Posts Tagged 'abundance'

Phytoplankton community responses to iron and CO2 enrichment in different biogeochemical regions of the Southern Ocean

The ongoing rise in atmospheric CO2 concentration is causing rapid increases in seawater pCO2levels. However, little is known about the potential impacts of elevated CO2 availability on the phytoplankton assemblages in the Southern Ocean’s oceanic regions. Therefore, we conducted four incubation experiments using surface seawater collected from the subantarctic zone (SAZ) and the subpolar zone (SPZ) in the Australian sector of the Southern Ocean during the austral summer of 2011–2012. For incubations, FeCl3 solutions were added to reduce iron (Fe) limitation for phytoplankton growth. Ambient and high (~750 µatm) CO2 treatments were then prepared with and without addition of CO2-saturated seawater, respectively. Non-Fe-added (control) treatments were also prepared to assess the effects of Fe enrichment (overall, control, Fe-added, and Fe-and-CO2-added treatments). In the initial samples, the dominant phytoplankton taxa shifted with latitude from haptophytes to diatoms, likely reflecting silicate availability in the water. Under Fe-enriched conditions, increased CO2 level significantly reduced the accumulation of biomarker pigments in haptophytes in the SAZ and AZ, whereas a significant decrease in diatom markers was only detected in the SAZ. The CO2-related changes in phytoplankton community composition were greater in the SAZ, most likely due to the decrease in coccolithophore biomass. Our results suggest that an increase in CO2, if it coincides with Fe enrichment, could differentially affect the phytoplankton community composition in different geographical regions of the Southern Ocean, depending on the locally dominant taxa and environmental conditions.

Continue reading ‘Phytoplankton community responses to iron and CO2 enrichment in different biogeochemical regions of the Southern Ocean’

Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance

The Arctic Ocean is a region particularly prone to ongoing ocean acidification (OA) and climate-driven changes. The influence of these changes on Arctic phytoplankton assemblages, however, remains poorly understood. In order to understand how OA and enhanced irradiances (e.g., resulting from sea–ice retreat) will alter the species composition, primary production, and eco-physiology of Arctic phytoplankton, we conducted an incubation experiment with an assemblage from Baffin Bay (71°N, 68°W) under different carbonate chemistry and irradiance regimes. Seawater was collected from just below the deep Chl a maximum, and the resident phytoplankton were exposed to 380 and 1000 µatm pCO2 at both 15 and 35% incident irradiance. On-deck incubations, in which temperatures were 6 °C above in situ conditions, were monitored for phytoplankton growth, biomass stoichiometry, net primary production, photo-physiology, and taxonomic composition. During the 8-day experiment, taxonomic diversity decreased and the diatom Chaetoceros socialis became increasingly dominant irrespective of light or CO2 levels. We found no statistically significant effects from either higher CO2 or light on physiological properties of phytoplankton during the experiment. We did, however, observe an initial 2-day stress response in all treatments, and slight photo-physiological responses to higher CO2 and light during the first five days of the incubation. Our results thus indicate high resistance of Arctic phytoplankton to OA and enhanced irradiance levels, challenging the commonly predicted stimulatory effects of enhanced CO2 and light availability for primary production.

Continue reading ‘Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance’

Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

Continue reading ‘Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations’

Effects of elevated CO2 on phytoplankton during a mesocosm experiment in the southern eutrophicated coastal water of China

There is a growing consensus that the ongoing increase in atmospheric CO2 level will lead to a variety of effects on marine phytoplankton and ecosystems. However, the effects of CO2 enrichment on eutrophic coastal waters are still unclear, as are the complex mechanisms coupled to the development of eutrophication. Here, we report the first mesocosm CO2 perturbation study in a eutrophic subtropical bay during summer by investigating the effect of rising CO2 on a model artificial community consisting of well-characterized cultured diatoms (Phaeodactylum tricornutum and Thalassiosira weissflogii) and prymnesiophytes (Emiliania huxleyi and Gephyrocapsa oceanica). These species were inoculated into triplicate 4 m3 enclosures with equivalent chlorophyll a (Chl-a) under present and higher partial pressures of atmospheric CO2 (pCO2 = 400 and 1000 ppmv). Diatom bloom events were observed in all enclosures, with enhanced organic carbon production and Chl-a concentrations under high CO2 treatments. Relative to the low CO2 treatments, the consumption of the dissolved inorganic nitrogen and uptake ratios of N/P and N/Si increased significantly during the bloom. These observed responses suggest more extensive and complex effects of higher CO2 concentrations on phytoplankton communities in coastal eutrophic environments.

Continue reading ‘Effects of elevated CO2 on phytoplankton during a mesocosm experiment in the southern eutrophicated coastal water of China’

Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification

The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanicashoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters.

Continue reading ‘Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification’

Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: Results from a flume experiment

Global concern over increasing CO2 emissions, and the resultant CO2 driven temperature rises and changes in seawater chemistry, necessitates the advancement of understanding into how these changes will affect marine life now and in the future. Here we report on an experimental investigation into the effects of increased CO2concentration and elevated temperature on sedimentary meiofaunal communities. Cohesive (muddy) and non-cohesive (sandy) sediments were collected from the Eden Estuary in St. Andrews, Scotland, UK, placed within a flume setup and exposed to 2 levels of CO2 concentration (380 and 750 ppmv, current at the time of the experiment, and predicted CO2 concentration by 2100, respectively) and 2 temperature levels (12 °C and 16 °C, current in-situ and predicted temperature by 2100, respectively). We investigated the metazoan meiofauna and nematode communities before and after 28 days of exposure under these experimental conditions. The most determinative factor for abundance, diversity and community structure of meiofauna and nematodes was sediment type: on all levels, communities were significantly different between sand and mud sediments which agrees with what is generally known about the influence of sediment structure on meiofaunal organisms. Few CO2 and temperature effects were observed, suggesting that meiofauna and nematodes are generally much less responsive than, for instance, microbial communities and macrofauna to these environmental changes in estuarine environments, where organisms are naturally exposed to a fluctuating environment. This was corroborated by the observed effects related to the different seasons in which the samples were taken from the field to run the experiment. After 28 days, meiofauna and nematode communities in muddy sediments showed a greater response to increased CO2 concentration and temperature rise than in sandy sediments. However, further study is needed to investigate the underlying mechanisms and meiofauna species-specific resilience and responses to ocean acidification and warming, and their interactions with other biota, to understand what such changes may mean for meiofauna communities and the ecosystem processes and functions they contribute to.

Continue reading ‘Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: Results from a flume experiment’

Vulnerability of macronutrients to the concurrent effects of enhanced temperature and atmospheric pCO2 in representative shelf sea sediment habitats

Fundamental changes in seawater carbonate chemistry and sea surface temperatures associated with the ocean uptake of anthropogenic CO2 are accelerating, but investigations of the susceptibility of biogeochemical processes to the simultaneous occurrence of multiple components of climate change are uncommon. Here, we quantify how concurrent changes in enhanced temperature and atmospheric pCO2, coupled with an associated shift in macrofaunal community structure and behavior (sediment particle reworking and bioirrigation), modify net carbon and nutrient concentrations (NH4-N, NOx-N, PO4-P) in representative shelf sea sediment habitats (mud, sandy-mud, muddy-sand and sand) of the Celtic Sea. We show that net concentrations of organic carbon, nitrogen and phosphate are, irrespective of sediment type, largely unaffected by a simultaneous increase in temperature and atmospheric pCO2. However, our analyses also reveal that a reduction in macrofaunal species richness and total abundance occurs under future environmental conditions, varies across a gradient of cohesive to non-cohesive sediments, and negatively moderates biogeochemical processes, in particular nitrification. Our findings indicate that future environmental conditions are unlikely to have strong direct effects on biogeochemical processes but, particularly in muddy sands, the abundance, activity, composition and functional role of invertebrate communities are likely to be altered in ways that will be sufficient to regulate the function of the microbial community and the availability of nutrients in shelf sea waters.

Continue reading ‘Vulnerability of macronutrients to the concurrent effects of enhanced temperature and atmospheric pCO2 in representative shelf sea sediment habitats’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,018,757 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book