Posts Tagged 'oxygen'

A strain gauge monitor (SGM) for continuous valve gape measurements in bivalve molluscs in response to laboratory induced diel-cycling hypoxia and pH

An inexpensive, laboratory-based, strain gauge valve gape monitor (SGM) was developed to monitor the valve gape behavior of bivalve molluscs in response to diel-cycling hypoxia. A Wheatstone bridge was connected to strain gauges that were attached to the shells of oysters (Crassostrea virginica). The recorded signals allowed for the opening and closing of the bivalves to be recorded continuously over two-day periods of experimentally-induced diel-cycling hypoxia and diel-cycling changes in pH. Here, we describe a protocol for developing an inexpensive strain gauge monitor and describe, in an example laboratory experiment, how we used it to measure the valve gape behavior of Eastern oysters (C. virginica), in response to diel-cycling hypoxia and cyclical changes in pH. Valve gape was measured on oysters subjected to cyclical severe hypoxic (0.6 mg/L) dissolved oxygen conditions with and without cyclical changes in pH, cyclical mild hypoxic (1.7 mg/L) conditions and normoxic (7.3 mg/L) conditions. We demonstrate that when oysters encounter repeated diel cycles, they rapidly close their shells in response to severe hypoxia and close with a time lag to mild hypoxia. When normoxia is restored, they rapidly open again. Oysters did not respond to cyclical pH conditions superimposed on diel cycling severe hypoxia. At reduced oxygen conditions, more than one third of the oysters closed simultaneously. We demonstrate that oysters respond to diel-cycling hypoxia, which must be considered when assessing the behavior of bivalves to dissolved oxygen. The valve SGM can be used to assess responses of bivalve molluscs to changes in dissolved oxygen or contaminants. Sealing techniques to better seal the valve gape strain gauges from sea water need further improvement to increase the longevity of the sensors.

Continue reading ‘A strain gauge monitor (SGM) for continuous valve gape measurements in bivalve molluscs in response to laboratory induced diel-cycling hypoxia and pH’

Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios (update)

Coastal hypoxia is a problem that is predicted to increase rapidly in the future. At the same time, we are facing rising atmospheric CO2 concentrations, which are increasing the pCO2 and acidity of coastal waters. These two drivers are well studied in isolation; however, the coupling of low O2 and pH is likely to provide a more significant respiratory challenge for slow moving and sessile invertebrates than is currently predicted. The Gullmar Fjord in Sweden is home to a range of habitats, such as sand and mud flats, seagrass beds, exposed and protected shorelines and rocky bottoms. Moreover, it has a history of both natural and anthropogenically enhanced hypoxia as well as North Sea upwelling, where salty water reaches the surface towards the end of summer and early autumn. A total of 11 species (Crustacean, Chordate, Echinoderm and Mollusc) of these ecosystems were exposed to four different treatments (high or low oxygen and low or high CO2; varying pCO2 of 450 and 1300 µatm and O2 concentrations of 2–3.5 and 9–10 mg L−1) and respiration measured after 3 and 6 days, respectively. This allowed us to evaluate respiration responses of species of contrasting habitats to single and multiple stressors. Results show that respiratory responses were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiratory responses. Management plans should avoid the generalized assumption that combined stressors will result in multiplicative effects and focus attention on alleviating hypoxia in the region.

Continue reading ‘Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios (update)’

Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales

California’s coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) μatm PCO2 and 8.0 (normoxic) and 4.5 mg l−1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.

Continue reading ‘Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales’

The effects of ocean acidification and reduced oxygen on the behavior and physiology of juvenile rockfish

As climate change progresses, the frequency and duration of upwelling events that bring low pH, low dissolved oxygen (DO) water to nearshore habitats are expected to increase. In addition, long-term global changes in ocean pH and DO are expected to occur within the next few decades to centuries. Locally, there have been documented reductions in near-shore pH along with the expansion of oxygen minimum zones within the California Current System. However, very few studies have investigated the potential interactive effect of these stressors on temperate reef fish. For this thesis, two sets of laboratory experiments were conducted to determine the independent and interactive effects of reduced pH and DO on the behavior and physiology of juvenile rockfish (Sebastes caurinus and Sebastes melanops). Behavioral studies examined fish boldness using an escape trial and brain lateralization by testing the consistency of individual fishes’ turning preference. Physiological studies measured critical swimming speed (Ucrit), ventilation rate, standard metabolic rate (SMR), maximum metabolic rate (MMR), critical oxygen tension (Pcrit), aerobic scope, and growth rate. Over the range of conditions examined, DO proved to have a much stronger effect on rockfish physiology than pH, suggesting that low-oxygen events may be more detrimental to individual fitness than ocean acidification. Significant effects of reduced DO on rockfish physiology include impaired swimming performance in S. caurinus and increased ventilation rate in S. melanops, but substantive responses in metabolic rates (e.g. SMR, MMR, aerobic scope, Pcrit) were not observed. Juveniles of both species appear to be behaviorally resilient to exposure to reduced pH and DO. Together, these experiments address important questions regarding how temperate reef fish will respond to both the independent and interactive effect of these oceanographic stressors. Finally, they set the framework for studying species-specific susceptibility to pH and DO stressors.

Continue reading ‘The effects of ocean acidification and reduced oxygen on the behavior and physiology of juvenile rockfish’

Interactive effects of ocean acidification with other environmental drivers on marine plankton

Planktonic organisms form the base of the marine food web and may be impacted by environmental change in many ways. The interactive effects of multiple, simultaneous climate-driven changes on these organisms are not well understood. This dissertation examined the impacts of ocean acidification in combination with other environmental stressors on marine plankton and determined spatial patterns of one of these potential interactive drivers. Chapter 2 investigated the synergistic effects of ocean acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae. Findings indicated that empirical studies may be crucial to accurately predict organismal responses to multi-stressors. Results also suggested that photorespiration may serve a previously unrecognized role in dinoflagellate metabolism. Chapter 3 examined the combined effects of ocean acidification and lithogenic trace metals on the growth of another harmful dinoflagellate, Cochlodinium polykrikoides. Results indicated that high suspended sediment loads may deliver toxic concentrations of trace elements to marine phytoplankton in acidified coastal ecosystems. Chapter 4 examined the interactive effects of ocean acidification and bacteria on the severity and extent of dissolution in the shells of larval gastropods and the adult pteropod Limacina helicina. Research findings indicated that microbial communities on the shell surfaces of some planktonic molluscs may mediate certain types of shell dissolution in acidified, upwelled waters. Chapter 5 explored the use of thorium isotope fluxes as a proxy for dust and lithogenic iron in the Indian Ocean. Results suggested that the gradient of dust fluxes in the region could impose thresholds for biological productivity. Together, these interdisciplinary studies demonstrate coupled biological and chemical changes in marine ecosystems as a result of increased anthropogenic environmental change.

Continue reading ‘Interactive effects of ocean acidification with other environmental drivers on marine plankton’

Functional spatial contextualisation of the effects of multiple stressors in marine bivalves

Many recent studies have revealed that the majority of environmental stressors experienced by marine organisms (ocean acidification, global warming, hypoxia etc.) occur at the same time and place, and that their interaction may complexly affect a number of ecological processes. Here, we experimentally investigated the effects of pH and hypoxia on the functional and behavioural traits of the mussel Mytilus galloprovincialis, we then simulated the potential effects on growth and reproduction dynamics trough a Dynamic Energy Budget (DEB) model under a multiple stressor scenario. Our simulations showed that hypercapnia had a remarkable effect by reducing the maximal habitat size and reproductive output differentially as a function of the trophic conditions, where modelling was spatially contextualized. This study showed the major threat represented by the hypercapnia and hypoxia phenomena for the growth, reproduction and fitness of mussels under the current climate change context, and that a mechanistic approach based on DEB modelling can illustrate complex and site-specific effects of environmental change, producing that kind of information useful for management purposes, at larger temporal and spatial scales.

Continue reading ‘Functional spatial contextualisation of the effects of multiple stressors in marine bivalves’

Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments

Eutrophication-induced hypoxia is one of the primary anthropogenic threats to coastal ecosystems. Under hypoxic conditions, a deficit of O2 and a surplus of CO2 will concurrently decrease pH, yet studies of hypoxia have seldom considered the potential interactions with elevated pCO2 (reduced pH). Previous studies on gelatinous organisms concluded that they are fairly robust to low oxygen and reduced pH conditions individually, yet the combination of stressors has only been examined for ephyrae. The goals of this study were to determine the individual and interactive effects of hypoxia and elevated pCO2 on the asexual reproduction and aerobic respiration rates of polyps of the scyphozoan Aurelia aurita during a manipulative experiment that ran for 36 d. pCO2 and pO2 were varied on a diel basis to closely mimic the diel conditions observed in the field. Exposure to low dissolved oxygen (DO) reduced asexual budding of polyps by ~50% relative to control conditions. Under hypoxic conditions, rates of respiration were elevated during an initial acclimation period (until Day 8), but respiration rates did not differ between DO levels under prolonged exposure. There was no significant effect of increased pCO2 on either asexual reproduction or aerobic respiration, suggesting that elevated pCO2 (reduced pH) did not exacerbate the negative reproductive effects of hypoxia on A. aurita polyps.

Continue reading ‘Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,504 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book