Posts Tagged 'mesocosms'

Effects of CO2-driven acidification of seawater on the calcification process in the calcareous hydrozoan Millepora alcicornis (Linnaeus, 1758)

Ocean acidification is expected to intensify due to increasing levels in the partial pressure of atmospheric CO2 (pCO2). This could negatively affect major calcifying reef organisms. In this study, the effects of different levels of CO2-driven acidification of seawater (control: pH 8.1; moderate: pH 7.8; intermediate: pH 7.5; and severe: pH 7.2) on the net calcification rate and activity of enzymes related to the calcification process (Ca-ATPase and carbonic anhydrase) were evaluated in the calcareous hydrozoan Millepora alcicornis. The experiment was run for 30 d using a marine mesocosm system. Net calcification ratio was significantly reduced in hydrocorals exposed to intermediate seawater acidification for 16 d and to severe seawater acidification for 16 d or 30 d, compared to animals at control conditions. However, only hydrocorals exposed to severe seawater acidification showed lower net calcification rates than those exposed to control conditions for 30 d. In accordance, the activities of enzymes involved in the calcification process markedly increased in hydrocorals exposed to reduced pH. Ca-ATPase seemed to be more sensitive to seawater acidification than carbonic anhydrase as it increased in hydrocorals exposed to intermediate and severe seawater acidification for 30 d, while carbonic anhydrase activity was only stimulated under severe seawater acidification. Therefore, our findings clearly show that the hydrocoral M. alcicornis is able to cope, to some extent, with long-term CO2-driven acidification of seawater (pH ≥ 7.5). In addition, they show that Ca-ATPase plays a key role in the maintenance of calcification rate under scenarios of moderate and intermediate levels of seawater acidification. However, the observed increase in Ca-ATPase and carbonic anhydrase activity was not enough to compensate for the effects of CO2-driven reduction in seawater pH on the net calcification rate of the hydrocoral M. alcicornis under a scenario of severe ocean acidification (pH 7.2).

Continue reading ‘Effects of CO2-driven acidification of seawater on the calcification process in the calcareous hydrozoan Millepora alcicornis (Linnaeus, 1758)’

Simulated ocean acidification reveals winners and losers in coastal phytoplankton

The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

Continue reading ‘Simulated ocean acidification reveals winners and losers in coastal phytoplankton’

Species interactions can shift the response of a maerl bed community to ocean acidification and warming (update)

Predicted ocean acidification and warming are likely to have major implications for marine organisms, especially marine calcifiers. However, little information is available on the response of marine benthic communities as a whole to predicted changes. Here, we experimentally examined the combined effects of temperature and partial pressure of carbon dioxide (pCO2) increases on the response of maerl bed assemblages, composed of living and dead thalli of the free-living coralline alga Lithothamnion corallioides, epiphytic fleshy algae, and grazer species. Two 3-month experiments were performed in the winter and summer seasons in mesocosms with four different combinations of pCO2 (ambient and high pCO2) and temperature (ambient and +3 °C). The response of maerl assemblages was assessed using metabolic measurements at the species and assemblage scales. This study suggests that seasonal variability represents an important driver influencing the magnitude and the direction of species and community response to climate change. Gross primary production and respiration of assemblages was enhanced by high pCO2 conditions in the summer. This positive effect was attributed to the increase in epiphyte biomass, which benefited from higher CO2 concentrations for growth and primary production. Conversely, high pCO2 drastically decreased the calcification rates in assemblages. This response can be attributed to the decline in calcification rates of living L. corallioides due to acidification and increased dissolution of dead L. corallioides. Future changes in pCO2 and temperature are likely to promote the development of non-calcifying algae to the detriment of the engineer species L. corallioides. The development of fleshy algae may be modulated by the ability of grazers to regulate epiphyte growth. However, our results suggest that predicted changes will negatively affect the metabolism of grazers and potentially their ability to control epiphyte abundance. We show here that the effects of pCO2 and temperature on maerl bed communities were weakened when these factors were combined. This underlines the importance of examining multi-factorial approaches and community-level processes, which integrate species interactions, to better understand the impact of global change on marine ecosystems.

Continue reading ‘Species interactions can shift the response of a maerl bed community to ocean acidification and warming (update)’

Assessing the consequences of environmental impacts: variation in species responses has unpredictable functional effects

Many biological processes underpin ecosystem functioning and health. Determining changes in these processes following disturbance is crucial in assessing the wider impacts on ecosystem function and ultimately ecosystem services. Whilst the focus is often on whether disturbance drives changes in ecosystem function through mortality, sub-lethal effects on the physiology and behaviour of organisms may also have cascading effects on ecosystem processes, functions and services. In this mesocosm study, we investigated the effects of a severe short-term exposure (8 d) to a simulated environmental impact—a leak of a subsea geological CO2 capture and storage reservoir—on key biological processes (bioturbation), an ecosystem function (nutrient cycling) and on the functional group composition for 7 common benthic invertebrate species. We statistically allocated species to functional effect groups based on their measured functional effect relative to other species. Following exposure, we observed behavioural responses driving changes in bioturbation for several species and altered nutrient cycling. Responses were species specific and resulted in shifts in functional effect group composition for some key nutrients (nitrate and silicate). We show that the allocation of species to functional groups by measuring specified ecosystem processes and functions can change following environmental perturbations. This implies that whilst biodiversity and ecosystem functioning are intricately linked, maintaining species identities and abundances after environmental perturbation is no guarantee to maintaining ecosystem functions, as species alter their rate and mode of activity following an environmental stress.

Continue reading ‘Assessing the consequences of environmental impacts: variation in species responses has unpredictable functional effects’

Environmental controls on modern scleractinian coral and reef-scale calcification

Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.

Continue reading ‘Environmental controls on modern scleractinian coral and reef-scale calcification’

The fatty acid content of plankton is changing in subtropical coastal waters as a result of OA: results from a mesocosm study

Highlights

• First mesocosm experiment to investigate OA impacts on fatty acids profiles of plankton in subtropical coastal waters.
• Contents of total FA, PUFA, and MUFA of phytoplankton increased at late exponential phase under high pCO2 condition.
• Mesozooplankton grazing rate decreased, while DHA uptake rate increased under high pCO2 condition.

Abstract

Ocean Acidification (OA) effects on marine plankton are most often considered in terms of inorganic carbon chemistry, but decreasing pH may influence other aspects of cellular metabolism. Here we present the effects of OA on the fatty acid (FA) content and composition of an artificial phytoplankton community (Phaeodactylum tricornutum, Thalassiosira weissflogii, and Emiliania huxleyi) in a fully replicated, ∼4 m3 mesocosm study in subtropical coastal waters (Wuyuan Bay, China, 24.52°N, 117.18°E) at present day (400 μatm) and elevated (1000 μatm) pCO2 concentrations. Phytoplankton growth occurred in three phases during the 33-day experiment: an initial exponential growth leading to senescence and a subsequent decline phase. Phytoplankton sampled from these mesocosms were fed to mesozooplankton collected by net haul from Wuyuan Bay. Concentrations of saturated fatty acids (SFA) in both phytoplankton and mesozooplankton remained high under acidified and non-acidified conditions. However, polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) increased significantly more under elevated pCO2 during the late exponential phase (Day 13), indicating increased nutritional value for zooplankton and higher trophic levels. Indeed, uptake rates of the essential FA docosahexaenoic acid (C20:5n3, DHA) increased in mesozooplankton under acidified conditions. However, mesozooplankton grazing rates decreased overall with elevated pCO2. Our findings show that these selected phytoplankton species have a relatively high tolerance to acidification in terms of FA production, and local mesozooplankton in these subtropical coastal waters can maintain their FA composition under end of century ocean acidification conditions.

Continue reading ‘The fatty acid content of plankton is changing in subtropical coastal waters as a result of OA: results from a mesocosm study’

Structural and physiological responses of Halodule wrightii to ocean acidification

Coastal areas face high variability of seawater pH. Ocean acidification (OA) and local stressors are enhancing this variability, which poses a threat to marine life. However, these organisms present potential phenotypic plasticity that can offer physiological and structural tools to survive in these extreme conditions. In this study, we evaluated the effects of elevated CO2 levels and consequent pH reduction on the physiology, anatomy and ultrastructure of the seagrass Halodule wrightii. A mesocosm study was conducted in an open system during a 30-day experiment, where different concentrations of CO2 were simulated following the natural variability observed in coastal reef systems. This resulted in four experimental conditions simulating the (i) environmental pH (control condition, without CO2 addition) and (ii) reduced pH by − 0.3 units, (iii) − 0.6 units and (iv) − 0.9 units, in relation to the field condition. The evaluated population only suffered reduced optimum quantum yield (Y(II)), leaf width and cross-section area under the lowest CO2 addition (− 0.3 pH units) after 30 days of experiment. This fitness commitment should be related to carbon concentration mechanisms present in the evaluated species. For the highest CO2 level, H. wrightii demonstrated a capacity to compensate any negative effect of the lowest pH. Our results suggest that the physiological behaviour of this primary producer is driven by the interactions among OA and environmental factors, like irradiance and nutrient availability. The observed behaviour highlights that high-frequency pH variability and multifactorial approaches should be applied, and when investigating the impact of OA, factors like irradiance, nutrient availability and temperature must be considered as well.

Continue reading ‘Structural and physiological responses of Halodule wrightii to ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,045,898 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book