Posts Tagged 'abundance'

Planktonic foraminifers and shelled pteropods in the Barents Sea: seasonal distribution and contribution to the carbon pump of the living fauna, and foraminiferal development during the last three millennia

The Arctic Ocean in general and the Barents Sea specifically, are highly affected by the human induced carbon dioxide (CO2) emissions and increasing temperatures. Atlantification, caused by an increase in warm Atlantic Water inflow, and polar amplification, caused by a higher impact of the increasing temperatures at high latitudes, have already been observed. Moreover, the Barents Sea has been described as a hotspot for ocean acidification. Ocean acidification is the decrease of pH, calcium carbonate saturation state, and carbonate ion concentration due to an increase in CO2 uptake from the atmosphere by the ocean. This alteration of the carbonate chemistry of the water affects the marine biota, especially planktonic marine calcifiers. They are organisms living in the water column with a shell made of calcium carbonate (CaCO3). They contribute significantly to the carbon cycle by exporting mainly CaCO3 from the surface water to the seabed when they die. The main goal of this thesis is to study the distribution of marine calcifiers (planktonic foraminifers and shelled pteropods) in the Barents Sea and the adjacent Arctic Basin. We have (1) investigated their distribution patterns and contribution to carbon dynamics in the north Svalbard margin and in a seasonal basin in the northern Barents Sea; and (2) reconstructed the foraminiferal production and preservation patterns from the late Holocene in sediment cores from the northern and southern Barents Sea. The results from this thesis show that pteropods are important contributors to the carbon dynamics in all seasons in the northern Barents Sea and northern Svalbard margin. Due to the higher sensitivity of their shells compared to foraminifers, they are more likely to be affected by ocean acidification. Moreover, the abundance of foraminifers in the sediment suggests higher productivity in the southern than in the northern Barents Sea. The almost zero abundances observed in the northern Barents Sea core, combined with the seasonality of marine calcifiers, the water carbonate chemistry, and the presence of agglutinated foraminifers suggest dissolution of CaCO3 in the sediment. Due to the use of their shells in paleoceanography, further investigations of CaCO3 dissolution are needed to use them as proxies for the reconstruction of the paleoenvironmental and paleoclimatic conditions in the Barents Sea.

Continue reading ‘Planktonic foraminifers and shelled pteropods in the Barents Sea: seasonal distribution and contribution to the carbon pump of the living fauna, and foraminiferal development during the last three millennia’

Changes in the macrobenthic infaunal community of the Southern California continental margin over five decades in relation to oceanographic factors

Climate change has altered the physiochemical conditions of the coastal ocean but effects on infaunal communities have not been well assessed. Here, we used multivariate ordination to examine temporal patterns in benthic community composition from 4 southern California continental shelf monitoring programs that range in duration from 30 to 50 yr. Temporal changes were compared to variations in temperature, oxygen, and acidification using single-taxon random forest models. Species richness increased over time, coupled with a decline in overall abundance. Continental shelf macrobenthic communities from the 2010s comprised a broader array of feeding guilds and life history strategies than in the 1970s. Changing water temperature was associated with northward shifts in geographic distribution and increases in species abundance, while acidification was associated with southward shifts and declines in abundance of other species. Acidification was also associated with changes in depth distribution of benthic fauna, with shelled molluscs declining in abundance at depths most associated with increasing exposure to acidification. This broad-scale community-level analysis establishes causal hypotheses that set the stage for more targeted studies investigating shifts in abundance or distribution for taxa that appear to be responding to climate change-related disturbances.

Continue reading ‘Changes in the macrobenthic infaunal community of the Southern California continental margin over five decades in relation to oceanographic factors’

The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean

Gelatinous zooplankton are increasingly recognized to play a key role in the ocean’s biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Continue reading ‘The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean’

Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata

Coral reefs may experience lower pH values as a result of ocean acidification (OA), which has negative consequences, particularly for calcifying organisms. Thus far, the effects of this global factor have been mainly investigated on hard corals, while the effects on soft corals remain relatively understudied. We therefore carried out a manipulative aquarium experiment for 21 days to study the response of the widespread pulsating soft coral Xenia umbellata to simulated OA conditions. We gradually decreased the pH from ambient (~8.3) to three consecutive 7-day long pH treatments of 8.0, 7.8, and 7.6, using a CO2 dosing system. Monitored response variables included pulsation rate, specific growth rate, visual coloration, survival, Symbiodiniaceae cell densities and chlorophyll a content, photosynthesis and respiration, and finally stable isotopes of carbon (C) and nitrogen (N) as well as CN content. Pulsation decreased compared to controls with each consecutive lowering of the pH, i.e., 17% at pH 8.0, 26% at pH 7.8 and 32% at pH 7.6, accompanied by an initial decrease in growth rates of ~60% at pH 8.0, not decreasing further at lower pH. An 8.3 ‰ decrease of δ13C confirmed that OA exposed colonies had a higher uptake and availability of atmospheric CO2. Coral productivity, i.e., photosynthesis, was not affected by higher dissolved inorganic C availability and none of the remaining response variables showed any significant differences. Our findings suggest that pulsation is a phenotypically plastic mechanism for Xumbellata to adjust to different pH values, resulting in reduced growth rates only, while maintaining high productivity. Consequently, pulsation may allow Xumbellata to inhabit a broad pH range with minimal effects on its overall health. This resilience may contribute to the competitive advantage that soft corals, particularly Xumbellata, have over hard corals.

Continue reading ‘Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata’

The modulating role of natural variability in the biological response to ocean acidification

Ocean acidification (OA) is the consequence of the uptake of excess carbon dioxide from the atmosphere. Along the coastal zone, ocean acidification is influenced by other processes such as biology and currents, leading to high levels of natural variability in pH. While the impact of pH on marine organisms is better resolved, the modulating role of this natural variability is poorly understood. This master’s thesis aimed at evaluating diel pH fluctuations using the larval stages of the brittle star Amphiura filiformis. Results revealed the importance of acknowledging pH variations with individuals exhibiting higher fitness. Diel analyses also underscored the existence of an intrinsic circadian cycle where larvae would grow more during the daytime than nighttime, possibly explained by better conditions encountered during the day. In addition, we demonstrated a carryover effect that could also be associated with a stage sensitivity. We suggest that future studies should integrate natural variations and delve into the different species’ adaptations as they have an important role in the biological responses to upcoming OA.

Continue reading ‘The modulating role of natural variability in the biological response to ocean acidification’

Infestation of cultivated Pacific oysters by shell-boring polychaetes along the US West Coast: Prevalence is associated with season, culture method, and pH

Shell-boring polychaetes have contributed to the collapse of several mariculture operations around the world. These pests burrow into the shells of bivalves, creating mud blisters that are unappealing to consumers and which make oysters less valuable on the half-shell market. The US Pacific region produces 38% of the farmed shellfish in the US, making it important to understand the prevalence and drivers of parasite infestation in this region. We sampled Pacific oysters (Crassostrea gigas; n = 4158) from 35 shellfish farms over four seasons (two winters and two summers) in four states (northern California (CA), Oregon (OR), Washington (WA), and Alaska (AK)) to document the prevalence of shell-boring polychaetes. We extracted worms from infested oysters and used mitochondrial (CO1, n = 139) and nuclear (18S rRNA, n = 224) markers to determine species identities. To identify the environmental correlates that were associated with infestation, we pooled environmental data from seven monitoring stations in Washington. We assessed whether seawater surface temperature (SST), salinity, and pH were associated with shell-boring polychaete infestation. Our sampling confirmed the presence of Polydora websteri in the study region, in addition to four other species of shell-boring polychaetes and seven unidentified haplotypes. The mean prevalences across all shell-boring polychaete species ranged from 23 to 45% across seasons between states. In general, prevalence was higher in the winter and among oysters cultured on the bottom versus in tumbled bags, but these results varied across states. We also found greater infestation by shell-boring polychaetes at less acidified sites (pH = 8–8.2). This work is the most comprehensive dataset to characterize shell-boring polychaetes along the US West Coast, providing an important baseline of prevalence, species distribution, and environmental associations.

Continue reading ‘Infestation of cultivated Pacific oysters by shell-boring polychaetes along the US West Coast: Prevalence is associated with season, culture method, and pH’

Deciphering the evolvement of microbial communities from hydrothermal vent sediments in a global change perspective

Microbial communities first respond to changes of external environmental conditions. Observing the microbial responses to environmental changes in terms of taxonomic and functional biodiversity is therefore of great interest, particularly in extreme environments, where the already extreme conditions can become even harsher. In this study, sediment samples from three different shallow hydrothermal vents in Levante Bay (Vulcano Island, Aeolian Islands, Italy) were used to set up microcosm experiments with the aim to explore the microbial dynamics under changing conditions of pH and redox potential over a 90-days period. The leading hypothesis was to establish under microcosm conditions whether the starting microbial communities of the sediments evolved differently depending on their origin. To profile the dynamics of microbial populations over time, biodiversity, enzymatic profile, total cell abundance estimations, total/respiring cell ratio were estimated by using different approaches. An evident change in the microbial community structure was observed, mainly in the microcosm containing the sediment from the most acidified site, which was characterized by a highly diversified microbial community (in prevalence composed of ThermotogaDesulfobacterotaPlanctomycetotaSynergistota and Deferribacterota). An increase in microbial resistant forms (e.g., spore-forming species) with anaerobic metabolism was detected in all experimental conditions. Differential physiological responses characterized the sedimentary microbial communities. Proteolytic activity appeared to be stimulated under microcosm conditions, whereas the alkaline phosphatase activity was significantly depressed at low pH values, like those that were measured at the station showing intermediate pH-conditions. The results confirmed a differential response of microbial communities depending on the starting environmental conditions.

Continue reading ‘Deciphering the evolvement of microbial communities from hydrothermal vent sediments in a global change perspective’

The response of tuna to ocean acidification in Indonesian waters (case study: Gulf of Bone)

There is growing concern about ocean acidification (decrease in pH of the ocean as a result of increased atmospheric carbon dioxide absorption by ocean) as one threat of climate change that may have significant impacts on marine organisms, such as fish. Recent studies suggest that adult fish are not directly impaired by OA, however, for the earliest fish stages, a number of direct effects have been observed. Hence, we observed the response of OA on monthly larvae density of yellowfin tuna in the Indonesian water, especially in the Gulf of Bone. The pH on the total scale (pH) and surface aqueous partial pressure of CO2 (pCO2) data were derived from Copernicus Marine Environment Monitoring Service (CMEMS) model product; meanwhile, fish data from 2014-2016 were derived from daily Infrastructure Development for Space Oceanography (INDESO) tuna population model outputs. This study indicates that the variability of pCO2 tends to increase while the pH tends to decline. During the northwest monsoon periods, pH in the Gulf of Bone tends to be lower. The larvae and juvenile of yellowfin tuna in the Gulf of Bone waters have various spatial correlations with pH and pCO2. Both have the potential to decrease with the declined pH and elevated pCO2.

Continue reading ‘The response of tuna to ocean acidification in Indonesian waters (case study: Gulf of Bone)’

CO2 enrichment and excess nitrogen supply synergistically increase toxicity of marine dinoflagellate Alexandrium minutum

Discharges of CO2 and nutrients by anthropogenic activities have notable contributions to CO2 enrichment and eutrophication in coastal systems. Following our previous study that toxic dinoflagellate Alexandrium minutum will increase their growth rate and cellular toxicity under elevated levels of CO2, we further examined the joint effects of CO2 enrichment and excess nitrogen supply through a 29-day experiment under three CO2 levels (400, 800 and 1200 ppm) with a high N/P ratio of 80. It was found that the two factors have synergistical effects in promoting the increase of cellular toxicity. There were remarkable increases in toxin biosynthesis of paralytic shellfish toxins when both intracellular and extracellular toxins were considered. Under the joint impacts of CO2 enrichment and excess nitrogen supply, the apparent transformation from gonyautoxins2/3 to gonyautoxins1/4, with much higher toxicity and lower rate of release, is likely to be another major factor accounting for the increasing toxicity. The increasing growth rate and cellular toxicity of A. minutum under the scenarios with elevated concentrations of both CO2 and nitrogen in coastal systems in the future will increase the risks associated with such toxic algal blooms.

Continue reading ‘CO2 enrichment and excess nitrogen supply synergistically increase toxicity of marine dinoflagellate Alexandrium minutum’

Impact of ocean acidification on the gut histopathology and intestinal microflora of Exopalaemon carinicauda

Marine crustaceans are severely threatened by environmental factors such as ocean acidification, but, despite the latter’s negative impact on growth, molting, and immunity, its effects on intestinal microflora remain poorly understood. This work studied the gut morphology and intestinal microflora of Exopalaemon carinicauda, grown in seawater of different pH levels: 8.1 (control group), 7.4 (AC74 group), and 7.0 (AC70 group). Ocean acidification was found to cause intestinal damage, while significantly altering the microflora’s composition. However, the α-diversity did not differ significantly between the groups. At the phylum level, the relative abundance of Proteobacteria decreased in the acidification groups, while at the genus level, the relative abundance of Sphingomonas decreased. Babeliales was a prominent discriminative biomarker in the AC74 group, with Actinobacteriota, Micrococcales, Beijerinckiaceae, Methylobacterium, and Flavobacteriales being the main ones in the AC70 group. The function prediction results also indicated an enrichment of pathways related to metabolism for the acidification groups. At the same time, those related to xenobiotics’ biodegradation and metabolism were inhibited in AC74 but enhanced in AC70. This is the first study examining the impact of ocean acidification on the intestinal microflora of crustaceans. The results are expected to provide a better understanding of the interactions between shrimp and their microflora in response to environmental stressors.

Continue reading ‘Impact of ocean acidification on the gut histopathology and intestinal microflora of Exopalaemon carinicauda’

pCO2 decrement through alkalinity enhancement and biological production in a shallow-water ecosystem constructed using steelmaking slag

Ocean-based carbon dioxide removal has gained immense attention as a countermeasure against climate change. The enhancement of ocean alkalinity and the creation of new blue carbon ecosystems are considered effective approaches for this. To evaluate the function of steelmaking slag from the viewpoints of CO2 reduction and creation of new blue carbon ecosystems, we conducted a comparative experiment using two mesocosms that replicated tidal-flats and shallow-water ecosystems. Initially, approximately 20 seagrasses (Zostera marina) were transplanted into the shallow-water area in the mesocosm tanks. The use of steelmaking slag is expected to increase the pH by releasing calcium and mitigate turbidity by solidifying dredged soil. In the experimental tank, where dredged soil and steelmaking slag were utilized as bed materials, the pH remained higher throughout the experimental period compared with the control tank, which utilized only dredged soil. As a result, pCO2 remained consistently lower in the experimental tank due to mainly its alkaline effect (March 2019: −10 ± 6 μatm, September 2019: −130 ± 47 μatm). The light environment in the control tank deteriorated due to high turbidity, whereas the turbidity in the experimental tank remained low throughout the year. The number of seagrass shoots in the experimental tank was consistently approximately 20, which was higher than that in the control tank. Additionally, more seaweed and benthic algae were observed in the experimental tank, indicating that it was more conducive to the growth of primary producers. In conclusion, tidal-flat and shallow-water ecosystems constructed using dredged soil and steelmaking slag are expected to enhance CO2 uptake and provide a habitat for primary producers that is superior to those constructed using dredged soil only.

Continue reading ‘pCO2 decrement through alkalinity enhancement and biological production in a shallow-water ecosystem constructed using steelmaking slag’

Assessing the impact of CO2 equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system

Ocean Alkalinity Enhancement (OAE) is a Negative Emissions Technology (NET) that shows significant potential for climate change mitigation. By increasing the bicarbonate ion concentration in ocean water, OAE could enhance long-term carbon storage and mitigate ocean acidification. However, the side effects and/or potential co-benefits of OAE on natural planktonic communities remain poorly understood. To address this knowledge gap, a mesocosm experiment was conducted in the oligotrophic waters of Gran Canaria. A CO2-equilibrated Total Alkalinity (TA) gradient was employed in increments of 300 µmol·L-1, ranging from ~2400 to ~4800 µmol·L-1. This study represents the first attempt to evaluate the potential impacts of OAE on planktonic communities under natural conditions. The results show that Net Community Production (NCP), Gross Production (GP), Community Respiration (CR) rates, as well as the metabolic balance (GP:CR), did not exhibit a linear response to the whole alkalinity gradient. Instead, significant polynomial and linear regression models were observed for all rates up to ∆TA1800 µmol·L-1, in relation to the Dissolved Inorganic Carbon (DIC) concentrations. Notably, the ∆TA1500 and 1800 µmol·L-1 treatments showed peaks in NCP shifting from a heterotrophic to an autotrophic state, with NCP values of 4 and 8 µmol O2 kg-1 d-1, respectively. These peaks and the optimum curve were also reflected in the nanophytoplankton abundance, size-fractionated chlorophyll a and 14C uptake data. Furthermore, abiotic precipitation occurred in the highest treatment after day 21 but no impact on the measured parameters was detected. Overall, a damaging effect of CO2-equilibrated OAE in the range applied here, on phytoplankton primary production, community metabolism and composition could not be inferred. In fact, a potential co-benefit to OAE was observed in the form of the positive curvilinear response to the DIC gradient up to the ∆TA1800 treatment. Further experimental research at this scale is key to gain a better understanding of the short and long-term effects of OAE on planktonic communities.

Continue reading ‘Assessing the impact of CO2 equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system’

Species-dependent effects of seawater acidification on alkaline phosphatase activity in dinoflagellates (update)

Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5–11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificumAmphidinium carteraeEffrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7–10) and F. kawagutii the second (8–10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.

Continue reading ‘Species-dependent effects of seawater acidification on alkaline phosphatase activity in dinoflagellates (update)’

Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification

Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05–0.07 and 0.07–0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×–5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.

Continue reading ‘Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification’

Long-term coral microbial community acclimatization is associated with coral survival in a changing climate

The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressaPorites lobataMontipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33–67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0–10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to Mcapitata and Pacuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, Mcapitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.

Continue reading ‘Long-term coral microbial community acclimatization is associated with coral survival in a changing climate’

Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics


  • In the northern Barents Sea there is a seasonal pattern of production and size distribution of planktonic foraminifers and pteropods, increasing from winter (March) to summer (July–August) and late autumn (December).
  • In general, pteropods dominate over planktonic foraminifera in the Arctic influenced stations.
  • In the study area, pteropods contribute the most (>80%) to carbon standing stocks and export production.
  • The highest values of carbon standing stocks and export production were found in the seasonal ice zone during all seasons.


The Barents Sea is presently undergoing rapid warming and the sea-ice edge and the productive zones are retreating northward at accelerating rates. Planktonic foraminifers and shelled pteropods are ubiquitous marine calcifiers that play an important role in the carbon budget and being particularly sensitive to ocean biogeochemical changes and ocean acidification. Their distribution at high latitudes have rarely been studied, and usually only for the summer season. Here we present results of their distribution patterns in the upper 300 m in the water column (individuals m−3), protein content and size distribution on a seasonal basis to estimate their inorganic and organic carbon standing stocks (µg m−3) and export production (mg m−2 d−1). The study area constitutes a latitudinal transect in the northern Barents Sea from 76˚ N to 82˚ N including seven stations through both Atlantic, Arctic, and Polar surface water regimes and the marginal and seasonal sea-ice zones. The transect was sampled in 2019 (August and December) and 2021 (March, May, and July). The highest carbon standing stocks and export production were found at the Polar seasonally sea-ice covered shelf stations with the contribution from shelled pteropods being significantly higher than planktonic foraminifers during all seasons. We recorded the highest production of foraminifers and pteropods in summer (August 2019 and July 2021) and autumn (December 2019) followed by spring (May 2021), and the lowest in winter (March 2021).

Continue reading ‘Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics’

Elucidating the mechanisms of stress tolerance in reef-building coral holobionts

Coral reefs worldwide are threatened by climate change effects like increasing ocean warming and ocean acidification. These increased pressures cause a dysbiosis between the coral host, algal endosymbionts, and associated coral microbiome that results in the coral host expelling algal endosymbionts, leaving the coral host with a stark white ‘bleached’ appearance. Without their endosymbionts, coral hosts are forced to sustain themselves energetically with heterotrophy instead of relying on the autotrophic carbon and energy sources that once came from the algal endosymbionts. When this response, termed ‘coral bleaching’, happens reef-wide during an extreme wave of increased ocean temperatures, this is called a mass Coral Bleaching Event. The frequency and intensity of mass Coral Bleaching events are increasing around the world, forcing corals to acclimatize to survive. This dissertation investigates the physiological and genomic mechanisms underlying acclimatization and increased stress tolerance in two common, reef-building corals: Montipora capitata and Pocillopora acuta. In three chapters, I present findings that support phenotypic plasticity and increased stress tolerance in M. capitata and hypothesize the mechanisms contributing to this. In Chapter 1, I conducted an ex-situ experiment that mimicked an environmentally realistic, extended heatwave and ocean acidification scenario in a factorial design of increased temperature and increased pCO2 conditions for a two-month stress period and a two-month recovery period. Both species’ physiological states were significantly challenged but M. capitata displayed a more favorable photosynthetic rate to antioxidant capacity ratio and associated with more thermally tolerant symbionts. Although M. capitata survived at higher rates than P. acuta, physiological state was still significantly impacted after two months of recovery, suggesting that marine heatwaves likely induce physiological legacies that may impact performance during the next, inevitable heatwave. In Chapter 2, I further investigated P. acuta’s stress response from Chapter 1 at a genomic level. We sought to test the effects of environmental stressors on gene body DNA methylation patterns to elucidate how environmentally sensitive and dynamic DNA methylation changes are in invertebrates. However, when analyzing gene expression data, our team found that polyploidy was prevalent in our samples, which convoluted our ability to test environmental effect in addition to polyploidy structure. We found that DNA methylation patterns followed polyploidy genetic lineage with diploid corals exhibiting the highest levels of DNA methylation despite lower gene expression levels of epigenetic machinery proteins. Despite significant DNA methylation pattern differences between polyploidies, P. acuta populations still severely declined in increased stress conditions (outlined in Chapter 1), suggesting that regardless of differential gene body methylation and ploidy status, this species may be ultimately too sensitive to future ocean conditions. In Chapter 3, I further investigated the genomic mechanisms underlying stress response in Montipora capitata, by directly comparing bleached (‘Susceptible’) and non-bleached (‘Resistant’) phenotypes of conspecific pairs. We found very little genetic diversity among our samples suggesting there is no effect of genetic structure on phenotypic variation in this context. ‘Resistant’ corals were characterized by association with more thermally tolerant symbionts, lower gene expression variability, higher gene body methylation levels on genes involved in death and stress response, and a more robust cellular stress response. The results of all three chapters suggest that both physiological and genomic stats impact bleaching susceptibility and phenotype and that not one mechanism may act alone to produce a particular phenotype. This dissertation aids in elucidating the mechanisms of stress response in reef-building corals, ultimately guiding our current knowledge of phenotypic variation in the face of climate change.

Continue reading ‘Elucidating the mechanisms of stress tolerance in reef-building coral holobionts’

Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments

Microbial iron reduction is a crucial process in natural ecosystems, contributing to the cycling of elements and supporting the biological activities of organisms. However, the significance of fermentative iron reduction in marine environments and microbial metabolism remains understudied compared with iron reduction coupled with respiration. The main objective of our study was to investigate the influence of fermentative iron reduction on microbial populations and marine sediment. Our findings revealed a robust iron-reducing activity in the enriched marine sediment, demonstrating a maximum ferrihydrite-reducing rate of 0.063 mmol/h. Remarkably, ferrihydrite reduction exhibited an intriguing pH-buffering effect through the release of OH+ and Fe2+ ions, distinct from fermentation alone. This effect resulted in substantial improvements in glucose consumption (71.4%), bacterial growth (48.1%), and metabolite production (80.8%). To further validate the acidification-buffering and metabolism-promoting effects of ferrihydrite reduction, we conducted iron-reducing experiments using a pure strain, Clostridium pasteurianum DMS525. The observed pH-buffering effect resulted from microbial iron reduction in marine sediment and has potential environmental implications by reducing CO2 emissions, mitigating acidification, and preserving the delicate balance of marine ecosystems.

Continue reading ‘Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments’

Microbial communities inhabiting shallow hydrothermal vents as sentinels of acidification processes

Introduction: Shallow hydrothermal vents are considered natural laboratories to study the effects of acidification on biota, due to the consistent CO2 emissions with a consequent decrease in the local pH.

Methods: Here the microbial communities of water and sediment samples from Levante Bay (Vulcano Island) with different pH and redox conditions were explored by Next Generation Sequencing techniques. The taxonomic structure was elucidated and compared with previous studies from the same area in the last decades.

Results and discussion: The results revealed substantial shifts in the taxonomic structure of both bacterial and archaeal communities, with special relevance in the sediment samples, where the effects of external parameters probably act for a long time. The study demonstrates that microbial communities could be used as indicators of acidification processes, by shaping the entire biogeochemical balance of the ecosystem in response to stress factors. The study contributes to understanding how much these communities can tell us about future changes in marine ecosystems.

Continue reading ‘Microbial communities inhabiting shallow hydrothermal vents as sentinels of acidification processes’

Molecular responses in an Antarctic bivalve and an ascidian to ocean acidification


  • The non-calcifying species Cnemidocarpa verrucosa sp. A showed a greater number of differentially expressed genes than the calcifying Aequiyoldia eightsii.
  • The Ocean Acidification caused an upregulation of genes involved in the immune system and antioxidant response in the ascidian Cnemidocarpa verrucosa sp. A.
  • The abundance of the key marine organisms (such as Cnemidocarpa verrucosa), could be affected by Ocean Acidification if pH predictions for polar regions come true.
  • Contrary to expected, Ocean Acidification could not affect the mollusk Aequiyoldia eightsii compared to the non-calcifying species.


Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, results that differ from the general trend, in which one remarks the higher impact on calcifying species. Our result proposes a deep discussion about the potential effect on non-calcifying species, such as ascidians, a diverse and abundant group, that form extended three-dimensional clusters in the shallow waters and shelf areas along the Southern Ocean.

Continue reading ‘Molecular responses in an Antarctic bivalve and an ascidian to ocean acidification’

  • Reset


OA-ICC Highlights