Posts Tagged 'abundance'

Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles

Ocean acidification (OA) is expected to alter plankton community structure in the future ocean. This, in turn, could change the composition of sinking organic matter and the efficiency of the biological carbon pump. So far, most OA experiments involving entire plankton communities have been conducted in meso- to eutrophic environments. However, recent studies suggest that OA effects may be more pronounced during prolonged periods of nutrient limitation. In this study, we investigated how OA-induced changes in low-nutrient adapted plankton communities of the subtropical North Atlantic Ocean may affect particulate organic matter (POM) standing stocks, POM fluxes, and POM stoichiometry. More specifically, we compared the elemental composition of POM suspended in the water column to the corresponding sinking material collected in sediment traps. Three weeks into the experiment, we simulated a natural upwelling event by adding nutrient-rich deep-water to all mesocosms, which induced a diatom-dominated phytoplankton bloom. Our results show that POM was more efficiently retained in the water column in the highest CO2 treatment levels (>800 μatm pCO2) subsequent to this bloom. We further observed significantly lower C:N and C:P ratios in post-bloom sedimented POM in the highest CO2 treatments, suggesting that degradation processes were less pronounced. This trend is most likely explained by differences in micro- and mesozooplankton abundance during the bloom and post-bloom phase. Overall, this study shows that OA can indirectly alter POM fluxes and stoichiometry in subtropical environments through changes in plankton community structure.

Continue reading ‘Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles’

Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean

Highlights

• In a future scenario, attenuation by DOM outcompetes its physico-chemical role.
• Global change conditions will favor growth and photosynthesis of nanoplankton.
• Global change favors growth and photosynthesis of nano- as compared to microplankton.

Abstract

We evaluated the dual role of DOM (i.e., as a source of inorganic nutrients and as an absorber of solar radiation) on a phytoplankton community of the western South Atlantic Ocean. Using a combination of microcosms and a cluster approach, we simulated the future conditions of some variables that are highly influenced by global change in the region. We increased nutrients (i.e., anthropogenic input) and dissolved organic matter (DOM), and we decreased the pH, to assess their combined impact on growth rates (μ), species composition/abundance and size structure, and photosynthesis (considering in this later also the effects of light quality i.e., with and without ultraviolet radiation). We simulated two Future conditions (Fut) where nutrients and pH were similarly manipulated, but in one the physical role of DOM (Futout) was assessed whereas in the other (Futin) the physico-chemical role was evaluated; these conditions were compared with a control (Present condition, Pres). The μ significantly increased in both Fut conditions as compared to the Pres, probably due to the nutrient addition and acidification in the former. The highest μ were observed in the Futout, due to the growth of nanoplanktonic flagellates and diatoms. Cells in the Futin were photosynthetically less efficient as compared to those of the Futout and Pres, but these physiological differences, also between samples with or without solar UVR observed at the beginning of the experiment, decreased with time hinting for an acclimation process. The knowledge of the relative importance of both roles of DOM is especially important for coastal areas that are expected to receive higher inputs and will be more acidified in the future.

Continue reading ‘Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean’

Global change effects on seagrass ecosystem

Rising carbon dioxide (CO2) concentrations in the atmosphere will increase the average pCO2 level in the world oceans, which will have a knock-on effect on the marine ecosystem. Coastal seagrass communities one of the most productive marine ecosystems are predicted to benefit from the increase in CO2 levels, but long-term effects of elevated CO2 on seagrass communities are less understood. Population reconstruction techniques was used to investigate the population dynamics of Cymodocea nodosa meadows, exposed to long term elevated CO2 at volcanic seeps off Greece and Italy. Effect of elevated CO2 was noticed on the growth, morphometry, density, biomass and age structure at CO2 seeps. Above to below ground biomass ratio of C. nodosa were higher at CO2 seeps than at reference sites. The plastochrome interval were similar at all CO2 seeps. The shoot age and shoot longevity of plants were lower at seeps than reference sites. The present recruitment (sampled year) of the seagrass were higher than long-term average recruitment of the communities near the seeps. Carbon to nitrogen ratios (%DW) of C. nodosa were higher in leaves at seeps. Annual leaf production was higher near the seeps. This study suggests increased production of C. nodosa under elevated CO2 levels, but other co-factors such as nutrients, trace metal toxicity must also be taken into consideration while predicting effects of future CO2 concentrations. Volcanic CO2 seeps are now being used as natural analogues for ocean acidification studies although these areas can be affected by trace element input and may alter ecosystem responses to gradient in carbonate chemistry. Here Fe and a range of trace elements (Cd, Co, Cu, Hg, Mn, Pb, Ni and Zn) were analysed from sediments and from the roots, rhizomes and leaves of seagrass at six CO2 seeps and reference sites off Greece and Italy. There were higher metal levels in sediment and seagrasses at all CO2 seeps than reference sites. Sediment Quality Guideline Quotient, a commonly used pollution index, indicated that some of the metals (Cd, Cu, Hg, Ni) were in high enough concentrations to have adverse biological effects, such as Cu at Ischia site and Hg at Vulcano. Higher accumulation of elements from sediments in roots and leaves at CO2 seeps were found from Bio Sediment Accumulation Factor index. There were higher levels of Cu, Fe, Mn and Zn in leaves and rhizomes for P. oceanica and higher levels of Cd, Co, Cu, Fe and Zn in C. nodosa compartments at CO2 seeps. Fe and Mn were found with positive correlation within sediment-roots and sediment-rhizomes, whereas Cd, Co and Pb were found with positive correlation in compartments of C. nodosa. In P. oceanica positive correlation were only observed for Cd within sediment-roots and plant compartments. Low pH and ocean acidification increased the concentration of elements at CO2 seeps than reference sites. Thus, caution is needed, when using volcanic seep systems as analogue for the effects of rising CO2, as metals can reach levels that are toxic to seagrass, masking any potential benefits of increased levels of carbon dioxide for seagrass productivity. Net community production (NCP) and community respiration (CR) were measured under air exposed and CO2 enriched conditions for intertidal Z. noltei meadows and unvegetated sediment communities during emersion in summer and winter seasons. Community production and respiration were measured in-situ using benthic chambers. CO2 flux under air and CO2 enriched conditions were measured over a series of short term incubations (30min) using an infra-red gas analyser. Incident photosynthetic active radiation (PAR) was recorded during the incubations covering the daily and seasonal variation. Linear regression model was used to test the effects of irradiance on net community production. NCP of Z. noltei community were higher under CO2 enriched conditions than air exposed conditions in both summer and winter seasons. There was no effect of CO2 on the CR rate of Z. noltei community in summer season. NCP of sediment community were higher in summer season and winter season under CO2 enriched conditions. Sediment CR rates were higher in winter than summer season. The light compensation point of Z. noltei and sediment community were lower in both seasons under CO2 enriched conditions. Seasonal budget of community production was higher in Z. noltei than sediment communities. A clear effect of PAR was noticed on the net community production of both communities. Higher PAR intensities resulted in higher NCP under CO2 enriched conditions for both communities. CO2 enrichment will have a positive effect on the intertidal communities during emersion.

Continue reading ‘Global change effects on seagrass ecosystem’

Ocean acidification changes the structure of an Antarctic coastal protistan community (update)

Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm) increased in abundance with low to moderate fCO2 (343–634 µatm) but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

Continue reading ‘Ocean acidification changes the structure of an Antarctic coastal protistan community (update)’

A comparison of life-history traits in calcifying Spirorbinae polychaetes living along natural pH gradients

Low-pH vent systems are ideal natural laboratories to study the consequences of long-term low-pH exposure on marine species and thus identify life-history traits associated with low-pH tolerance. This knowledge can help to inform predictions on which types of species may be less vulnerable in future ocean acidification (OA) scenarios. Accordingly, we investigated how traits of calcifying polychaete species (Serpulidae, Spirorbinae) varied with pH using a functional trait analysis at 2 natural pH gradients around the Castello Aragonese islet off Ischia, Italy. We first observed the distribution and abundance patterns of all calcifying polychaete epiphytes in the canopy of Posidonia oceanica seagrass across these gradients. We then used laboratory trials to compare fecundity, settlement success, and juvenile survival in the dominant species from a control (Pileolaria militaris Claparède, 1870) and a low-pH site (Simplaria sp.). We found significantly higher reproductive output, juvenile settlement rates, and juvenile survival in Simplaria sp. individuals from the low-pH site, compared to P. militaris individuals from control pH sites, when observed in their respective in situ pH conditions. Our results suggest that tolerance to low pH may result, in part, from traits associated with successful reproduction and rapid settlement under low-pH conditions. This finding implies that other species with similar life-history traits may respond similarly, and should be targeted for future OA tolerance research.

Continue reading ‘A comparison of life-history traits in calcifying Spirorbinae polychaetes living along natural pH gradients’

Increasing use of human-dominated habitats as CO2 emissions warm and acidify oceans

Urban and artificial structures are increasingly added to the world’s coasts during a time in which changing climate is forecast to drive shifts in naturally occurring habitats. We ask whether the role of artificial structures as marine habitats will increase in importance relative to their natural counterparts, particularly as natural habitats are negatively affected by ocean warming and acidification. To evaluate this model, we contrasted use of natural (kelp forest and turfing algae) and artificial habitat (plastic pier-piling) by a nest-building amphipod (Cymadusa pemptos) under current and future climate conditions of CO2 and temperature. Under future conditions, amphipod populations in mesocosms increased, but this did not lead to greater proportional colonization of kelp and turf. Instead, colonization doubled in artificial habitats, and there was increasing production and occupation of nests on artificial habitats relative to natural habitats. In an age when human modification of natural substrata is increasingly cited as an agent of wildlife decline, understanding the future role of artificial habitats as replacement dwellings for natural habitats is critical. We pioneer an understanding of the future role of natural and artificial habitats, identifying the possibility that the role of urban structures as marine habitats may only increase.

Continue reading ‘Increasing use of human-dominated habitats as CO2 emissions warm and acidify oceans’

Will temperature and salinity changes exacerbate the effects of seawater acidification on the marine microalga Phaeodactylum tricornutum?

Highlights

• Combined effects of pH, temperature and salinity were studied on a marine diatom.
• A novel CO2 injection system was used for performing microalgae toxicity test.
• Synergistic effects were found on cell viability, cell size and autofluorescence.
• Results are useful to address the potential impact of climate change.

Abstract
To evaluate the effects related to the combination of potential future changes in pH, temperature and salinity on microalgae, a laboratory experiment was performed using the marine diatom Phaeodactylum tricornutum. Populations of this species were exposed during 48 h to a three-factor experimental design (3 × 2 × 2) with two artificial pH values (6, 7.4), two levels of temperature (23 °C, 28 °C), two levels of salinity (34 psu, 40 psu) and a control (pH 8, Temp 23 °C, Sal 34 psu). The effects on growth, cell viability, metabolic activity, and inherent cell properties (size, complexity and autofluorescence) of P. tricornutum were studied using flow cytometry. The results showed adverse effects on cultures exposed to pH 6 and high temperature and salinity, being the inherent cell properties the most sensitive response. Also, linked effects of these parameters resulted on cell viability and cell size decrease and an increase of cell autofluorescence. The conclusions obtained from this work are useful to address the potential effects of climate change (in terms of changes on pH, salinity and temperature) in microalgae.

Continue reading ‘Will temperature and salinity changes exacerbate the effects of seawater acidification on the marine microalga Phaeodactylum tricornutum?’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,076,601 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book