Posts Tagged 'mesocosms'

Plastic response of the oyster Ostrea chilensis to temperature and pCO2 within the present natural range of variability

Estuaries are characterized by high fluctuation of their environmental conditions. Environmental parameters measured show that the seawater properties of the Quempillén estuary (i.e. temperature, salinity, pCO2, pH and ΩCaCO3) were highly fluctuating and related with season and tide. We test the effects of increasing temperature and pCO2 in the seawater on the physiological energetics of the bivalve Ostrea chilensis. Juvenile oysters were exposed to an orthogonal combination of three temperatures (10, 15, and 20°C) and two pCO2 levels (~400 and ~1000 μatm) for a period of 60 days to evaluate the temporal effect (i.e. 10, 20, 30, 60 days) on the physiological rates of the oysters. Results indicated a significant effect of temperature and time of exposure on the clearance rate, while pCO2 and the interaction between pCO2 and the other factors studied did not show significant effects. Significant effects of temperature and time of exposure were also observed on the absorption rate, but not the pCO2 nor its interaction with other factors studied. Oxygen consumption was significantly affected by pCO2, temperature and time. Scope for growth was only significantly affected by time; despite this, the highest values were observed for individuals subject to to 20°C and to ~1000 μatm pCO2. In this study, Ostrea chilensis showed high phenotypic plasticity to respond to the high levels of temperature and pCO2 experienced in its habitat as no negative physiological effects were observed. Thus, the highly variable conditions of this organism’s environment could select for individuals that are more resistant to future scenarios of climate change, mainly to warming and acidification.

Continue reading ‘Plastic response of the oyster Ostrea chilensis to temperature and pCO2 within the present natural range of variability’

Regional and species level responses of Scleractinian corals under global change within the Caribbean Sea

Human-induced global change has caused rapid increases in ocean temperature (warming) and declines in seawater pH (acidification), and are expected to have negative impacts on tropical reef-building corals globally. Abnormally high seawater temperatures disrupt the symbiosis between corals and their algal endosymbiont in a process known as ‘coral bleaching.’ During such bleaching events, calcification rates decline and physiological processes deteriorate. Additionally, corals rely heavily on elevated seawater pH in order to support and maintain production of their calcium carbonate skeletons. Together, changes in ocean temperatures and seawater pH pose serious threats to coral reefs, foundational ecosystems that provide habitat for countless essential fisheries, while also acting as natural buffers from storms and providing major economic support for tropical coastal communities. Identifying how these global scale stressors impact Caribbean coral reefs is critical in understanding community composition and coral abundance on future reefs. This dissertation employs an interdisciplinary suite of techniques to assess the impacts of ocean acidification and warming on the growth and physiology of Caribbean corals to improve understandings of the responses of coral under projected global change, and provide a framework for similar future studies. Through the use of a meta-analysis (Chapter 1), I identified trends in coral calcification throughout the Greater Caribbean Sea in response to experimental ocean acidification and warming, and performed quantitative assessment of experimental design effects on coral calcification rates. I then conducted a 93- day simulated ocean acidification and warming mesocosm experiment to identify growth (Chapter 2, 4) and physiological (Chapter 3) responses of several species of common Caribbean corals. The results from this work highlight the diversity of responses of Caribbean corals to projected global change at individual and species levels, as well as between the coral host and algal endosymbiont. Overall, the variation in growth and physiological responses of these important Caribbean coral species under ocean acidification and warming is critical in predicting the future ‘winners’ and ‘losers’ of Caribbean reefs as global change unfolds.

Continue reading ‘Regional and species level responses of Scleractinian corals under global change within the Caribbean Sea’

Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios


•Calcifying algae were exposed to herbicide and future climate scenarios combined.

•Half of the algae were given long acclimation to future climate-change conditions.

•Experimental effects were exaggerated for algae that were not acclimated.

•Still, herbicide effects on acclimated algae stronger in future climate conditions

•Results show the need of climate-adjusted thresholds for water quality guidelines.


Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 μg L−1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm′), photosynthesis and calcification in future climate scenarios were significantly stronger (by −24, −46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm′, while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering ‘climate adjusted thresholds’. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.

Continue reading ‘Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios’

Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments


•SWAc impacts on sperm physiology in the M. galloprovincialis after paternal exposure.

•Microcosm and in situ transplant experiment were set up and compared.

•Several sperm quality parameters were analyzed at different exposure times.

•Paternal SWAc exposure affects sperm motility, morphology, mitochondria and pHi.

•Microcosm experiments allowed to explore mechanism underlying responses to SWAc.


The ongoing increase of CO2 in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species’ survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.

Continue reading ‘Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments’

The influence of plastic pollution and ocean change on detrital decomposition


•The combined effects of plastic pollution, ocean warming, and acidification on macrophyte decomposition were tested.

•High quantities of plastic slowed the decomposition of seagrass and kelp.

•Ocean warming increased the decomposition rates of seagrass and kelp.

•Ocean acidification did not significantly influence macrophyte decomposition.

•Reducing plastic pollution and CO2 emissions is likely the best approach for preserving detritus-based ecosystem processes.


Plastic pollution and ocean change have mostly been assessed separately, missing potential interactions that either enhance or reduce future impacts on ecosystem processes. Here, we used manipulative experiments with outdoor mesocosms to test hypotheses about the interactive effects of plastic pollution, ocean warming and acidification on macrophyte detrital decomposition. These experiments focused on detritus from kelp, Ecklonia radiata, and eelgrass, Zostera muelleri, and included crossed treatments of (i) no, low and high plastic pollution, (ii) current/future ocean temperatures, and (iii) ambient/future ocean partial pressure of carbon dioxide (pCO2). High levels of plastic pollution significantly reduced the decomposition rate of kelp and eelgrass by approximately 27% and 36% in comparison to controls respectively. Plastic pollution also significantly slowed the nitrogen liberation from seagrass and kelp detritus. Higher seawater temperatures significantly increased the decomposition rate of kelp and eelgrass by 12% and 5% over current conditions, respectively. Higher seawater temperatures were also found to reduce the nitrogen liberation in eelgrass. In contrast, ocean acidification did not significantly influence the rate of macrophyte decomposition or nutrient liberation. Overall, our results show how detrital processes might respond to increasing plastic pollution and ocean temperatures, which has implications for detrital-driven secondary productivity, nutrient dynamics and carbon cycling.

Continue reading ‘The influence of plastic pollution and ocean change on detrital decomposition’

The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions

Bull kelp (Nereocystis leutkeana) forests along the coast for northern California have decreased dramatically as a result of a ‘perfect storm’ of multiple environmental stressors. The disappearance of a predatory sea star and subsequent increase in purple sea urchins (Strongylocentrotus purpuratus) and the recurrence of marine heat waves have caused these once diverse ecosystems to be rapidly converted into relative species-depauperate urchin barrens. By examining the interactive effects of both a rapidly changing abiotic environment and the increase in urchin grazing pressure that is affecting this vital ecosystem, we can better understand its ultimate fate and make better-informed decisions to manage and protect it. As once large and persistent kelp forests are converted into fragmented landscapes of small kelp patches, kelp’s ability to take up dissolved inorganic carbon and reduce nearby acidity and increase both dissolved oxygen and bio-available calcium carbonate may be reduced, preventing it from serving as an environmental stress-free ‘oasis’ of reduced environmental stresses for local marine organisms and affecting ecosystem dynamics. In my first chapter, I examined whether small, fragmented kelp patches are able to retain their ability to alter local seawater chemistry to the same extent a large persistent kelp forests that have been studied previously. I found that in the canopies of small kelp patches, multiple parameters of carbonate chemistry fluctuated more than in the kelp benthos and in adjacent urchin barrens, consistent with metabolic activity by the kelp. Further, kelp fragments increased pH and aragonite saturation and decreased pCO2 during the day to a similar degree as large, intact kelp forests. These results suggest that small kelp patches could mitigate OA stress during the day and serve as spatial and temporal refugia for canopy-dwelling organisms. I also found that the benthic environment in kelp forests and adjacent urchin barrens is subject to unbuffered decreases in temperature, dissolved oxygen and pH. Thus, in chapter two, I assessed how current-day and future-predicted fluctuations in the duration and magnitude of these upwelling-associated stressors would impact the grazing, growth, and survivorship of purple urchins from kelp forest and urchin barren habitats. With upwelling predicted to increase in both intensity and duration with global climate change, understanding whether urchins from different habitats are differentially affected by upwelling-related stressors will give insight into how current and future stressors may be able to help ‘tip the scales’ and convert the increasing number of urchin barrens back into healthy productive kelp forests. I found condition-dependent susceptibility in urchins to increased magnitude and duration upwelling-related stressors. Grazing and gonadal development in kelp forest urchins was most negatively affected by distant future upwelling conditions, whereas in urchin barren urchins, grazing and survival were sensitive to exposure to upwelling in general, and also to increase in magnitudes of acidity, hypoxia, and temperature across both upwelling and non-upwelling events in the future. These results have important implications for population dynamics of urchins and their interactions with bull kelp, which could strongly affect ecosystem dynamics and transitions between kelp forests and urchin barrens. Taken together, the two chapters my thesis provide valuable insight into the potential resilience of bull kelp, a critical foundation species in northeastern Pacific coastal habitats, in the face of a rapidly changing multi-stressor environment.

Continue reading ‘The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions’

Ocean warming increases availability of crustacean prey via riskier behavior

Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species.

Continue reading ‘Ocean warming increases availability of crustacean prey via riskier behavior’

Responses of oysters to a changing climate in southeast Australia

Securing economically and ecologically significant oyster species, as our oceans warm and acidify from climate change, is a priority. Native oysters along the southeast coast of Australia will be particularly vulnerable to ocean change due the strengthening of the East Australian Current. Oysters form complex aggregations and reef structures which provide ecosystem services and habitat for several species in coastal and estuarine areas. The Sydney rock oyster Saccostrea glomerata and flat oyster Ostrea angasi are two native species with overlapping distribution in the state of New South Wales (NSW). Currently, both species are commercially cultivated and restoration projects are in progress in southern states. The overall aim of this thesis was to determine the impact of climate change stressors (warming and acidification) on these species to support their persistence and oyster reef restoration as anthropogenic actions modify our oceans. To detect effects of stressors in the capacity of energy gain through feeding, a laboratory experiment was done to evaluate responses of S. glomerata. Oysters responded to stressors by increasing standard metabolic rates (SMR), clearance, ingestion and absorption rates. Such responses suggest that climate change will alter feeding and metabolism of S. glomerata. To predict species responses to changing climate, experiments need to approximate conditions relevant to the region and species natural habitat. It was also investigated the impact of elevated temperature and pCO2 on O. angasi using outdoor flow through mesocosms in Sydney Harbour, NSW. Elevated temperature caused high mortality and decreased the condition of oysters. Elevated pCO2 increased SMR almost four-fold and lowered the extracellular pH. Based on these responses, Ostrea angasi will be living near the limits of its thermal tolerance as climate change worsen by 2050. The potential pathways oysters will use to cope and acclimate to climate change may “climate proof” aquaculture species and ensure reef restoration efforts. An experimental study was done where both species, O. angasi and S. glomerata, were given a mild dose of thermal stress in the laboratory (“stress inoculation”) and then transferred and exposed to warm seawater at Lake Macquarie, NSW for seven months. Shell growth, condition index, lipid content and survival of O. angasi and condition of S. glomerata were all significantly reduced by warming. Overall, in this thesis, S. glomerata were more resilient in their response to elevated pCO2 and temperature. Ostrea angasi had the greatest vulnerability to warming, which may be ameliorated by elevated pCO2. If we are to secure the great benefits oysters bring to coastal ecosystems, we need realistic experiments to predict their responses to climate change stressors. This thesis findings reinforce that project managers need to consider the current and future climate change in sustaining oyster reef restoration.

Continue reading ‘Responses of oysters to a changing climate in southeast Australia’

Differential gene expression patterns related to lipid metabolism in response to ocean acidification in larvae and juveniles of Atlantic cod


•Larvae upregulate genes associated with fatty acid and glycogen synthesis under moderate ocean acidification (OA)

•Larvae under high levels of OA fail to regulate

•Dysfunctional metabolism and stress associated with pathologies in internal organs

•Juveniles do not differentially regulate genes under OA, associated with higher resilience and lack of physiological response to OA as a stressor at this stage


Elevated environmental carbon dioxide (pCO2) levels have been found to cause organ damage in the early life stages of different commercial fish species, including Atlantic cod (Gadus morhua). To illuminate the underlying mechanisms causing pathologies in the intestines, the kidney, the pancreas and the liver in response to elevated pCO2, we examined related gene expression patterns in Atlantic cod reared for two months under three different pCO2 regimes: 380 μatm (control), 1800 μatm (medium) and 4200 μatm (high). We extracted RNA from whole fish sampled during the larval (32 dph) and early juvenile stage (46 dph) for relative expression analysis of 18 different genes related to essential metabolic pathways. At 32 dph, larvae subjected to the medium treatment displayed an up-regulation of genes mainly associated with fatty acid and glycogen synthesis (GYS2, 6PGL, ACoA, CPTA1, FAS and PPAR1b). Larvae exposed to the high pCO2 treatment upregulated fewer but similar genes (6PGL, ACoA and PPAR1b,). These data suggest stress-induced alterations in the lipid and fatty acid metabolism and a disrupted lipid homeostasis in larvae, providing a mechanistic link to the findings of lipid droplet overload in the liver and organ pathologies. At 46 dph, no significant differences in gene expression were detected, confirming a higher resilience of juveniles in comparison to larvae when exposed to elevated pCO2 up to 4200 μatm.

Continue reading ‘Differential gene expression patterns related to lipid metabolism in response to ocean acidification in larvae and juveniles of Atlantic cod’

Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels

In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Φ), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Φ/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Φ/chl-a values below 2.5 μL O2 h−1 (μg chl-a)−1 indicated a community dominated by photoautotrophs. When Φ/chl-a ranged higher, between 2.5 and 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Φ/chl-a rose above 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a community where microzooplankton proliferated (>10.0 μL O2 h−1 (μg chl-a)−1), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Φ, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between Φ and pCO2 during Phase II [α = 230·10−5 μL O2 h−1 L−1 (μatm CO2)−1 (phase-day)−1, R2 = 0.30] and between chl-a and pCO2 during Phase III [α = 100·10−5 μg chl-a L−1 (μ atmCO2)−1 (phase-day)−1, R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the Φ/chl-a ratio [4.1 ± 1.5 μL O2 h−1 (μg chl-a)−1] was more similar to the Φ/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.

Continue reading ‘Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,357,954 hits


Ocean acidification in the IPCC AR5 WG II

OUP book