Posts Tagged 'abundance'

Negative effects of a zoanthid competitor limit coral calcification more than ocean acidification

Ocean acidification (OA) threatens the persistence of reef-building corals and the habitat they provide. While species-specific effects of OA on marine organisms could have cascading effects on ecological interactions like competition, few studies have identified how benthic reef competitors respond to OA. We explored how two common Caribbean competitors, branching Porites and a colonial zoanthid (Zoanthus), respond to the factorial combination of OA and competition. In the laboratory, we exposed corals, zoanthids and interacting corals and zoanthids to ambient (8.01 ± 0.03) and OA (7.68 ± 0.07) conditions for 60 days. The OA treatment had no measured effect on zoanthids or coral calcification but decreased Porites maximum PSII efficiency. Conversely, the competitive interaction significantly decreased Porites calcification but had minimal-to-no countereffects on the zoanthid. Although this interaction was not exacerbated by the 60-day OA exposure, environmental changes that enhance zoanthid performance could add to the dominance of zoanthids over corals. The lack of effects of OA on coral calcification indicates that near-term competitive interactions may have more immediate consequences for some corals than future global change scenarios. Disparate consequences of competition have implications for community structure and should be accounted for when evaluating local coral reef trajectories.

Continue reading ‘Negative effects of a zoanthid competitor limit coral calcification more than ocean acidification’

Impacts of seawater pH buffering on the larval microbiome and carry-over effects on later-life disease susceptibility in Pacific oysters

Ocean acidification upwelling events and the resulting lowered aragonite saturation state of seawater have been linked to high mortality of marine bivalve larvae in hatcheries. Major oyster seed producers along North America’s west coast have mitigated impacts via seawater pH buffering (e.g., addition of soda ash). However, little consideration has been given to whether such practice may impact the larval microbiome, with potential carry-over effects on immune competency and disease susceptibility in later-life stages. To investigate possible impacts, Pacific oysters (Crassostrea gigas) were reared under soda ash pH buffered or ambient pH seawater conditions for the first 24 h of development. Both treatment groups were then reared under ambient pH conditions for the remainder of the developmental period. Larval microbiome, immune status (via gene expression), growth, and survival were assessed throughout the developmental period. Juveniles and adults arising from the larval run were then subjected to laboratory-based disease challenges to investigate carry-over effects. Larvae reared under buffered conditions showed an altered microbiome, which was still evident in juvenile animals. Moreover, reduced survival was observed in both juveniles and adults of the buffered group under a simulated marine heatwave and Vibrio exposure compared with those reared under ambient conditions. Results suggest that soda ash pH buffering during early development may compromise later-life stages under stressor conditions, and illustrate the importance of a long-view approach with regard to hatchery husbandry practices and climate change mitigation.

Continue reading ‘Impacts of seawater pH buffering on the larval microbiome and carry-over effects on later-life disease susceptibility in Pacific oysters’

Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model

Atmospheric and oceanic CO2 concentrations are rising at an unprecedented rate. Laboratory studies indicate a positive effect of rising CO2 on phytoplankton growth until an optimum is reached, after which the negative impact of accompanying acidification dominates. Here, we implemented carbonate system sensitivities of phytoplankton growth into our global biogeochemical model FESOM-REcoM and accounted explicitly for coccolithophores as the group most sensitive to CO2. In idealized simulations in which solely the atmospheric CO2 mixing ratio was modified, changes in competitive fitness and biomass are not only caused by the direct effects of CO2, but also by indirect effects via nutrient and light limitation as well as grazing. These cascading effects can both amplify or dampen phytoplankton responses to changing ocean pCO2 levels. For example, coccolithophore growth is negatively affected both directly by future pCO2 and indirectly by changes in light limitation, but these effects are compensated by a weakened nutrient limitation resulting from the decrease in small-phytoplankton biomass. In the Southern Ocean, future pCO2 decreases small-phytoplankton biomass and hereby the preferred prey of zooplankton, which reduces the grazing pressure on diatoms and allows them to proliferate more strongly. In simulations that encompass CO2-driven warming and acidification, our model reveals that recent observed changes in North Atlantic coccolithophore biomass are driven primarily by warming and not by CO2. Our results highlight that CO2 can change the effects of other environmental drivers on phytoplankton growth, and that cascading effects may play an important role in projections of future net primary production.

Continue reading ‘Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model’

Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium

Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.

Continue reading ‘Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium’

Effects of acidification on fish larval abundance at Teknaf coast, Bangladesh

The study aimed to investigate the effects of acidification on fish larvae abundance at the Teknaf coast. From January 8 to December 14, 2021, samples of fish larvae were collected at every month from the Teknaf coast. From the bottom to the surface, Bongo-Net with a 500 µm mesh size was being towed. A total of 1,120 larvae were gathered from the research area during the survey. In the study region, 93 larvae/1,000 m3 were found to be the mean density of all fish larvae. The hydrological parameters such as water temperature, pH, salinity, and total alkalinity were determined to find out the effects of these variables on the larvae abundance along the Teknaf coast. The average values of the parameters including water temperature, pH, salinity, and total alkalinity were found at 28.41°C, 8.36, 23.57 PSU, and 113.25 mg/l respectively. The ocean acidification factors including pCO2, HCO3-, CO32-, DIC, ΩAragonite, and ΩCalcite were also determined by using the “seacarb” package of R programming to find out the effects of these variables on the larvae abundance along the Teknaf coast. The average values of the factors including pCO2, HCO3-, CO32-, DIC, ΩAragonite, and ΩCalcite were found 128.72 µatm, 0.000751 mole/kg, 0.000138 mole/kg, 0.000892 mole/kg, 2.3544 and 3.7028 respectively. The results showed an insignificant relationship between pCO2 and fish larvae abundance throughout the Teknaf coast. However, there was a negative correlation between pCO2 and pH. The findings of this research indicate that OA affects fish larvae abundance at Teknaf coast. Regional fisheries management organizations will be better able to make decisions about the management of the extremely valuable fish larvae as a result of future population-level predictions of the impacts of ocean acidification.

Continue reading ‘Effects of acidification on fish larval abundance at Teknaf coast, Bangladesh’

Benthic foraminifera and pore water carbonate chemistry on a tidal flat and salt marsh at Ria Formosa, Algarve, Portugal

Graphical abstract


  • Foraminifera and halophytes showed a relationship with pore water properties.
  • Soil salinity and evaporation are the governing environmental factors.
  • Agglutinated foraminifera were rather related to pore water pCO2 than to submergence time or elevation.
  • Calcareous foraminifera specialised to tolerate carbonate-corrosive conditions prevailed at lowest saturation levels.


Benthic foraminifera showed a vertical zonation in tidally influenced salt marshes, which has been used for sea level reconstructions. Growing evidence suggested that freshwater influx, salinity, or the pH of interstitial waters has also an impact on the foraminiferal distribution. A tidal flat and salt marsh transect was investigated in the north-western Ria Formosa coastal lagoon, Algarve, Portugal, to constrain the relationship of benthic foraminifera, halophytes, and pore water properties. The dominance of saltworts from the subfamily Salicornioideae and landward increasing soil salinities depicted evaporation as governing environmental factor. The carbonate chemistry from lagoonal and pore waters identified anoxic tidal flat sediments of as main source of total alkalinity. The alkalinity was lower in the salt marsh, where the pCO2 was extremely high. Salt marsh pore waters showed a high variability of carbonate system parameters, which mirrored small-scale spatial heterogeneities in the soil. The distribution of textulariid salt marsh foraminifera was confined to the vegetated zones, where their abundance increased with elevation. Calcareous species were frequent on the tidal flat and in the highest salt marsh. Many of them were specialised to high salinities or to extreme and variable environmental conditions. Two levels of faunal change in the salt marsh coincide with vegetation zonal boundaries, mean tide or mean high water levels. The two other faunal changes were related to changes in calcite saturation state or organic carbon concentrations. The proportion of textulariids showed a negative correlation with submergence time or elevation, and a significant correlation with pore water pCO2. The faunal distribution, pore water calcite saturation, and Ammonia dissolution patterns indicated that calcareous species specialised to tolerate carbonate-corrosive conditions prevailed even at lowest saturation levels.

Continue reading ‘Benthic foraminifera and pore water carbonate chemistry on a tidal flat and salt marsh at Ria Formosa, Algarve, Portugal’

Responses of elemental content and macromolecule of the coccolithophore Emiliania huxleyi to reduced phosphorus availability and ocean acidification depend on light intensity

Global climate change leads to simultaneous changes in multiple environmental drivers in the marine realm. Although physiological characterization of coccolithophores have been studied under climate change, there is limited knowledge on the biochemical responses of this biogeochemically important phytoplankton group to changing multiple environmental drivers. Here we investigate the interactive effects of reduced phosphorus availability (4 to 0.4 μmol L–1), elevated pCO2 concentrations (426 to 946 μatm) and increasing light intensity (40 to 300 μmol photons m–2 s–1) on elemental content and macromolecules of the cosmopolitan coccolithophore Emiliania huxleyi. Reduced phosphorus availability reduces particulate organic nitrogen and protein contents under low light intensity, but not under high light intensity. Reduced phosphorus availability and ocean acidification act synergistically to increase particulate organic carbon (POC) and carbohydrate contents under high light intensity but not under low light intensity. Reduced phosphorus availability, ocean acidification and increasing light intensity act synergistically to increase the allocation of POC to carbohydrates. Under future ocean acidification and increasing light intensity, enhanced carbon fixation could increase carbon storage in the phosphorus-limited regions of the oceans where E. huxleyi dominates the phytoplankton assemblages. In each light intensity, elemental carbon to phosphorus (C : P) and nitrogen to phosphorus (N : P) ratios decrease with increasing growth rate. These results suggest that coccolithophores could reallocate chemical elements and energy to synthesize macromolecules efficiently, which allows them to regulate its elemental content and growth rate to acclimate to changing environmental conditions.

Continue reading ‘Responses of elemental content and macromolecule of the coccolithophore Emiliania huxleyi to reduced phosphorus availability and ocean acidification depend on light intensity’

Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis

Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.

Continue reading ‘Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis’

The effects of ocean acidification on the establishment and maintenance of a model cnidarian-dinoflagellate symbiosis

Coral reefs are increasingly under threat from the effects of anthropogenic climate change, including rising sea surface temperatures and more acidified waters. At the foundation of these diverse and valuable ecosystems is the symbiotic relationship between calcifying corals and their endosymbiotic dinoflagellate algae, Symbiodiniaceae – one that is particularly sensitive to environmental stressors. Ocean acidification (OA) results in the lowering of pH and changes to carbonate chemistry and the inorganic carbon species available to marine organisms. Cnidarians such as reef-building corals may be particularly at risk from OA, as changes in pH and carbon availability can alter central physiological processes, including calcification, photosynthesis, acid-base regulation, metabolism and cell-cycle regulation. Yet, while responses to OA have been well researched at the physiological level, results have often been contradictory, and a clear understanding of the nature and extent of impacts on the cnidarian-dinoflagellate symbiosis remains equivocal. This thesis therefore aimed to provide further insights into the effects of OA on the establishment and maintenance of the cnidarian-dinoflagellate symbiosis. My research utilised the well-established model system for this symbiosis: the sea anemone Exaiptasia diaphana (‘Aiptasia’) and its native symbiont Breviolum minutum.

Continue reading ‘The effects of ocean acidification on the establishment and maintenance of a model cnidarian-dinoflagellate symbiosis’

Global change differentially modulates Caribbean coral physiology

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore Ssiderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in Pstrigosa and Pastreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies Ssiderea and Pastreoides as potential ‘winners’ on future Caribbean coral reefs due to their resilience under projected global change stressors, while Pstrigosa will likely be a ‘loser’ due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.

Continue reading ‘Global change differentially modulates Caribbean coral physiology’

Phytoplankton community shift in response to experimental Cu addition at the elevated CO2 levels (Arabian Sea, winter monsoon)

Understanding phytoplankton community shifts under multiple stressors is becoming increasingly important. Among other combinations of stressors, the impact of trace metal toxicity on marine phytoplankton under the ocean acidification scenario is an important aspect to address. Such multiple stressor studies are rare from the Arabian Sea, one of the highest productive oceanic provinces within the North Indian Ocean. We studied the interactive impacts of copper (Cu) and CO2 enrichment on two natural phytoplankton communities from the eastern and central Arabian Sea. Low dissolved silicate (DSi < 2 µM) favoured smaller diatoms (e.g. Nitzschia sp.) and non-diatom (Phaeocystis). CO2 enrichment caused both positive (Nitzschia sp. and Phaeocystis sp.) and negative (Cylindrotheca closterium, Navicula sp., Pseudo-nitzschia sp., Alexandrium sp., and Gymnodinium sp.) growth impacts. The addition of Cu under the ambient CO2 level (A-CO2) hindered cell division in most of the species, whereas Chla contents were nearly unaffected. Interestingly, CO2 enrichment seemed to alleviate Cu toxicity in some species (Nitzschia sp., Cylindrotheca closterium, Guinardia flaccida, and Phaeocystis) and increased their growth rates. This could be related to the cellular Cu demand and energy budget at elevated CO2 levels. Dinoflagellates were more sensitive to Cu supply compared to diatoms and prymnesiophytes and could be related to the unavailability of prey. Such community shifts in response to the projected ocean acidification, oligotrophy, and Cu pollution may impact trophic transfer and carbon cycling in this region.

Continue reading ‘Phytoplankton community shift in response to experimental Cu addition at the elevated CO2 levels (Arabian Sea, winter monsoon)’

Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era

The aim of this work is to investigate the variability of planktic foraminifera calcification in the northwestern Mediterranean Sea on seasonal, interannual and pre-industrial Holocene time scales. This study is based on data from a 12-year-long sediment trap record retrieved in the in the Gulf of Lions and seabed sediment samples from the Gulf of Lions and the promontory of Menorca. Three different planktic foraminifera species were selected based on their different ecology and abundance: Globigerina bulloides, Neogloboquadrina incompta, and Globorotalia truncatulinoides. A total of 273 samples were weighted in both sediment trap and seabed samples. As the traditionally used sieve fractions method is considered unreliable because of the effect of morphometric parameters on the foraminifera weight, we measured area and diameter to constrain the effect of these parameters. The results of our study show substantial different seasonal calcification patterns across species: G. bulloides showed a slight calcification increase during the high productivity period, while both N. incompta and G. truncatulinoides display a higher calcification during the low productivity period. The comparison of these patterns with environmental parameters revealed that Optimum Growth Conditions temperature and carbonate system parameters are the most likely to influence seasonal calcification in the Gulf of Lions. Interannual analysis suggest that both G. bulloides and N. incompta slightly reduced their calcification between 1994 and 2005, while G. truncatulinoides exhibited a constant and pronounced increase in its calcification that translated in an increase of 20 % of its shell weight for the 400–500 µm narrow size class. While our data suggest that carbonate system parameters are the most likely environmental parameter driving foraminifera calcification changes over the years.

Finally, comparison between sediment trap data and seabed sediments allowed us to assess the changes of planktic foraminifera calcification during the late Holocene, including the preindustrial era. Several lines of evidence strongly indicate that selective dissolution did not bias the results in any of our data sets. Our results showed a clear calcification reduction between pre-industrial Holocene and recent data with G. truncatulinoides experiencing the largest calcification decrease (32–40 %) followed by N. incompta (20–27 %) and G. bulloides (18–24 %). Overall, our results provide evidence of clear reduction in planktic foraminifera calcification in the Mediterranean most likely associated with ongoing ocean acidification and consistent with previous observations in other settings of the world’s oceans.

Continue reading ‘Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era’

The indirect effects of ocean acidification on corals and coral communities

Ocean acidification (OA) is a major threat to marine calcifying organisms. This manuscript gives an overview of the physiological effects of acidification on reef-building corals from a cellular to population scale. In addition, we present the first review of the indirect effects resulting from altered species interactions. We find that the direct effects of acidification are more consistently negative at larger spatial scales, suggesting an accumulation of sub-lethal physiological effects can result in notable changes at a population and an ecosystem level. We identify that the indirect effects of acidification also have the potential to contribute to declines in coral cover under future acidified conditions. Of particular concern for reef persistence are declines in the abundance of crustose coralline algae which can result in loss of stable substrate and settlement cues for corals, potentially compounding the direct negative effects on coral recruitment rates. In addition, an increase in the abundance of bioeroders and bioerosive capacity may compound declines in calcification and result in a shift towards net dissolution. There are significant knowledge gaps around many indirect effects, including changes in herbivory and associated coral–macroalgal interactions, and changes in habitat provision of corals to fish, invertebrates and plankton, and the impact of changes to these interactions for both individual corals and reef biodiversity as structural complexity declines. This research highlights the potential of indirect effects to contribute to alterations in reef ecosystem functions and processes. Such knowledge will be critical for scaling-up the impacts of OA from individual corals to reef ecosystems and for understanding the effects of OA on reef-dependent human societies.

Continue reading ‘The indirect effects of ocean acidification on corals and coral communities’

Microbial ecosystem responses to alkalinity enhancement in the North Atlantic subtropical gyre

In addition to reducing carbon dioxide (CO2) emissions, actively removing CO2 from the atmosphere is widely considered necessary to keep global warming well below 2°C. Ocean Alkalinity Enhancement (OAE) describes a suite of such CO2 removal processes that all involve enhancing the buffering capacity of seawater. In theory, OAE both stores carbon and offsets ocean acidification. In practice, the response of the marine biogeochemical system to OAE must be demonstrably negligible, or at least manageable, before it can be deployed at scale. We tested the OAE response of two natural seawater mixed layer microbial communities in the North Atlantic Subtropical Gyre, one at the Western gyre boundary, and one in the middle of the gyre. We conducted 4-day microcosm incubation experiments at sea, spiked with three increasing amounts of alkaline sodium salts and a 13C-bicarbonate tracer at constant pCO2. We then measured a suite of dissolved and particulate parameters to constrain the chemical and biological response to these additions. Microbial communities demonstrated occasionally measurable, but mostly negligible, responses to alkalinity enhancement. Neither site showed a significant increase in biologically produced CaCO3, even at extreme alkalinity loadings of +2,000 μmol kg−1. At the gyre boundary, alkalinity enhancement did not significantly impact net primary production rates. In contrast, net primary production in the central gyre decreased by ~30% in response to alkalinity enhancement. The central gyre incubations demonstrated a shift toward smaller particle size classes, suggesting that OAE may impact community composition and/or aggregation/disaggregation processes. In terms of chemical effects, we identify equilibration of seawater pCO2, inorganic CaCO3 precipitation, and immediate effects during mixing of alkaline solutions with seawater, as important considerations for developing experimental OAE methodologies, and for practical OAE deployment. These initial results underscore the importance of performing more studies of OAE in diverse marine environments, and the need to investigate the coupling between OAE, inorganic processes, and microbial community composition.

Continue reading ‘Microbial ecosystem responses to alkalinity enhancement in the North Atlantic subtropical gyre’

Coralline algae at the Paleocene/Eocene thermal maximum in the southern Pyrenees (N Spain)

During the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66 Ma due to a massive release of CO2. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). Distichoplax biserialis and geniculate forms (mostly Jania nummulitica) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely SpongitesLithoporella as well as NeogoniolithonKarpathia, and Hydrolithon, are less abundant. Species composition does not change throughout the Paleocene/Eocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that, marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant Alveolina) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.

Continue reading ‘Coralline algae at the Paleocene/Eocene thermal maximum in the southern Pyrenees (N Spain)’

Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats

  1. Standardized metrics that quantify a component of ecosystem functioning are essential for evaluating the current status of coastal marine habitats and for monitoring how ecologically important ecosystems are changing in response to global and local environmental change. Calcification accretion units (CAUs) are a standardized tool for quantifying net calcium carbonate accretion, early successional community structure, recruitment of algae and sessile invertebrates and other response metrics that can be determined from image analyses in coastal marine habitats.
  2. CAUs are comprised of paired-settlement tiles that are separated by a spacer. This design mimics the presence of different representative habitats that are common in most marine systems such as exposed benthic surfaces, cryptic spaces inaccessible to grazers and shaded overhangings. The protected space between the tiles facilitates recruitment and inclusion of cryptic taxa in community assemblage estimates. After a period of deployment, CAUs are photographed for image analysis and then decalcified to quantify calcium carbonate accretion rates.
  3. The CAU methodology provides a cost-effective, standardized protocol for evaluating structure and function in marine benthic habitats. We illustrate how CAU data can be used to compare accretion rates and the relative proportion of carbonate polymorphs in ecosystems across the globe.
  4. Here we provide a comprehensive standard operating procedure for building, deploying and processing CAUs, to ensure that a consistent protocol is used for accurate data collection and cross-system comparative studies.
Continue reading ‘Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats’

Effects of climate change and light limitation on coral recruits

Climate change impacts and light attenuation from suspended sediments, due to runoff, natural resuspension or dredging, can both impede the replenishment of coral populations. Here we tested the independent and combined impacts of climate change (current temperature and dissolved CO2, and 2 future climate scenarios) and a 1 mo long light attenuation period at 5 different light levels (0.1 to 4 mol photons m-2 d-1) on early Acropora millepora recruits. Additionally, we evaluated whether the effects were age dependent by comparing responses of recruits that were 1 mo old (‘early attenuation’) vs. 2 mo old (‘late attenuation’). Recruit survival, size and Symbiodiniaceae densities increased slightly under moderate future climate conditions (current temperature +0.44°C, 692 ppm pCO2), but decreased under a more severe climate scenario (+0.94°C, 985 ppm pCO2). Light attenuation significantly decreased recruit survival, size and Symbiodiniaceae densities only for recruits exposed to the late attenuation, suggesting an increasing reliance on photosynthesis as recruits age. Under the more severe climate scenario tested, recruit survival was diminished by both climate change (≤18 ± 4% [SE] in the early attenuation) and light limitation (≤32 ± 6% in the late attenuation) compared with controls. However, there was no interaction between future climate scenarios and light attenuation, indicating that these effects were additive. This study demonstrates the potential effects of light limitation and future climate conditions on coral recruitment success and highlights the need to manage the timing of sediment-generating activities near reefs to optimise light availability for several months post settlement.

Continue reading ‘Effects of climate change and light limitation on coral recruits’

Changing hydrographic, biogeochemical, and acidification properties in the Gulf of Maine as measured by the Gulf of Maine North Atlantic Time Series, GNATS, between 1998 and 2018

The Gulf of Maine North Atlantic Time Series (GNATS) has been run since 1998, across the Gulf of Maine (GoM), between Maine and Nova Scotia. GNATS goals are to provide ocean color satellite validation and to examine change in this coastal ecosystem. We have sampled hydrographical, biological, chemical, biogeochemical, and bio-optical variables. After 2008, warm water intrusions (likely North Atlantic Slope Water [NASW]) were observed in the eastern GoM at 50–180 m depths. Shallow waters (<50 m) significantly warmed in winter, summer, and fall but cooled during spring. Surface salinity and density of the GoM also significantly increased over the 20 years. Phytoplankton standing stock and primary production showed highly-significant decreases during the period. Concentrations of phosphate increased, silicate decreased, residual nitrate [N*; nitrate-silicate] increased, and the ratio of dissolved inorganic nitrogen:phosphate decreased, suggesting increasing nitrogen limitation. Dissolved organic carbon (DOC) and its optical indices generally increased over two decades, suggesting changes to the DOC cycle. Surface seawater carbonate chemistry showed winter periods where the aragonite saturation (Ωar) dropped below 1.6 gulf-wide due to upward winter mixing of cool, corrosive water. However, associated with increased average GoM temperatures, Ωar has significantly increased. These results reinforce the hypothesis that the observed decrease in surface GoM primary production resulted from a switch from Labrador Sea Water to NASW entering the GoM. A multifactor analysis shows that decreasing GoM primary production is most significantly correlated to decreases in chlorophyll and particulate organic carbon plus increases in N* and temperature.

Continue reading ‘Changing hydrographic, biogeochemical, and acidification properties in the Gulf of Maine as measured by the Gulf of Maine North Atlantic Time Series, GNATS, between 1998 and 2018’

Calcification, dissolution and test properties of modern planktonic foraminifera from the central Atlantic Ocean

The mass of well-preserved calcite in planktonic foraminifera shells provides an indication of the calcification potential of the surface ocean. Here we report the shell weight of 8 different abundant planktonic foraminifera species from a set of core-to sediments along the Mid-Atlantic Ridge. The analyses showed that near the equator, foraminifera shells of equivalent size weigh on average 1/3 less than those from the middle latitudes. The carbonate preservation state of the samples was assessed by high resolution X-ray microcomputed tomographic analyses of Globigerinoides ruber and Globorotalia truncatulinoides specimens. The specimen preservation was deemed good and does not overall explain the observed shell mass variations. However, G. ruber shell weights might be to some extent compromised by residual fine debris internal contamination. Deep dwelling species possess heavier tests than their surface-dwelling counterparts, suggesting that the weight of the foraminifera shells changes as a function of the depth habitat. Ambient seawater carbonate chemistry of declining carbonate ion concentration with depth cannot account for this interspecies difference. The results suggest a depth regulating function for plankton calcification, which is not dictated by water column acidity.

Continue reading ‘Calcification, dissolution and test properties of modern planktonic foraminifera from the central Atlantic Ocean’

Ocean acidification alters the predator – prey relationship between hydrozoa and fish larvae

Anthropogenic CO2 emissions cause a drop in seawater pH and shift the inorganic carbon speciation. Collectively, the term ocean acidification (OA) summarizes these changes. Few studies have examined OA effects on predatory plankton, e.g. Hydrozoa and fish larvae as well as their interaction in complex natural communities. Because Hydrozoa can seriously compete with and prey on other higher-level predators such as fish, changes in their abundances may have significant consequences for marine food webs and ecosystem services. To investigate the interaction between Hydrozoa and fish larvae influenced by OA, we enclosed a natural plankton community in Raunefjord, Norway, for 53 days in eight ≈ 58 m³ pelagic mesocosms. CO2 levels in four mesocosms were increased to ≈ 2000 µatm pCO2, whereas the other four served as untreated controls. We studied OA-induced changes at the top of the food web by following ≈2000 larvae of Atlantic herring (Clupea harengus) hatched inside each mesocosm during the first week of the experiment, and a Hydrozoa population that had already established inside the mesocosms. Under OA, we detected 20% higher abundance of hydromedusae staged jellyfish, but 25% lower biomass. At the same time, survival rates of Atlantic herring larvae were higher under OA (control pCO2: 0.1%, high pCO2: 1.7%) in the final phase of the study. These results indicate that a decrease in predation pressure shortly after hatch likely shaped higher herring larvae survival, when hydromedusae abundance was lower in the OA treatment compared to control conditions. We conclude that indirect food-web mediated OA effects drove the observed changes in the Hydrozoa – fish relationship, based on significant changes in the phyto-, micro-, and mesoplankton community under high pCO2. Ultimately, the observed immediate consequences of these changes for fish larvae survival and the balance of the Hydrozoa – fish larvae predator – prey relationship has important implications for the functioning of oceanic food webs.

Continue reading ‘Ocean acidification alters the predator – prey relationship between hydrozoa and fish larvae’

  • Reset


OA-ICC Highlights

%d bloggers like this: