Posts Tagged 'Cnidaria'

Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator

The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 μatm) or end-of-the-century OA (pCO2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective.

Continue reading ‘Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator’

Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian

Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2, and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for non-calcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O2 (~2.09mgL−1) and pH (~pH 7.63) scenarios in a full factorial experiment. Host fitness was characterised as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterised by maximum photochemical efficiency, chla content, and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO2-stimulated Symbiodinium photosynthetic activity. Indeed, greater CO2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesise that this mitigation occurred because of reduced photorespiration under elevated CO2 conditions where increased net O2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other non-calcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, non-calcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification.

Continue reading ‘Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian’

Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment

Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.

Continue reading ‘Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment’

Entering the Anthropocene: How ocean acidification and warmer temperatures affect the symbiotic sea anemone Exaiptasia pallida

Here I report the effects of long-term elevated CO2 combined with two subsequent elevated temperature intervals on the model symbiotic anemone Exaiptasia pallida. A central goal of this thesis was to investigate how altered CO2 and temperature affect the symbiotic relationship while this anemone hosted three different strains of endosymbiotic dinoflagellates (Symbiodinium minutum, Symbiodinium A4a, and Symbiodinium A4b). Exposure to elevated CO2 (930μatm) alone for 42 days led to no significant changes in either the anemone or the algae physiological response, with the exception of some separation between the photosynthesis to respiration ratio of S. A4a and S. A4b control and treatment animals. Exposure to both elevated CO2 (930μatm) and a moderate  elevation in temperature (29°C) for 49 days led to a significant increase in the net maximal photosynthesis (normalized to algal cell density) between the treatment and controls of all three  holobionts. Exposure to both elevated CO2 (930μatm) and an even higher temperature (33°C) for up to 20 days led to a significant decrease in photobiology and algal cell density, along with visible bleaching in the S. minutum holobiont. All three holobionts displayed a significant decrease in the photosynthesis to respiration ratio, thereby providing evidence for temperature having a greater impact on the phototrophic response of these anemones. However, anemones harboring the two A4 Symbiodinium did not show as large of a negative response in photosystem II  photochemistry when compared to anemones with S. minutum. The high temperature treatment also resulted in juvenile mortality in all three holobionts, with the greatest mortality seen in the S. minutum holobiont. The differential response to both elevated CO2 and elevated temperature between the three holobionts highlights the thermal sensitivity of the S. minutum symbiosis, and the thermal tolerance of the S. A4 holobionts. Thermal tolerance may enable these anemones to survive and thrive in future climate change conditions, while the effects of higher CO2 appear to be more neutral.

Continue reading ‘Entering the Anthropocene: How ocean acidification and warmer temperatures affect the symbiotic sea anemone Exaiptasia pallida’

Effects of ocean acidification on benthic organisms in the Mediterranean Sea under realistic climatic scenarios: A meta-analysis

Ocean acidification is expected to cause significant changes in the marine environment over the coming century. The effects of acidification on organisms’ physiology have been studied over the past two decades. However, the experimental findings are not always easily comparable because of differences in experimental design, and comparable experiments do not always produce similar results. To rigorously integrate the current knowledge, we performed a meta-analysis of published studies focused on benthic organisms in the Mediterranean Sea, both in controlled manipulative experiments and in situ experiments near vent areas. In each experiment, the effect of acidification was calculated as the log-transformed response ratio (LnRR) of experimental versus control conditions. The quantitative results obtained by the meta-analysis highlight: (a) an increase in fleshy algae cover, which may lead to a competitive advantage over calcifying macroalgae; (b) a reduction of calcification by both algae and corals; (c) an increase in seagrass shoot density under low pH; and (d) a general increase in the photosynthetic activity of macrophytes.

Continue reading ‘Effects of ocean acidification on benthic organisms in the Mediterranean Sea under realistic climatic scenarios: A meta-analysis’

The stable microbiome of inter and sub-tidal anemone species under increasing pCO2

Increasing levels of pCO2 within the oceans will select for resistant organisms such as anemones, which may thrive under ocean acidification conditions. However, increasing pCO2 may alter the bacterial community of marine organisms, significantly affecting the health status of the host. A pH gradient associated with a natural volcanic vent system within Levante Bay, Vulcano Island, Italy, was used to test the effects of ocean acidification on the bacterial community of two anemone species in situ, Anemonia viridis and Actinia equina using 16 S rDNA pyrosequencing. Results showed the bacterial community of the two anemone species differed significantly from each other primarily because of differences in the Gammaproteobacteria and Epsilonproteobacteria abundances. The bacterial communities did not differ within species among sites with decreasing pH except for A. viridis at the vent site (pH = 6.05). In addition to low pH, the vent site contains trace metals and sulfide that may have influenced the bacteria community of A. viridis. The stability of the bacterial community from pH 8.1 to pH 7.4, coupled with previous experiments showing the lack of, or beneficial changes within anemones living under low pH conditions indicates that A. viridis and A. equina will be winners under future ocean acidification scenarios.

Continue reading ‘The stable microbiome of inter and sub-tidal anemone species under increasing pCO2’

Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure

Ocean acidification, caused by increasing atmospheric carbon dioxide (CO2), is a growing concern in marine environments. Land-based sources of pollution, such as metals, have also been a noted problem; however, little research has addressed the combined exposure of both pollutants to coral reef organisms. In this study we examined tissue metal accumulation and physiological effects (activity of anti-oxidant enzymes, catalase and glutathione reductase) in the sea anemone, Exaiptasia pallida after exposure to increased CO2, as well as zinc (Zn) or nickel (Ni). After exposure to four concentrations (nominal values = control, 10, 50, 100 μg/L) of Zn or Ni over 7 days, both metals accumulated in the tissues of E. pallida in a concentration-dependent manner. Anemones exposed to elevated CO2 (1000 ppm) accumulated significant tissue burdens of Zn or Ni faster (by 48 h) than those exposed to the same metal concentrations at ambient CO2. No differences were observed in catalase activity due to Zn exposure; however, 50 μg/L Ni caused a significant increase in catalase activity at ambient CO2. No significant effect on catalase activity from CO2 exposure alone was observed. Glutathione reductase activity was affected by increased Zn or Ni exposure and those effects were influenced by increased CO2. Results of this study provide insight into the toxic mechanisms and environmental implications of CO2 and Zn or Ni exposure to the cnidarian E. pallida.

Continue reading ‘Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,025,944 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book