and elevated temperature (ambient + 4 °C) on the abundance of taxonomic and functional microbial genes. Specific q-PCR primers were used to target archaeal, bacterial and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA) and bacterial nitrite reductase (nirS) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

Continue reading ‘Marine microbial gene abundance and community composition in response to ocean acidification and elevated temperature in two contrasting coastal marine sediments’

Unexpected resilience of a seagrass system exposed to global stressors

Despite a growing interest in identifying tipping points in response to environmental change, our understanding of the ecological mechanisms underlying non-linear ecosystem dynamics is limited. Ecosystems governed by strong species interactions can provide important insight into how non-linear relationships between organisms and their environment propagate through ecosystems, and the potential for environmentally mediated species interactions to drive or protect against sudden ecosystem shifts. Here, we experimentally determine the functional relationships (i.e., the shapes of the relationships between predictor and response variables) of a seagrass assemblage with well-defined species interactions to ocean acidification (enrichment of CO2) in isolation and in combination with nutrient loading. We demonstrate that the effect of ocean acidification on grazer biomass (Phyllaplysia taylori and Idotea resecata) was quadratic, with the peak of grazer biomass at mid-pH levels. Algal grazing was negatively affected by nutrients, potentially due to low grazer affinity for macroalgae (Ulva intestinalis), as recruitment of both macroalgae and diatoms were favored in elevated nutrient conditions. This led to an exponential increase in macroalgal and epiphyte biomass with ocean acidification, regardless of nutrient concentration. When left unchecked algae can cause declines in seagrass productivity and persistence through shading and competition. Despite quadratic and exponential functional relationships to stressors that could cause a non-linear decrease in seagrass biomass, productivity of our model seagrass – the eelgrass (Zostera marina)- remained highly resilient to increasing acidification. These results suggest that important species interactions governing ecosystem dynamics may shift with environmental change, and ecosystem state may be decoupled from ecological responses at lower levels of organization.

Continue reading ‘Unexpected resilience of a seagrass system exposed to global stressors’

Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO2 environment

The effects of global change on biological systems and functioning are already measureable, but how ecological interactions are being altered is poorly understood. Ecosystem resilience is strengthened by ecological functionality, which depends on trophic interactions between key species and resilience generated through biogenic buffering. Climate-driven alterations to coral reef metabolism, structural complexity and biodiversity are well documented, but the feedbacks between ocean change and trophic interactions of non-coral invertebrates are understudied. Sea cucumbers, some of the largest benthic inhabitants of tropical lagoon systems, can influence diel changes in reef carbonate dynamics. Whether they have the potential to exacerbate or buffer ocean acidification over diel cycles depends on their relative production of total alkalinity (AT) through the dissolution of ingested calcium carbonate (CaCO3) sediments and release of dissolved inorganic carbon (CT) through respiration and trophic interactions. In this study, the potential for the sea cucumber, Stichopus herrmanni, a bêche-de-mer (fished) species listed as vulnerable to extinction, to buffer the impacts of ocean acidification on reef carbonate chemistry was investigated in lagoon sediment mesocosms across diel cycles. Stichopus herrmanni directly reduced the abundance of meiofauna and benthic primary producers through its deposit-feeding activity under present-day and near-future pCO2. These changes in benthic community structure, as well as AT (sediment dissolution) and CT (respiration) production by S. herrmanni, played a significant role in modifying seawater carbonate dynamics night and day. This previously unappreciated role of tropical sea cucumbers, in support of ecosystem resilience in the face of global change, is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean.

Continue reading ‘Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO2 environment’

Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO2 and temperature

Global warming and ocean acidification are increasingly affecting coastal ecosystems, with impacts that vary regionally depending upon local biogeography. Ocean acidification drives shifts in seaweed community dominance that depend on interactions with other factors such as light and nutrients. In this study, we investigated the photophysiological responses in the brown macroalgae species Cystoseira tamariscifolia (Hudson) Papenfuss with important structural role in the coastal Mediterranean communities. These algae were collected in the Cabo de Gata-Nijar Natural Park in ultraoligotrophic waters (algae exposed under high irradiance and less nutrient conditions) vs. those collected in the La Araña beach in oligotrophic waters (algae exposed at middle nutrient and irradiance conditions) in the Mediterranean Sea. They were incubated in mesocosms, under two levels of CO2; ambient (400-500 ppm) and high CO2 (1200-1300 ppm), combined with two temperatures (ambient temperature; 20 °C and ambient temperature + 4 °C; 24 °C) and the same nutrient conditions of the waters of the origin of macroalgae. Thalli from two sites on the Spanish Mediterranean coast were significantly affected by increases in pCO2 and temperature. The carotenoids (fucoxanthin, violaxanthin and β-carotene) contents were higher in algae from oligotrophic than that from ultraoligotrophic water, i.e., algae collected under higher nutrient conditions respect to less conditions, increase photoprotective pigments content. Thalli from both locations upregulated photosynthesis (as Fv/Fm) at increased pCO2 levels. Our study shows that ongoing ocean acidification and warming can increase photoprotection and photosynthesis in intertidal macroalgae.

Continue reading ‘Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO2 and temperature’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,018,757 hits


Ocean acidification in the IPCC AR5 WG II

OUP book