Posts Tagged 'Cnidaria'

Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study

The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.

Continue reading ‘Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study’

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 (> 10,000 μatm) result in low seawater pH (< 6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 μatm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic trade-offs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.

Continue reading ‘Volcanic CO2 seep geochemistry and use in understanding ocean acidification’

The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea

Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea – one of the most oligotrophic marine regions in the world. Since the 1970s, this region has been experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity and bacterial biomass accumulation, and triggered a shift towards heterotrophic biodegrading bacterial communities, whereas autotrophic picophytoplankton abundance was moderately affected or reduced. This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, acidification, nutrient enrichment, and microbial community shifts at the sediment-water interface may have a detrimental impact on macrobenthic communities. Based on these findings, we suggest that jelly-falls and their decay may facilitate an additional decline in ecosystem functions and services.

Continue reading ‘The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea’

Coastal acidification and deoxygenation enhance settlement but do not influence movement behavior of creeping polyps of the irukandji jellyfish, Alatina alata (cubozoa)

Highlights

  • Deoxygenation enhanced the survival of the creeping polyps of Alatina alata.

  • More creeping polyps settled under low pH and low dissolved O2 (DO) treatments than under normal pH and DO conditions.

  • Exposure to low pH and DO did not influence the number of tentacles, mobility or movement velocity of the creeping polyps.

  • The Irukandji jellyfish may persist in coastal areas with coastal deoxygenation and acidification.

Abstract

Deoxygenation and acidification co-occur in many coastal ecosystems because nutrient enrichment produces excess organic matter that intensifies aerobic respiration during decomposition, thereby depleting O2, increasing CO2 and lowering pH. Despite this link between coastal deoxygenation (CD) and acidification (CA), and evidence that both stressors pose a risk to marine fauna, few studies have examined the effects of these drivers in combination on marine animals including invertebrates. Here, we studied the individual and combined effects of CD (∼1.5 mg L−1 O2) and CA (∼7.7 pH) on the survival, number of tentacles, settlement and movement behaviours of creeping polyps of the Irukandji jellyfish, Alatina alata. Low DO increased the survival rate (17% more) of the creeping polyps. 12% more creeping polyps settled in low pH than ambient pH and 16.7% more settled in low DO than ambient DO treatment. Exposure to CA and CD did not influence the number of tentacles, mobility or movement velocity of the creeping polyps, but after 4 h exposure to the treatments, they moved approximately half as fast. Our results indicate that CD can enhance survival and settlement success, but CA does not intensify these outcomes on A. alata creeping polyps.

Continue reading ‘Coastal acidification and deoxygenation enhance settlement but do not influence movement behavior of creeping polyps of the irukandji jellyfish, Alatina alata (cubozoa)’

Toward a mechanistic understanding of marine invertebrate behavior at elevated CO2

Elevated carbon dioxide (CO2) levels can alter ecologically important behaviors in a range of marine invertebrate taxa; however, a clear mechanistic understanding of these behavioral changes is lacking. The majority of mechanistic research on the behavioral effects of elevated CO2 has been done in fish, focusing on disrupted functioning of the GABAA receptor (a ligand-gated ion channel, LGIC). Yet, elevated CO2 could induce behavioral alterations through a range of mechanisms that disturb different components of the neurobiological pathway that produces behavior, including disrupted sensation, altered behavioral choices and disturbed LGIC-mediated neurotransmission. Here, we review the potential mechanisms by which elevated CO2 may affect marine invertebrate behaviors. Marine invertebrate acid–base physiology and pharmacology is discussed in relation to altered GABAA receptor functioning. Alternative mechanisms for behavioral change at elevated CO2 are considered and important topics for future research have been identified. A mechanistic understanding will be important to determine why there is variability in elevated CO2-induced behavioral alterations across marine invertebrate taxa, why some, but not other, behaviors are affected within a species and to identify which marine invertebrates will be most vulnerable to rising CO2 levels.

Continue reading ‘Toward a mechanistic understanding of marine invertebrate behavior at elevated CO2’

Skeletons of calcareous benthic hydroids (Medusozoa, Hydrozoa) under ocean acidification

The skeleton plays a vital role in the survival of aquatic invertebrates by separating and protecting them from a changing environment. In most of these organisms, calcium carbonate (CaCO3) is the principal constituent of the skeleton, while in others, only a part of the skeleton is calcified, or CaCO3 is integrated into an organic skeleton structure. The average pH of ocean surface waters has increased by about 25% as a result of anthropogenic carbon dioxide (CO2) emissions, which reduces carbonate ions (CO32−) concentration, and saturation states (Ω) of biologically critical CaCO3 minerals like calcite, aragonite, and magnesian calcite (Mg-calcite), the fundamental building blocks for the skeletons of marine invertebrates. In this chapter, we discuss how ocean acidification (OA) affects particular species of benthic calcareous hydroids in order to bridge gaps and understand how these organisms can respond to a growing acidic ocean.

Continue reading ‘Skeletons of calcareous benthic hydroids (Medusozoa, Hydrozoa) under ocean acidification’

Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions

Ocean acidification (OA) affects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, effects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fish. Evidence suggests that marine invertebrate behaviors were also be affected. In this review, we discussed the effects of C02-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA affects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.

Continue reading ‘Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions’

Does seawater acidification affect zooxanthellae density and health in the invasive upside‐down jellyfish, Cassiopea spp.?

Ocean acidification is the decline in seawater pH that results from the absorption of atmospheric carbon dioxide (CO2). Decreased pH has negative effects on survivability, growth, and development in many marine calcifiers, potentially resulting in reduced coral species richness. This reduction in richness could open new niche space, allowing the spread of invasive species, such as the upside‐down jellyfish (Cassiopea spp.). Like corals, this jellyfish forms symbiotic relationships with zooxanthellae, photosynthetic dinoflagellates. This study focused on the effect of seawater acidification in Cassiopea spp. We monitored zooxanthellae density and two measures of health (bell diameter and volume) in individuals of Cassiopea sp. at three pH levels chosen to mimic different open‐ocean average conditions: 8.2, representing pre‐industrial revolution conditions; and 7.9 and 7.6, representing predicted declines in pH in the next century. Zooxanthellae density and health of the jellyfish were measured twice—prior to experimental manipulations and after four weeks of exposure to experimental pHs—in three consecutive trials. The effects of pH and Trial on proportional change in jellyfish attributes were analyzed using generalized linear mixed models. We found no significant effects of either factor. These results indicate that decreasing seawater pH has no apparent negative effect on zooxanthellae density or health in Cassiopea, which suggests that these jellyfish may be relatively insensitive to the impacts of ocean acidification, heightening its potential as an invasive species.

Continue reading ‘Does seawater acidification affect zooxanthellae density and health in the invasive upside‐down jellyfish, Cassiopea spp.?’

Extreme, but not moderate climate scenarios, impart sublethal effects on polyps of the Irukandji jellyfish, Carukia barnesi

Highlights
• Sublethal effects on Carukia barnesi polyps only manifested in extreme conditions.

• Individual metabolites were suppressed in extreme pH and elevated temperature treatments.

• C. barnesi polyps are unaffected by the most optimistic climate scenario and can survive in extreme conditions.

Abstract
Ocean acidification and warming, fueled by excess atmospheric carbon dioxide, can impose stress on marine organisms. Most studies testing the effects of climate change on marine organisms, however, use extreme climate projection scenarios, despite moderate projections scenarios being most likely to occur. Here, we examined the interactive effects of warming and acidification on reproduction, respiration, mobility and metabolic composition of polyps of the Irukandji jellyfish, Carukia barnesi, to determine the responses of a cubozoan jellyfish to moderate and extreme climate scenarios in Queensland, Australia. The experiment consisted two orthogonal factors: temperature (current 25 °C and future 28 °C) and pH (current (8.0) moderate (7.9) and extreme (7.7)). All polyps survived in the experiment but fewer polyps were produced in the pH 7.7 treatment compared to pH 7.9 and pH 8.0. Respiration rates were elevated in the lowest pH treatment throughout most of the experiment and polyps were approximately half as mobile in this treatment compared to pH 7.9 and pH 8.0, regardless of temperature. We identified metabolites occurring at significantly lower relative abundance in the lowest pH (i.e. glutamate, acetate, betaine, methylguanidine, lysine, sarcosine, glycine) and elevated temperature (i.e. proline, trigonelline, creatinine, mannose, acetate, betaine, methylguanidine, lysine, sarcosine) treatments. Glycine was the only metabolite exhibiting an interactive effect between pH and temperature. Our results suggest that C. barnesi polyps are unaffected by the most optimistic climate scenario and may tolerate even extreme climate conditions to some extent.

Continue reading ‘Extreme, but not moderate climate scenarios, impart sublethal effects on polyps of the Irukandji jellyfish, Carukia barnesi’

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis

Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 3.1% of the anemone transcripts, but <1% of the Symbiodinium sp. transcripts were differentially expressed. Processes enriched at high seawater CO2 were linked to cellular stress and inflammation, including significant up-regulation of protective cellular functions and down-regulation of metabolic pathways. Transposable elements were differentially expressed at high seawater CO2, with an extreme up-regulation (> 100-fold) of the BEL-family of long terminal repeat retrotransposons. Seawater acidified by CO2 generated a significant stress reaction in A. viridis, but no bleaching was observed and Symbiodinium sp. appeared to be less affected. These observed changes indicate the mechanisms by which A. viridis acclimate to survive chronic exposure to ocean acidification conditions. We conclude that many organisms that are common in acidified conditions may nevertheless incur costs due to hypercapnia and/or lowered carbonate saturation states.

Continue reading ‘Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,428,639 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives