Posts Tagged 'mesocosms'

Influence of acidification and warming of seawater on biofouling by bacteria grown over API 5L steel

The acidification and warming of seawater have several impacts on marine organisms, including over microorganisms. The influence of acidification and warming of seawater on biofilms grown on API 5L steel surfaces was evaluated by sequencing the 16S ribosomal gene. For this, three microcosms were designed, the first simulating the natural marine environment (MCC), the second with a decrease in pH from 8.1 to 7.9, and an increase in temperature by 2 °C (MMS), and the third with pH in around 7.7 and an increase in temperature of 4 °C (MES). The results showed that MCC was dominated by the Gammaproteobacteria class, mainly members of the Alteromonadales Order. The second most abundant group was Alphaproteobacteria, with a predominance of Rhodobacterales and Oceanospirillales. In the MMS system there was a balance between representatives of the Gammaproteobacteria and Alphaproteobacteria classes. In MES there was an inversion in the representations of the most prevalent classes previously described in MCC. In this condition, there was a predominance of members of the Alphaproteobacteria Class, in contrast to the decrease in the abundance of Gammaproteobacteria members. These results suggest that possible future climate changes may influence the dynamics of the biofouling process in surface metals.

Continue reading ‘Influence of acidification and warming of seawater on biofouling by bacteria grown over API 5L steel’

Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study

The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.

Continue reading ‘Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study’

Influence of ocean acidification and warming on DMSP & DMS in New Zealand coastal water

The cycling of the trace gas dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) may be affected by future ocean acidification and warming. DMSP and DMS concentrations were monitored over 20-days in four mesocosm experiments in which the temperature and pH of coastal water were manipulated to projected values for the year 2100 and 2150. This had no effect on DMSP in the two-initial nutrient-depleted experiments; however, in the two nutrient-amended experiments, warmer temperature combined with lower pH had a more significant effect on DMSP & DMS concentrations than lower pH alone. Overall, this indicates that future warming may have greater influence on DMS production than ocean acidification. The observed reduction in DMSP at warmer temperatures was associated with changes in phytoplankton community and in particular with small flagellate biomass. A small decrease in DMS concentration was measured in the treatments relative to other studies, from −2% in the nutrient-amended low pH treatment to −16% in the year 2150 pH and temperature conditions. Temporal variation was also observed with DMS concentration increasing earlier in the higher temperature treatment. Nutrient availability and community composition should be considered in models of future DMS.

Continue reading ‘Influence of ocean acidification and warming on DMSP & DMS in New Zealand coastal water’

Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach

The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3 assimilation, and enhanced expression of metabolic-genes involved in the NO3 and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3 and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change.

Continue reading ‘Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach’

Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming


Mesocosm was conducted to evaluate bloom potential of U. ohnoi in the future ocean.

Bloom potential was higher in ocean acidification with improved C and N metabolism.

Positive metabolic change in ocean acidification were offset by elevated temperature.

The bloom potential decreases when acidification and warming are combined.


The occurrence of green-tides, whose bloom potential may be increased by various human activities and biogeochemical process, results in enormous economic losses and ecosystem collapse. In this study, we investigated the ecophysiology of the subtropical green-tide forming alga, Ulva ohnoi complex (hereafter: U. ohnoi), under simulated future ocean conditions in order to predict its bloom potential using photosynthesis and growth measurements, and stable isotope analyses. Our mesocosm system included four experimental conditions that simulated the individual and combined effects of elevated CO2 and temperature, namely control (450 μatm CO2 & 20oC), acidification (900 μatm CO2 & 20oC), warming (450 μatm CO2 & 25oC), and greenhouse (900 μatm CO2 & 25oC). Photosynthetic electron transport rates (rETR) increased significantly under acidification conditions, but net photosynthesis and growth were not affected. In contrast, rETR, net photosynthesis, and growth all decreased significantly under elevated temperature conditions (i.e. both warming and greenhouse). These results represent the imbalance of energy metabolism between electron transport and O2 production that may be expected under ocean acidification conditions. This imbalance appears to be related to carbon and nitrogen assimilation by U. ohnoi. In particular, 13C and 15N discrimination data suggest U. ohnoi prefers CO2 and NH4+ over HCO3 and NO3 as sources of carbon and nitrogen, respectively, and this results in increased N content in the thallus under ocean acidification conditions. Together, our results suggest a trade-off in which the bloom potential of U. ohnoi could increase under ocean acidification due to greater N accumulation and through the saving of energy during carbon and nitrogen metabolism, but that elevated temperatures could decrease U. ohnoi’s bloom potential through a decrease in photosynthesis and growth.

Continue reading ‘Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming’

Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon

Marine macroalgae have variable carbon-uptake strategies that complicate predicting responses to environmental changes. In seawater, dissolved inorganic carbon availability can affect the underlying physiological mechanisms influencing carbon uptake. We tested the interactive effects of ocean acidification (OA) and warming on two HCO−3HCO3−-users (Lobophora sp. and Amansia rhodantha), a predominately CO2-user (Avrainvillea nigricans), and a sole CO2-user (Plocamium hamatum) in the Great Barrier Reef, Australia. We examined metabolic rates, growth, and carbon isotope values (δ13C) in algae at 26, 28, or 30°C under ambient or elevated pCO2 (∼1000 µatm). Under OA, δ13C values for the HCO−3HCO3−-users decreased, indicating less reliance on HCO−3HCO3−⁠, while δ13C values for CO2-users were unaffected. Both HCO−3HCO3−-users decreased in growth across temperatures under ambient pCO2, but this negative effect was alleviated by OA at 30°C. A. nigricans lost biomass across all treatments and P. hamatum was most sensitive, with reduced survival in all physiological responses. Metabolic rates varied greatly to interacting temperature and OA and indicated a decoupling between the relationship of photosynthesis and growth. Furthermore, our findings suggest HCO−3HCO3−-users are more responsive to future CO2 changes, and highlight examining carbon physiology to infer potential responses to interacting environmental stressors.

Continue reading ‘Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon’

Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline

Global climate change will drive declines in coral reefs over coming decades. Yet, the relative role of temperature versus acidification, and the ability of resultant ecosystems to retain core services such as coastal protection, are less clear. Here, we investigate changes to the net chemical balances of calcium carbonate within complex experimental coral reefs over 18 months under conditions projected for 2100 if CO2 emissions continue unmitigated. We reveal a decoupling of calcifier biomass and calcification under the synergistic impact of warming and acidification, that combined with increased night-time dissolution, leads to an accelerated loss of carbonate frameworks. Climate change induced degradation will limit the ability of coral reefs to keep-up with sea level rise, possibly for thousands of years. We conclude that instead of simply transitioning to alternate states that are capable of buffering coastlines, reefs are at risk of drowning leading to critical losses in ecosystem functions.

Continue reading ‘Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline’

Ocean acidification modifies biomolecule composition in organic matter through complex interactions

The main source of marine organic carbon (OC) is autotrophic production, while heterotrophic degradation is its main sink. Increased anthropogenic CO2 release leads to ocean acidification and is expected to alter phytoplankton community composition, primary production rates and bacterial degradation processes in the coming decades with potential consequences for dissolved and particulate OC concentration and composition. Here we investigate effects of increased pCO2 on dissolved and particulate amino acids (AA) and carbohydrates (CHO), in arctic and sub-arctic planktonic communities in two large-scale mesocosm experiments. Dissolved AA concentrations responded to pCO2/pH changes during early bloom phases but did not show many changes after nutrient addition. A clear positive correlation in particulate AA was detected in post-bloom phases. Direct responses in CHO concentrations to changing pCO2/pH were lacking, suggesting that observed changes were rather indirect and dependent on the phytoplankton community composition. The relative composition of AA and CHO did not change as a direct consequence of pCO2 increase. Changes between bloom phases were associated with the prevailing nutrient status. Our results suggest that biomolecule composition will change under future ocean conditions but responses are highly complex, and seem to be dependent on many factors including bloom phase and sampling site.

Continue reading ‘Ocean acidification modifies biomolecule composition in organic matter through complex interactions’

Elevated CO2 affects kelp nutrient quality: a case study of Saccharina japonica from CO2 enriched coastal mesocosm systems

Kelps provide critical services for coastal food chains and ecosystem, and they are important food source for some segments of human population. Despite their ecological importance, little is known about long‐term impacts of elevated CO2 (eCO2) on nutrient metabolites in kelps and the underlying regulation mechanisms. In this study, the kelp Saccharina japonica was cultured in CO2 enriched coastal mesocosm systems for up to 3 months. We found that though eCO2 significantly increased the growth rate, carbon concentrations and C/N ratio of S. japonica, it had no effect on total nitrogen and protein contents at the end of cultivation period. Meanwhile it decreased the lipid, magnesium, sodium, calcium contents and changed the amino acid and fatty acid composition. Combining the genome‐wide transcriptomic and metabolic evidence, we obtained a systems‐level understanding of metabolic response of S. japonica to eCO2. The unique ornithine‐urea cycle (OUC) and aspartate‐argininosuccinate shunt (AAS), coupled with TCA cycle balanced the carbon and nitrogen metabolism under eCO2 by providing carbon skeleton for amino acid synthesis and reduced power for nitrogen assimilation. This research provides a major advance in the understanding of kelp nutrient metabolic mechanism in the context of global climate change, and such CO2‐induced shifts in nutritional value may induce changes in the structure and stability of marine trophic webs and affect the quality of human nutrition resources.

Continue reading ‘Elevated CO2 affects kelp nutrient quality: a case study of Saccharina japonica from CO2 enriched coastal mesocosm systems’

Acidification decreases microbial community diversity in the Salish Sea, a region with naturally high pCO2

Most literature exploring the biological effects of ocean acidification (OA) has focused on macroscopic organisms and far less is known about how marine microbial communities will respond. Studies of OA and microbial community composition and diversity have examined communities from a limited number of ocean regions where the ambient pH is near or above the global average. At San Juan Island (Salish Sea), a region that experiences naturally low pH (average = 7.8), the picoplankton (cell diameter is 0.2–2μm) community was predicted to show no response to experimental acidification in a three-week mesocosm experiment. Filtered seawater mesocosms were maintained via semicontinuous culturing. Three control mesocosms were maintained at pH 8.05 and three acidified mesocosms were maintained at pH 7.60. Total bacteria was quantified daily with a flow cytometer. Microbial communities were sampled every two days via filtration followed by DNA extraction, 16S rRNA amplification, and MiSeq sequencing. There was no significant difference in total bacteria between pH treatments throughout the experiment. Acidification significantly reduced Shannon’s diversity over time. During the final week of the experiment, acidification resulted in a significant decrease in Shannon’s diversity, Faith’s phylogenetic distance, and Pielous’s Evenness. ANCOM results revealed four bacterial ASVs (amplicon sequence variants), in families Flavobaceriaceae and Hyphomonadaceae that significantly decreased in relative frequency under acidification and two bacterial ASVs, in families Flavobacteriaceae and Alteromonadaceae, that significantly increased under acidification. This is the first OA study on the microbial community of the Salish Sea, a nutrient rich, low pH region, and the first of its kind to report a decrease in both picoplankton richness and evenness with acidification. These findings demonstrate that marine microbial communities that naturally experience acidic conditions are still sensitive to acidification.

Continue reading ‘Acidification decreases microbial community diversity in the Salish Sea, a region with naturally high pCO2’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,428,665 hits


Ocean acidification in the IPCC AR5 WG II

OUP book