Posts Tagged 'mesocosms'

Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem

The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.

Continue reading ‘Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem’

Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: a multiple biomarker approach


• Copper increased bleaching, respiration and inhibited calcification-related enzymes.

• Thermal stress was the main driver of mortality.

• Relative tolerance to climate change scenario (ocean warming + acidification).

• Integrated biomarker response related more to co-exposures than isolated biomarkers.

• Integrated analysis showed higher stress under climate change + copper condition.


Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the ‘stress index’ IBR (Integrated Biomarker Response) – indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.

Continue reading ‘Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: a multiple biomarker approach’

Sensitivities to global change drivers may correlate positively or negatively in a foundational marine macroalga

Ecological impact of global change is generated by multiple synchronous or asynchronous drivers which interact with each other and with intraspecific variability of sensitivities. In three near-natural experiments, we explored response correlations of full-sibling germling families of the seaweed Fucus vesiculosus towards four global change drivers: elevated CO2 (ocean acidification, OA), ocean warming (OW), combined OA and warming (OAW), nutrient enrichment and hypoxic upwelling. Among families, performance responses to OA and OW as well as to OAW and nutrient enrichment correlated positively whereas performance responses to OAW and hypoxia anti-correlated. This indicates (i) that families robust to one of the three drivers (OA, OW, nutrients) will also not suffer from the two other shifts, and vice versa and (ii) families benefitting from OAW will more easily succumb to hypoxia. Our results may imply that selection under either OA, OW or eutrophication would enhance performance under the other two drivers but simultaneously render the population more susceptible to hypoxia. We conclude that intraspecific response correlations have a high potential to boost or hinder adaptation to multifactorial global change scenarios.

Continue reading ‘Sensitivities to global change drivers may correlate positively or negatively in a foundational marine macroalga’

Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures


• The combined effect of OA and rising temperatures stimulated the growth of macroalgae.

• OA resulted in higher coral calcification rates when corals were co-incubated with seagrass.

• Macroalgal growth was lower in seagrass-containing mesocosms.

• Coral and macroalgal, but not seagrass, growth suffered at 31°C under OA conditions.

• Seagrass helped to stabilize the system’s metabolism in response to projected climate change stressors.


Ocean acidification (OA) and warming currently threaten coastal ecosystems across the globe. However, it is possible that the former process could actually benefit marine plants, such as seagrasses. The purpose of this study was to examine whether the effects of the seagrass Thalassia hemprichii can increase the resilience of OA-challenged coral reef mesocosms whose temperatures were gradually elevated. It was found that shoot density, photosynthetic efficiency, and leaf growth rate of the seagrass actually increased with rising temperatures under OA. Macroalgal growth rates were higher in the seagrass-free mesocosms, but the calcification rate of the model reef coral Pocillopora damicornis was higher in coral reef mesocosms featuring seagrasses under OA condition at 25 and 28°C. Both the macroalgal growth rate and the coral calcification rate decreased in all mesocosms when the temperature was raised to 31°C under OA conditions. However, the variation in gross primary production, ecosystem respiration, and net ecosystem production in the seagrass mesocosms was lower than in seagrass-free controls, suggesting that the presence of seagrass in the mesocosms helped to stabilize the metabolism of the system in response to simulated climate change.

Continue reading ‘Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures’

Application of stable carbon isotopes in a subtropical North Atlantic mesocosm study: a new approach to assess CO2 effects on the marine carbon cycle

Stable isotope ratio analysis offers a unique opportunity to obtain information on ecosystem processes. The increase in atmospheric CO2 as a consequence of fossil fuel combustion and land-use change is altering the stable carbon isotope composition (δ13C) of the atmosphere and ocean. This work investigates the application of using δ13C measurements of seawater samples to explore the biogeochemical responses of marine ecosystems to anthropogenic CO2 perturbations. The combination of isotopic and non-isotopic measurements from a subtropical North-Atlantic mesocosm experiment provided a holistic view of the biogeochemical mechanisms that affect carbon dynamics under a gradient of pCO2 ranging from ~350 up to ~1,000 μatm during a phytoplankton succession. A clear CO2 response was detected in the isotopic datasets with 13C shifts of up to ~5%0, but increased CO2 levels only had a subtle effect on the concentrations of the dissolved and particulate organic carbon pools. Distinctive δ13C signatures of the particulate organic carbon pools in the water column and sediment traps were detectable for the different CO2 treatments after a nutrient stimulated phytoplankton bloom. These signatures were strongly correlated (p 0.05). Fractionation of carbon isotopes in phytoplankton was positively affected (9.6 < ε < 16.5%0) by high CO2 levels either because of the higher CO2 availability or because of a shift in phytoplankton community composition. Nevertheless, phytoplankton bloom intensity and development was independent of CO2 concentrations, and higher CO2 levels had no significant effect on inorganic nutrient uptake. Results from this mesocosm experiment showed that variations in the carbon isotopic signature of the carbon pools depend on both physical (air-sea exchange) and biological (community composition) drivers opening the door to new approaches for investigations of carbon cycling in marine ecosystems.

Continue reading ‘Application of stable carbon isotopes in a subtropical North Atlantic mesocosm study: a new approach to assess CO2 effects on the marine carbon cycle’

Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13C), previously exposed to elevated CO2, were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short‐term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft‐sediment systems.

Continue reading ‘Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments’

Restoring the flat oyster Ostrea angasi in the face of a changing climate

Across the globe, restoration efforts are stemming the loss of native oyster reefs and the ecosystem services they provide, but these efforts will need to consider climate change in order to be sustainable. South-eastern Australia is the focus of restoring the once abundant oyster Ostrea angasi. This region is also a climate change ‘hot spot’ where the ocean is warming rapidly, with the potential to be exacerbated by marine heatwaves and coastal acidification. In this study, the impact of near-future (~2050) elevated temperature and pCO2 on O. angasi was determined and considered in context with concerns for the long-term sustainability of oyster reef restoration efforts. Oysters were exposed to ambient and elevated pCO2 concentrations (mean ± SE: 408 ± 19.8 and 1070 ± 53.4 µatm) and ambient and elevated temperatures (22.78 ± 0.17 and 25.73 ± 0.21°C) for 10 wk in outdoor flow-through mesocosms. Shell growth, condition index, standard metabolic rate (SMR), extracellular pH and survival were measured. Elevated temperature caused high mortality (36%) and decreased the condition of oysters (33%). Elevated pCO2 increased SMR almost 4-fold and lowered the extracellular pH of O. angasi by a mean 0.29 pH units. In combination, elevated pCO2 and temperature ameliorated effects on SMR and survivorship of oysters. O. angasi appears to be living near the limits of its thermal tolerance. Restoration projects will need to account for the temperature sensitivity of this species and its changing habitat to ‘climate proof’ long-term restoration efforts.

Continue reading ‘Restoring the flat oyster Ostrea angasi in the face of a changing climate’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,300,228 hits


Ocean acidification in the IPCC AR5 WG II

OUP book