Posts Tagged 'mesocosms'

Key biological responses over two generations of the sea urchin Echinometra sp. A under future ocean conditions

Few studies have investigated the effects of ocean warming and acidification on marine benthic organisms over ecologically relevant time scales. We used an environmentally controlled coral reef mesocosm system to assess growth and physiological responses of the sea urchin species Echinometra sp. A over 2 generations. Each mesocosm was controlled for temperature and pCO2 over 29 mo under 3 climate change scenarios (present day and predicted states in 2050 and 2100 under RCP 8.5). The system maintained treatment conditions including annual temperature cycles and a daily variation in pCO2. Over 20 mo, adult Echinometra exhibited no significant difference in size and weight among the treatments. Growth rates and respiration rates did not differ significantly among treatments. Urchins from the 2100 treatment had elevated ammonium excretion rates and reduced O2:N ratios, suggesting a change in catabolism. We detected no difference in spawning index scores or oocyte size after 20 mo in the treatments, suggesting that gonad development was not impaired by variations in pCO2 and temperature reflecting anticipated climate change scenarios. Larvae produced from experimentally exposed adults were successfully settled from all treatments and raised for 5 mo inside the mesocosm. The final size of these juveniles exhibited no significant difference among treatments. Overall, we demonstrated that the mesocosm system provided a near natural environment for this urchin species. Climate change and ocean acidification did not affect the benthic life stages investigated here. Importantly, in previous short-term (weeks to months) experiments, this species exhibited reductions in growth and gonad development, highlighting the potential for short-term experiments with non-acclimated animals to yield contrasting, possibly erroneous results.

Continue reading ‘Key biological responses over two generations of the sea urchin Echinometra sp. A under future ocean conditions’

Does ocean acidification benefit seagrasses in a mesohaline environment? a mesocosm experiment in the northern Gulf of Mexico

Ocean acidification is thought to benefit seagrasses because of increased carbon dioxide (CO2) availability for photosynthesis. However, in order to truly assess ecological responses, effects of ocean acidification need to be investigated in a variety of coastal environments. We tested the hypothesis that ocean acidification would benefit seagrasses in the northern Gulf of Mexico, where the seagrasses Halodule wrightii and Ruppia maritima coexist in a fluctuating environment. To evaluate if benefits of ocean acidification could alter seagrass bed composition, cores of H. wrightii and R. maritima were placed alone or in combination into aquaria and maintained in an outdoor mesocosm. Half of the aquaria were exposed to either ambient (mean pH of 8.1 ± 0.04 SD on total scale) or high CO2 (mean pH 7.7 ± 0.05 SD on total scale) conditions. After 54 days of experimental exposure, the δ13C values were significantly lower in seagrass tissue in the high CO2 condition. This integration of a different carbon source (either: preferential use of CO2, gas from cylinder, or both) indicates that plants were not solely relying on stored energy reserves for growth. Yet, after 41 to 54 days, seagrass morphology, biomass, photo-physiology, metabolism, and carbon and nitrogen content in the high CO2 condition did not differ from those at ambient. There was also no indication of differences in traits between the homospecific or heterospecific beds. Findings support two plausible conclusions: (1) these seagrasses rely heavily on bicarbonate use and growth will not be stimulated by near future acidification conditions or (2) the mesohaline environment limited the beneficial impacts of increased CO2 availability.

Continue reading ‘Does ocean acidification benefit seagrasses in a mesohaline environment? a mesocosm experiment in the northern Gulf of Mexico’

Model simulation of seasonal growth of Fucus vesiculosus in its benthic community

Numerical models are a suitable tool to quantify impacts of predicted climate change on complex ecosystems but are rarely used to study effects on benthic macroalgal communities. Fucus vesiculosus L. is a habitat‐forming macroalga in the Baltic Sea and alarming shifts from the perennial Fucus community to annual filamentous algae are reported. We developed a box model able to simulate the seasonal growth of the Baltic Fucus–grazer–epiphyte system. This required the implementation of two state variables for Fucus biomass in units of carbon (C) and nitrogen (N). Model equations describe relevant physiological and ecological processes, such as storage of C and N assimilates by Fucus, shading effects of epiphytes or grazing by herbivores on both Fucus and epiphytes, but with species‐specific rates and preferences. Parametrizations of the model equations and required initial conditions were based on measured parameters and process rates in the near‐natural Kiel Outdoor Benthocosm (KOB) experiments during the Biological Impacts of Ocean Acidification project. To validate the model, we compared simulation results with observations in the KOB experiment that lasted from April 2013 until March 2014 under ambient and climate‐change scenarios, that is, increased atmospheric temperature and partial pressure of carbon dioxide. The model reproduced the magnitude and seasonal cycles of Fucus growth and other processes in the KOBs over 1 yr under different scenarios. Now having established the Fucus model, it will be possible to better highlight the actual threat of climate change to the Fucus community in the shallow nearshore waters of the Baltic Sea.

Continue reading ‘Model simulation of seasonal growth of Fucus vesiculosus in its benthic community’

Zooplankton growth and survival differentially respond to interactive warming and acidification effects

The copepod Acartia tonsa is a key component of a wide range of marine ecosystems, linking energy transfer from phytoplankton to higher trophic levels, and has a central role in productivity and biogeochemistry. The interaction of end-of-century global warming and ocean acidification scenarios with testing moderate temperature effects on a seminatural copepod community is needed to understand future community functioning. Here, we deployed a mesocosm experimental set-up with a full factorial design using two temperatures (13°C and 19°C) crossed with a pCO2 gradient ranging from ambient (550 μatm) to 3000 μatm. We used the natural bacteria, phyto- and microzooplankton species composition and biomass of the Kiel Bight and tested the response of A. tonsa development, carbon growth, mortality, size and condition. The tested traits were differently affected by the interaction of temperature and acidification. Ocean acidification increased development, carbon growth, size and mortality under the warming scenario of 19°C. At 13°C mortality rates decreased, while carbon growth, size and condition increased with acidification. We conclude from our experimental approach that a single species shows a variety of responses depending on the focal functional trait. Trait-specific mesozooplankton responses need to be further investigated and compared between geographical regions, seasons and taxonomic groups.

Continue reading ‘Zooplankton growth and survival differentially respond to interactive warming and acidification effects’

A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems

Biodiversity loss and climate change simultaneously threaten marine ecosystems, yet their interactions remain largely unknown. Ocean acidification severely affects a wide variety of marine organisms and recent studies have predicted major impacts at the pH conditions expected for 2100. However, despite the renowned interdependence between biodiversity and ecosystem functioning, the hypothesis that the species’ response to ocean acidification could differ based on the biodiversity of the natural multispecies assemblages in which they live remains untested. Here, using experimentally controlled conditions, we investigated the impact of acidification on key habitat-forming organisms (including corals, sponges and macroalgae) and associated microbes in hard-bottom assemblages characterised by different biodiversity levels. Our results indicate that, at higher biodiversity, the impact of acidification on otherwise highly vulnerable key organisms can be reduced by 50 to >90%, depending on the species. Here we show that such a positive effect of a higher biodiversity can be associated with higher availability of food resources and healthy microbe-host associations, overall increasing host resistance to acidification, while contrasting harmful outbreaks of opportunistic microbes. Given the climate change scenarios predicted for the future, we conclude that biodiversity conservation of hard-bottom ecosystems is fundamental also for mitigating the impacts of ocean acidification.

Continue reading ‘A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems’

Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)

Rising concentrations of atmospheric carbon dioxide are causing ocean acidification and will influence marine processes and trace metal biogeochemistry. In June 2012, in the Raunefjord (Bergen, Norway), we performed a mesocosm experiment, comprised of a fully factorial design of ambient and elevated pCO2 and/or an addition of the siderophore desferrioxamine B (DFB). In addition, the macronutrient concentrations were manipulated to enhance a bloom of the coccolithophore Emiliania huxleyi. We report the changes in particulate trace metal concentrations during this experiment. Our results show that particulate Ti and Fe were dominated by lithogenic material, while particulate Cu, Co, Mn, Zn, Mo and Cd had a strong biogenic component. Furthermore, significant correlations were found between particulate concentrations of Cu, Co, Zn, Cd, Mn, Mo and P in seawater and phytoplankton biomass (µgC L−1), supporting a significant influence of the bloom in the distribution of these particulate elements. The concentrations of these biogenic metals in the E. huxleyi bloom were ranked as follows: Zn < Cu ≈ Mn < Mo < Co < Cd. Changes in CO2 affected total particulate concentrations and biogenic metal ratios (Me : P) for some metals, while the addition of DFB only significantly affected the concentrations of some particulate metals (mol L−1). Variations in CO2 had the most clear and significant effect on particulate Fe concentrations, decreasing its concentration under high CO2. Indeed, high CO2 and/or DFB promoted the dissolution of particulate Fe, and the presence of this siderophore helped in maintaining high dissolved Fe. This shift between particulate and dissolved Fe concentrations in the presence of DFB, promoted a massive bloom of E. huxleyi in the treatments with ambient CO2. Furthermore, high CO2 decreased the Me : P ratios of Co, Zn and Mn while increasing the Cu : P ratios. These findings support theoretical predictions that the molar ratios of metal to phosphorous (Me : P ratios) of metals whose seawater dissolved speciation is dominated by free ions (e.g., Co, Zn and Mn) will likely decrease or stay constant under ocean acidification. In contrast, high CO2 is predicted to shift the speciation of dissolved metals associated with carbonates such as Cu, increasing their bioavailability and resulting in higher Me : P ratios.

Continue reading ‘Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)’

Global environmental changes negatively impact temperate seagrass ecosystems

The oceans are increasingly affected by multiple aspects of global change, with substantial impacts on ecosystem functioning and food-web dynamics. While the effects of single factors have been extensively studied, it has become increasingly evident that there is a need to unravel the complexities related to a multiple stressor environment. In a mesocosm experimental study, we exposed a simplified, multi-trophic seagrass ecosystem (composed of seagrass, two shrimp species, and two intermediate predatory fish species) to three global change factors consisting of simulated storm events (Storms), heat shocks (Heat), and ocean acidification (OA), and the combination of all three factors (All). The most striking result indicated that when all factors were combined, there was a negative influence at all trophic levels, while the treatments with individual factors revealed species-specific response patterns. It appeared, however, that single factors may drive the multi-stressor response. All single factors (i.e., Storms, Heat, and OA) had either negative, neutral, or positive effects on fish and shrimp, whereas no effect was recorded for any single stressor on seagrass plants. The findings demonstrate that when several global change factors appear simultaneously, they can have deleterious impacts on seagrass ecosystems, and that the nature of factors and food-web composition may determine the sensitivity level of the system. In a global change scenario, this may have serious and applicable implications for the future of temperate seagrass ecosystems.

Continue reading ‘Global environmental changes negatively impact temperate seagrass ecosystems’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,335,542 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book