Posts Tagged 'abundance'

Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species

Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e. metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation and rocky reef substrates. Primary producers and detritus – key food sources for meiofauna – increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.

Continue reading ‘Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species’

A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals

• Mangrove habitats are more resilient to climate change than other habitats.

• Climate change might have positive effects on mangrove-root species communities.

• Using mesocosms we show that an increase of 1.2 °C leads to community homogenisation.

• Warming also led to diversity loss and flattening of mangrove root epibiont communities.

• Juvenile fish altered their use of mangrove habitats under warming and acidification.

Global climate stressors, like ocean warming and acidification, contribute to the erosion of structural complexity in marine foundation habitats by promoting the growth of low-relief turf, increasing grazing pressure on structurally complex marine vegetation, and by directly affecting the growth and survival of foundation species. Because mangrove roots are woody and their epibionts are used to ever-changing conditions in highly variable environments, mangrove habitats may be more resilient to global change stressors than other marine foundation species. Using a large-scale mesocosm experiment, we examined how ocean warming and acidification, under a reduced carbon emission scenario, affect the composition and structural complexity of mangrove epibiont communities and the use of mangrove habitat by juvenile fishes. We demonstrate that even a modest increase in seawater temperature of 1.2 °C leads to the homogenisation and flattening of mangrove root epibiont communities. Warming led to a 24% increase in the overall cover of algal epibionts on roots but the diversity of the epibiont species decreased by 33%. Epibiont structural complexity decreased owing to the shorter stature of weedy algal turfs which prospered under elevated temperature. Juvenile fishes showed alterations in mangrove habitat use with ocean warming and acidification, but these were independent of changes to the root epibiont community. We reveal that the quality of apparently resilient mangrove habitats and their perceived value as habitat for associated fauna are still vulnerable under a globally reduced carbon emission scenario.

Continue reading ‘A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals’

Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow

Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a dense Zostera marina meadow, we measured benthic O2 fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2 (pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2 flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2 concentration and pCO2, ranging from 173 to 377 μmol L−1 and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2 was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2 vs. O2 concentration was attributed to storage of O2 and CO2 in seagrass tissue, air–water exchange of O2 and CO2, and CO2 storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2 and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2 and low O2 concentrations, even though CO2 reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2 concentrations and more frequent temperature extremes.

Continue reading ‘Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow’

Ocean acidification influences plant-animal interactions: the effect of Cocconeis scutellum parva on the sex reversal of Hippolyte inermis

Ocean acidification (O.A.) influences the ecology of oceans and it may impact plant-animal interactions at various levels. Seagrass meadows located at acidified vents in the Bay of Naples (Italy) are considered an open window to forecast the effects of global-changes on aquatic communities. Epiphytic diatoms of the genus Cocconeis are abundant in seagrass meadows, including acidified environments, where they play key ecological roles. A still-unknown apoptogenic compound produced by Cocconeis triggers the suicide of the androgenic gland of Hippolyte inermis Leach 1816, a protandric hermaphroditic shrimp distributed in P. oceanica meadows located both at normal pH and in acidified vents. Feeding on Cocconeis sp. was proven important for the stability of the shrimp’s natural populations. Since O.A. affects the physiology of diatoms, we investigated if, in future scenarios of O.A., Cocconeis scutellum parva will still produce an effect on shrimp’s physiology. Cell densities of Cocconeis scutellum parva cultivated in custom-designed photobioreactors at two pH conditions (pH 7.7 and 8.2) were compared. In addition, we determined the effects of the ingestion of diatoms on the process of sex reversal of H. inermis and we calculated the % female on the total of mature individuals-1 (F/mat). We observed significant differences in cell densities of C. scutellum parva at the two pH conditions. In fact, the highest cell densities (148,808 ±13,935 cells. mm-2) was obtained at day 13 (pH 7.7) and it is higher than the highest cell densities (38,066 (±4,166) cells. mm-2, day 13) produced at pH 8.2. Diatoms cultured at acidified conditions changed their metabolism. In fact, diatoms grown in acidified conditions produced in H. inermis a proportion of females (F/mat 36.3 ±5.9%) significantly lower than diatoms produced at normal pH (68.5 ±2.8), and it was not significantly different from that elicited by negative controls (31.7 ±5.6%).

Continue reading ‘Ocean acidification influences plant-animal interactions: the effect of Cocconeis scutellum parva on the sex reversal of Hippolyte inermis’

Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates

High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNF), nano- and picophytoplankton, and prokaryotes in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥ 634 μatm, HNF abundance was reduced, coinciding with significantly increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNF. Nanophytoplankton abundance was significantly elevated in the 634 and 953 μatm treatments, suggesting that moderate increases in CO2 may stimulate growth. Changes in predator-prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean. Based on these results, it is likely that the phytoplankton community composition in these waters will shift to communities dominated by prokaryotes, nano- and picophytoplankton. This may intensify organic matter recycling in surface waters, leading to a decline in carbon flux, as well as a reducing the quality and quantity of food available to higher trophic organisms.

Continue reading ‘Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates’

Local drivers of the seasonal carbonate cycle across four contrasting coastal systems


• This dataset illustrates how local carbonate chemistry can vary widely along short lengths of coastline due to local drivers, particularly bedrock geology.

• Results highlight which season is most/least favourable for calcifying species and how this relates to their lifecycle.

• The dataset identified a number of key issues when addressing indicators of ecosystem vulnerability (calcium in omega calculations and SIR-).

• Results illustrate that we must understand both regional and local conditions in order to estimate future ocean acidification conditions and potential impacts on local ecosystems and shellfish aquaculture.


Four contrasting coastal systems in Ireland, each with shellfish production activities, were studied to provide a first evaluation of the spatial and seasonal influences on the local carbonate system. The study sites included; (1) a coastal system with sandstone bedrock and minimal freshwater sources, (2) an estuarine system with a catchment limestone bedrock, (3) an estuarine system with a catchment granite bedrock, and (4) a karst groundwater-fed estuary. The type of bedrock was the dominant control on regional carbonate chemistry, where the calcium carbonate catchment bedrock was a strong source of both dissolved inorganic carbon and total alkalinity input in the two limestone regions, which are supersaturated with respect to atmospheric CO2 throughout the year. Primary production played an important role in the non-limestone regions, where both systems were CO2-undersaturated during productive months. Minimum aragonite saturation () was observed at all sites during winter when productivity is lowest; surface winter is 2 in the inner estuary. The substrate-to-inhibitor ratio (SIR), an alternative indicator of ecosystem vulnerability to acidification, was positively correlated to in all systems, however with more variability in the two limestone regions. Results highlight challenges of assessing local ecosystem vulnerability to future acidification and the importance of understanding the local spatio-temporal biogeochemistry.

Continue reading ‘Local drivers of the seasonal carbonate cycle across four contrasting coastal systems’

Changes in coral reef community structure in response to year-long incubations under contrasting pCO2 regimes

Coral reefs are threatened by ocean acidification (OA), which depresses net calcification of corals, calcified algae, and coral reef communities. These effects have been quantified for many organisms, but most experiments last weeks-to-months, and do not test for effects on community structure. Here, the effects of OA on back reef communities from Mo’orea, French Polynesia (17.492 S, 149.826 W), were tested from 12 November 2015 to 16 November 2016 in outdoor flumes maintained at mean pCO2 levels of 364 µatm, 564 µatm, 761 µatm, and 1067 µatm. The communities consisted of four corals and two calcified algae, with change in mass (Gnet, a combination of gross accretion and dissolution) and percent cover recorded monthly. For massive Porites and Montipora spp., Gnet differed among treatments, and at 1067 µatm (relative to ambient) was reduced and still positive; for Porolithon onkodes, all of which died, Gnet was negative at high pCO2, revealing dissolution (sample sizes were too small for analysis of Gnet for other taxa). Growth rates (% cover month−1) were unaffected by pCO2 for Montipora spp., P. rus, Pocillopora verrucosa, and Lithophyllum kotschyanum, but were depressed for massive Porites at 564 µatm. Multivariate community structure changed among seasons, and the variation under all elevated pCO2 treatments differed from that recorded at 364 µatm, and was greatest under 564 µatm and 761 µatm pCO2. Temporal variation in multivariate community structure could not be attributed solely to the effects of OA on the chemical and physical properties of seawater. Together, these results suggest that coral reef community structure may be more resilient to OA than suggested by the negative effects of high pCO2 on Gnet of their component organisms.

Continue reading ‘Changes in coral reef community structure in response to year-long incubations under contrasting pCO2 regimes’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,182 hits


Ocean acidification in the IPCC AR5 WG II

OUP book