Posts Tagged 'abundance'

Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.

Continue reading ‘Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions’

Limited response of a spring bloom community inoculated with filamentous cyanobacteria to elevated temperature and pCO2

Temperature and CO2 levels are projected to increase in the future, with consequences for carbon and nutrient cycling in brackish environments, such as the Baltic Sea. Moreover, filamentous cyanobacteria are predicted to be favored over other phytoplankton groups under these conditions. Under a 12-day outdoor experiment, we examined the effect on a natural phytoplankton spring bloom community of elevated temperature (from 1°C to 4°C) and elevated pCO2 (from 390 to 970 μatm). No effects of elevated pCO2 or temperature were observed on phytoplankton biovolumes, but a significantly higher photosystem II activity was observed at elevated temperature after 9 days. In addition, three species of diazotrophic filamentous cyanobacteria were inoculated to test their competitive capacity under spring bloom conditions. The toxic cyanobacterium Nodularia spumigena exhibited an average specific growth rate of 0.10 d−1 by the end of the experiment, indicating potential prevalence even during wintertime in the Baltic Sea. Generally, none of the inoculated cyanobacteria species were able to outcompete the natural phytoplankton species at temperatures ≤4°C. No direct effects were found on heterotrophic bacteria. This study demonstrates the highly efficient resistance towards short-term (12 days) changes in abiotic factors by the natural Baltic Sea spring bloom community.

Continue reading ‘Limited response of a spring bloom community inoculated with filamentous cyanobacteria to elevated temperature and pCO2’

Changes in growth performance and biochemical composition of Nannochloropsis oceanica in response to elevated CO2 concentrations

We studied the growth performance and biochemical composition (including
soluble carbohydrates, proteins, lipids, phenols, chlorophyll-a, carotenoid and the C/N-ratio) of Nannochloropsis oceanica under various CO2 concentrations. The cell density of N. oceanic increased with a rise in CO2 concentration and got the high level at a CO2 concentration of 1000ppm or 1500ppm. In addition, except the proteins all tested biochemical composition were significantly affected by CO2 concentration (0.01 <P< 0.05; one factorial ANOVA). However comparing with other biochemical components, the contents of phenols in N. oceanic showed the opposite trends (P<0.01; one factorial ANOVA). In general, the short-term stimulation of elevated CO2 concentration to N. oceanic can promote cell division and synthesis of most of biochemical components (expect proteins and phenols).

Continue reading ‘Changes in growth performance and biochemical composition of Nannochloropsis oceanica in response to elevated CO2 concentrations’

Impacts of the changing ocean-sea ice system on the key forage fish Arctic cod (Boreogadus saida) and subsistence fisheries in the Western Canadian Arctic—evaluating linked Climate, Ecosystem and Economic (CEE) models

This study synthesizes results from observations, laboratory experiments and models to showcase how the integration of scientific methods and indigenous knowledge can improve our understanding of (a) past and projected changes in environmental conditions and marine species; (b) their effects on social and ecological systems in the respective communities; and (c) support management and planning tools for climate change adaptation and mitigation. The study links climate-ecosystem-economic (CEE) models and discusses uncertainties within those tools. The example focuses on the key forage species in the Inuvialuit Settlement Region (Western Canadian Arctic), i.e., Arctic cod (Boreogadus saida). Arctic cod can be trophically linked to sea-ice algae and pelagic primary producers and are key vectors for energy transfers from plankton to higher trophic levels (e.g., ringed seals, beluga), which are harvested by Inuit peoples. Fundamental changes in ice and ocean conditions in the region affect the marine ecosystem and fish habitat. Model simulations suggest increasing trends in oceanic phytoplankton and sea-ice algae with high interannual variability. The latter might be linked to interannual variations in Arctic cod abundance and mask trends in observations. CEE simulations incorporating physiological temperature limits data for the distribution of Arctic cod, result in an estimated 17% decrease in Arctic cod populations by the end of the century (high emission scenario), but suggest increases in abundance for other Arctic and sub-Arctic species. The Arctic cod decrease is largely caused by increased temperatures and constraints in northward migration, and could directly impact key subsistence species. Responses to acidification are still highly uncertain, but sensitivity simulations suggests an additional 1% decrease in Arctic cod populations due to pH impacts on growth and survival. Uncertainties remain with respect to detailed future changes, but general results are likely correct and in line with results from other approaches. To reduce uncertainties, higher resolution models with improved parameterizations and better understanding of the species’ physiological limits are required. Arctic communities should be directly involved, receive tools and training to conduct local, unified research and food chain monitoring while decisions regarding commercial fisheries will need to be precautionary and adaptive in light of the existing uncertainties.

Continue reading ‘Impacts of the changing ocean-sea ice system on the key forage fish Arctic cod (Boreogadus saida) and subsistence fisheries in the Western Canadian Arctic—evaluating linked Climate, Ecosystem and Economic (CEE) models’

Multiple stressor effects on macrobenthic communities in Corpus Christi Bay, Texas, U.S.A.

At any moment in nature, organisms are likely being exposed to multiple stressors, the effects of which are difficult to separate. Often, however, environmental stressors are considered on an individual basis. In southeastern Corpus Christi Bay, TX, declines in benthic macrofaunal community abundance, biomass, diversity, species richness, and species evenness have largely been attributed to the occurrence of hypoxia, a condition of low dissolved oxygen (DO). This study proposes that multiple stressors contribute to these observed benthic macrofaunal declines in southeastern Corpus Christi Bay. Therefore, a 30-year time series of water quality data (salinity, temperature, DO, pH, phosphate, ammonium, nitrite+nitrate, sulfate) and benthic community data (abundance, biomass, species richness, species evenness) was analyzed to describe 1) water quality dynamics of the region and 2) relationships between water quality dynamics and benthic macrofaunal response. Principal component analysis indicated that a large variability in the water quality dataset (63%) could be summarized by three principal components representing a multiple stressor index, a nutrient index, and an acidification index. Seasonality was found to be confounded with the multiple stressor index but not the nutrient or acidification indexes. Spearman rank-order correlations indicated both the multiple stressor and acidification indexes were inversely related to benthic macrofaunal community abundance, biomass, and species richness. A stepwise multiple linear regression analysis on individual water quality variables specified DO, and possibly temperature, to be leading explanatory variables for predicting benthic abundance. Temperature, pH, and nitrite+nitrate were indicated as leading explanatory variables for predicting benthic biomass. Temperature was indicated to be the only leading explanatory variable for predicting species richness. Results demonstrate that multiple stressors, including high temperature, high salinity, and low DO concentrations, are collectively acting on benthic communities in southeastern Corpus Christi Bay.

Continue reading ‘Multiple stressor effects on macrobenthic communities in Corpus Christi Bay, Texas, U.S.A.’

Coral reef calcification and production after the 2016 bleaching event at Lizard Island, Great Barrier Reef

Severe coral bleaching events have affected the Great Barrier Reef (GBR) causing massive losses of hard coral cover. Here, we use flow respirometry approaches to assess coral reef net ecosystem calcification (NEC) and net ecosystem production (NEP) following the 2015/2016 bleaching event at Lizard Island in the northern GBR, a heavily impacted area. Previous studies conducted in 2008 and 2009 [Silverman et al., 2014] were used as pre‐impact data. Lagrangian and Eulerian approaches provided varied results. Estimated NEC (29.1 – 137.7 mmol m‐2 day‐1) and NEP (‐876.7 – 50.5 mmol m‐2 day‐1) rates in 2016 were highly sensitive to assumptions about reef water residence times and oceanic endmember concentrations. Replicating the methodology used for the 2008 and 2009 study resulted in post‐bleaching NEC in 2016 at 32 ± 10.8 mmol m‐2 day‐1, 40 – 46% lower than pre‐bleaching estimates in 2008 (61 ± 12 mmol m‐2 day‐1) and 2009 (54 ± 13 mmol m‐2 day‐1). The slopes of a total alkalinity vs. dissolved inorganic carbon (TA – DIC) plot decreased from ~ 0.3 in 2008 and 2009 to 0.1 in 2016, indicating elevated organic production and a shift in community function. Changes in NEC relative to the previous study were not driven by changing Ω arag. Coral cover shifted from 8.3% and 7.1% in 2008 and 2009 to 3.0% in 2016. We demonstrate a clear decrease in coral reef NEC following bleaching and highlight that subtle assumptions/methodological differences may create bias in the interpretation of results. Therefore, comparing coral reef metabolism datasets and predicting long‐term coral reef calcification based on existing short‐term datasets needs to be done with care.

Continue reading ‘Coral reef calcification and production after the 2016 bleaching event at Lizard Island, Great Barrier Reef’

Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms

Diatoms are experiencing striking fluctuations in seawater carbonate chemistry in the natural marine environment, especially in coastal seawaters. Here, we show that the diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, which utilize different carbon acquisition mechanisms, respond differently to short-term changes in seawater carbonate chemistry. Our results showed that T. weissflogii showed significantly higher photosynthetic oxygen evolution rates than that of P. tricornutum at low levels of CO2 or HCO3−. This suggests that T. weissflogii had higher affinities for CO2 or HCO3− when their concentrations were not sufficient to support saturated growth and photosynthesis. While the activity of Rubisco in P. tricornutum positively correlated with carbonic anhydrases (CA), we observed negative relationship between Rubisco and CA activity in the diatom T. weissflogii. These contrasting physiological responses of diatoms with varied carbon acquisition mechanisms indicate different abilities to cope up with abrupt changes in seawater carbonate chemistry. We propose that the ability to respond to varying carbonate chemistry may act as one determinant of the diatom distributions and phytoplankton community structures.

Continue reading ‘Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,242,876 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book