Posts Tagged 'mollusks'

Functional diversity and metabolic response in benthic communities along an ocean acidification gradient

Highlights

  • Ocean acidification (OA) affect the distribution of traits within a community leading to the selection of specific functional traits.
  • Along with the selection of traits, OA led to differences in oxygen consumption between benthic communities following acidification gradient.
  • Altered acidified condition have a negative effect on the stability of the community resulting from changes in functional evennes of benthic communities.

Abstract

Altered ocean chemistry caused by ocean acidification (OA) is expected to have negative repercussions at different levels of the ecological hierarchy, starting from the individual and scaling up to the community and ultimately to the ecosystem level. Understanding the effects of OA on benthic organisms is of primary importance given their relevant ecological role in maintaining marine ecosystem functioning. The use of functional traits represents an effective technique to investigate how species adapt to altered environmental conditions and can be used to predict changes in the resilience of communities faced with stresses associated with climate change. Artificial supports were deployed for 1-y along a natural pH gradient in the shallow hydrothermal systems of the Bottaro crater near Panarea (Aeolian Archipelago, southern Tyrrhenian Sea), to explore changes in functional traits and metabolic rates of benthic communities and the repercussions in terms of functional diversity. Changes in community composition due to OA were accompanied by modifications in functional diversity. Altered conditions led to higher oxygen consumption in the acidified site and the selection of species with the functional traits needed to withstand OA. Calcification rate and reproduction were found to be the traits most affected by pH variations. A reduction in a community’s functional evenness could potentially reduce its resilience to further environmental or anthropogenic stressors. These findings highlight the ability of the ecosystem to respond to climate change and provide insights into the modifications that can be expected given the predicted future pCO2 scenarios. Understanding the impact of climate change on functional diversity and thus on community functioning and stability is crucial if we are to predict changes in ecosystem vulnerability, especially in a context where OA occurs in combination with other environmental changes and anthropogenic stressors.

Continue reading ‘Functional diversity and metabolic response in benthic communities along an ocean acidification gradient’

Effects of ocean acidification and summer thermal stress on the physiology and growth of the atlantic surfclam (Spisula solidissima)

This study examines the physiological response of the Atlantic surfclam (Spisula solidissima) to ocean acidification in warm summer temperatures. Working with ambient seawater, this experiment manipulated pH conditions while maintaining natural diel fluctuations and seasonal shifts in temperature. One-year-old surfclams were exposed to one of three pH conditions (ambient (control): 7.8 ± 0.07, medium: 7.51 ± 0.10, or low: 7.20 ± 0.10) in flow-through conditions for six weeks, and feeding and digestive physiology was measured after one day, two weeks, and six weeks. After six weeks of exposure to medium and low pH treatments, growth was not clearly affected, and, contrastingly, feeding and digestive physiology displayed variable responses to pH over time. Seemingly, low pH reduced feeding and absorption rates compared to both the medium treatment and ambient (control) condition; however, this response was clearer after two weeks compared to one day. At six weeks, suppressed physiological rates across both pH treatments and the ambient condition suggest thermal stress from high ambient water temperatures experienced the week prior (24–26 °C) dominated over any changes from low pH. Results from this study provide important information about reduced energy acquisition in surfclams in acidified environments and highlight the need for conducting multistressor experiments that consider the combined effects of temperature and pH stress.

Continue reading ‘Effects of ocean acidification and summer thermal stress on the physiology and growth of the atlantic surfclam (Spisula solidissima)’

Influencing intertidal food web: implications of ocean acidification on the physiological energetics of key species the ‘wedge’ clam Donax faba

Highlights

  • Daily growth rate & calcium concentration have significantly decreased in acidified condition.
  • Total antioxidants and antioxidant enzymes showed an upward tendency.
  • Nutrient composition in clams has altered in acidified condition compared to control.
  • Prolonged exposure to OA will cause deleterious effects on clams thereby upsetting the intertidal food chain.

Abstract

Ocean acidification has become increasingly severe in coastal areas. It poses emerging threats to coastal organisms and influences ecological functioning. Donax faba, a dominant clam in the intertidal zone of the Bay of Bengal, plays an important role in the coastal food web. This clam has been widely consumed by the local communities and also acts as a staple diet for shorebirds and crustaceans. In this paper, we investigated how acidified conditions will influence the physiology, biochemical constituents, and energetics of Donax faba. Upon incubation for 2 months in lowered pH 7.7 ± 0.05 and control 8.1 ± 0.05 conditions, we found a delayed growth in the acidified conditions followed by decrease in calcium ions in the clam shell. Although not significant, we found the digestive enzymes showed a downward trend. Total antioxidant was significantly increased in the acidified condition compared to the control. Though not significant, the expression level of MDA and antioxidant enzymes (SOD, CAT, GST, GPX, and APX) showed increasing trend in acidified samples. Among nutrients such as amino acids and fatty acids, there was no significant difference between treatments, however, showed a downward trend in the acidified conditions compared to control. Among the minerals, iron and zinc showed significant increase in the acidified conditions. The above results suggest that the clam growth, and physiological energetics may have deleterious effects if exposed for longer durations at lowered pH condition thereby affecting the organisms involved in the coastal food web.

Continue reading ‘Influencing intertidal food web: implications of ocean acidification on the physiological energetics of key species the ‘wedge’ clam Donax faba’

Using museum collections to assess the impact of industrialization on mussel (Mytilus edulis) calcification

Mytilus edulis is a commercially and ecologically important species found along the east coast of the United States. Ecologically, Medulis improves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms—impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.

Continue reading ‘Using museum collections to assess the impact of industrialization on mussel (Mytilus edulis) calcification’

Biological response of eelgrass epifauna, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity

Marine carbon dioxide removal (mCDR) approaches are under development to mitigate the effects of climate change with potential co-benefits of local reduction of ocean acidification impacts. One such method is ocean alkalinity enhancement (OAE). A specific OAE method that avoids issues of solid dissolution kinetics and the release of impurities into the ocean is the generation of aqueous alkalinity via electrochemistry to enhance the alkalinity of the surrounding water and extract acid from seawater. While electrochemical acid extraction is a promising method for increasing the carbon dioxide sequestration potential of the ocean, the biological effects of this method are relatively unknown. This study aims to address this knowledge gap by testing the effects of increased pH and alkalinity, delivered in the form of aqueous base, on two ecologically important eelgrass epifauna in the U.S. Pacific Northwest, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), across pH treatments ranging from 7.8 to 9.3. Four-day experiments were conducted in closed bottles to allow measurements of the evolution of carbonate species throughout the experiment with water refreshed twice daily to maintain elevated pH. Sea hares experienced mortality in all pH treatments, ranging from 40 % mortality at pH 7.8 to 100 % mortality at pH 9.3. Isopods experienced lower mortality rates in all treatment groups, which did not significantly increase with higher pH treatments. Different invertebrate species will likely have different responses to increased pH and alkalinity, depending on their physiological vulnerabilities. Investigation of the potential vulnerabilities of local marine species will help inform the decision-making process regarding mCDR planning and permitting.

Continue reading ‘Biological response of eelgrass epifauna, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity’

Impact of anthropogenic global hypoxia on the physiological response of bivalves

Dissolved oxygen (DO) is an important parameter that affects the biology, physiology, and immunology of aquatic animals. In recent decades, DO levels in the global oceans have sharply decreased, partly due to an increase in atmospheric carbon dioxide, temperature, and anthropogenic nutrient loads. Although there have been many reports on the effects of hypoxia on the survival, growth, behavior, and immunity of bivalves, this information has not been well organized. Therefore, this article provides a comprehensive review of the effects of hypoxia on bivalves. In general, hypoxia negatively impacts the food consumption rate and assimilation efficiency, as well as increasing respiration rates in many bivalves. As a result, it reduces the energy allocation for bivalve growth, shell formation, and reproduction. In severe cases, prolonged exposure to hypoxia can result in mass mortality in bivalves. Moreover, hypoxia also has adverse effects on the immunity and response of bivalves to predators, including decreased burial depths, sensitivity to predators, impairment of byssus production, and negatively impacts on the integrity, strength, and composition of bivalve shells. The tolerance of bivalves to hypoxia largely depends on size and species, with larger bivalves being more susceptible to hypoxia and intertidal species being relatively more tolerant to hypoxia. The information in this article is very useful for elucidating the current research status of hypoxia on bivalves and determining future research directions.

Continue reading ‘Impact of anthropogenic global hypoxia on the physiological response of bivalves’

Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus

Recently, we could show that scallops show limitations of muscular performance like a reduced force under ocean warming and acidification. However, the underlying mechanisms at the cellular level are not completely understood. Metabolomics has become a valuable tool to evaluate the responses of marine organisms to various stressors. In the present study we therefore used a semi-targeted, multi tissue NMR based metabolomic approach to analyze metabolite patterns in the Atlantic king scallop, Pecten maximus, that were long-term acclimated to different end of century conditions of ocean warming (OW), ocean acidification (OA) and their combination (OWA). We investigated tissue specific metabolic profiles and metabolite concentrations in frozen tissues from gills, mantle and phasic and tonic adductor muscle of P. maximus under present conditions using 1H-HR-MAS NMR spectroscopy. A set of 33 metabolites revealed a clear tissue-specific pattern which can be attributed to the individual functions of the respective tissue type. We then evaluated the impact of OW, OA and OWA on the metabolic profiles of the different tissues. OW was the main driver of the changes in metabolites. In particular, energy-related metabolites seem to play an important role in the physiological response of scallops to OW and OWA. In combination with pathway analysis and network exploration we propose a possible correlation between metabolic changes in the adductor muscle and limited swimming performance of P. maximus under future climate. While the metabolic response of the phasic muscle seems to mainly depend on net consumption of energy related metabolites such as ATP and phospho-L-arginine, the tonic muscle seems to rely on metabolizing specific amino acids and beta-oxidation to account for the elevated energetic requirements under ocean warming and acidification.

Continue reading ‘Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus’

Expansion and diversity of caspases in Mytilus coruscus contribute to larval metamorphosis and environmental adaptation

Background

Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve.

Results

Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue.

Conclusions

These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.

Continue reading ‘Expansion and diversity of caspases in Mytilus coruscus contribute to larval metamorphosis and environmental adaptation’

Countering the effect of ocean acidification in coastal sediments through carbonate mineral additions

Along with its impact on calcifying plankton, ocean acidification also affects benthic biogeochemistry and organisms. Compared to the overlying water, fluid composition in sediments is altered through the effect of the mineralization of organic matter, which can further lower both pH and the carbonate saturation state. This can potentially be counteracted by the addition of carbonate minerals to the sediment surface. To explore the biogeochemical effects of mineral additions to coastal sediments, we experimentally quantified carbonate mineral dissolution kinetics, and then integrated this data into a reactive transport model that represents early diagenetic cycling of C, O, N, S and Fe, and traces total alkalinity, pH and saturation state of CaCO3. Model simulations were carried out to delineate the impact of mineral type and amount added, porewater mixing and organic matter mineralization rates on sediment alkalinity and its flux to the overlying water. Model results showed that the added minerals undergo initial rapid dissolution and generate saturated conditions. Aragonite dissolution led to higher alkalinity concentrations than calcite. Simulations of carbonate mineral additions to sediment environments with low rates of organic matter mineralization exhibited a significant increase in mineral saturation state compared to sediments with high CO2 production rates, highlighting the environment-specific extent of the buffering effect. Our work indicates that carbonate additions have the potential to effectively buffer surficial sediments over multiple years, yielding biogeochemical conditions that counteract the detrimental effect of OA conditions on larval recruitment, and potentially increase benthic alkalinity fluxes to support marine carbon dioxide removal (mCDR) in the overlying water.

Continue reading ‘Countering the effect of ocean acidification in coastal sediments through carbonate mineral additions’

The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.

Continue reading ‘The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification’

Trade-off between growth and reproduction in Argopecten purpuratus (L.) scallops exposed to medium-term hypoxia and acidification

Highlights

  • •Scallops showed physiological adaptations to survive and reproduce under medium-term exposure.
  • •The most pronounced impact of hypoxia and low pH were on clearance and calcification rates.
  • •The combined effect of hypoxia and low pH produced relatively high survival (>70%).
  • •Hypoxia and low pH generated early gonad development and high reproductive potential.

Abstract

Peruvian bays that are home to aquatic organisms of commercial interest are increasingly affected by hypoxia and low pH events. These stressors produce unfavorable conditions for the aquatic fauna, leading to mass mortality events. In this study, we evaluated the ecophysiological responses of the scallop Argopecten purpuratus exposed to moderate hypoxia (20% DO saturation) and low pH (OA, pH 7.4) using a 2 × 2 factorial design. We found that a 51-day exposure to low pH (OA treatment) had greater negative effects on A. purpuratus performances than hypoxia (lower survival and decreased clearance and calcification rates), but stimulated early gonad maturation. The survival rate was 1.3-fold higher under hypoxia than under acidic treatment. The interaction between hypoxia and low pH had an antagonistic effect on survival, since the combined treatment (HOA) resulted in lower scallop mortality than the single stress treatments. Calcification was negatively affected by all stress treatments, whereas hypoxia and OA both stimulated gametogenesis. OA treatment resulted in higher frequencies of previtellogenic and vitellogenic oocytes, greater gonad coverage area, and lower frequency of atretic oocytes, suggesting higher reproductive potential. HOA was positively related to oocyte development and high frequency of post-vitellogenic and atretic oocytes. These results suggest that, due to hypoxia and low pH, feeding is reduced and energy allocation prioritizes scallop gonad maturation. This trend would have negative effects on scallop growth and calcification, while increased reproduction under environmental stress could mitigate the effect on recruitment.

Continue reading ‘Trade-off between growth and reproduction in Argopecten purpuratus (L.) scallops exposed to medium-term hypoxia and acidification’

How do sea urchins prepare offspring to face ocean acidification? Gamete intraspecific differences and adaptability

Introduction: Due to their relevant ecological position and well-studied biology, sea urchins are reference organisms for ocean acidification studies, at both within- and trans-generational levels. In this study, we examined gamete quality in specimens exposed to future predicted (-0.4 units) pH conditions during gametogenesis.

Methods: Egg physical characteristics, biochemical composition, and fatty acid profiles were assessed after two and six months of exposure, while sperm viability and velocity were analyzed after six months of exposure. Considering the documented intraspecific variability in response to ocean acidification, this study involved two populations of Paracentrotus lividus. One population was sampled from the highly variable lagoon of Venice (Site 1), while the other was obtained from a coastal area (Site 2) characterized by more stable environmental conditions and facing minimal anthropogenic stress.

Results: A different response was highlighted in the two sites. Noteworthy trends emerged, especially in the fatty acid profile and sperm traits. Although adults were fed the same diet, Site 1 eggs contained more high-energetic fatty acids than Site 2, potentially boosting the survival odds for the next generation. Moreover, Site 1 sperms displayed higher viability but slower motility compared to those from Site 2. Within sites, a significant difference between time points and a change in the fitness strategy of sea urchin females emerged when comparing eggs spawned after two and six months of exposure to reduced pH. The effects of time and exposure pH are more pronounced in animals from Site 1, suggesting a higher adaptability of this population rather than negative effects of ocean acidification.

Discussion: Overall, our findings suggest that sea urchins have the potential to acclimate to reduced pH and to produce gametes of the same quality as controls held at the currently natural pH. Our findings emphasize the relevance of combining investigations of gamete quality characteristics, particularly egg biochemistry and fatty acid composition, and considering site variability to fully understand the transgenerational response potential of sea urchins to ocean acidification.

Continue reading ‘How do sea urchins prepare offspring to face ocean acidification? Gamete intraspecific differences and adaptability’

Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: an integrated biomarker and metabolomic approach

Highlights

  • Exposure to SPS-MPs alone can cause stronger oxidative stress than LPS-MPs.
  • Exposure to OA can inhibit antioxidant enzyme activity and increase clearance rate.
  • Antagonistic effects were mainly occurred between MPs and OA.
  • The strongest toxic effect was found in combined exposure of SPS-MPs and OA.
  • Energy and antioxidant-related metabolites were altered after combined exposure.

Abstract

The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50–60 μm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.

Continue reading ‘Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: an integrated biomarker and metabolomic approach’

Effects of reduced seawater pH and oil contamination on bacterial communities and biochemical markers of estuarine animal hosts

Ecosystem functioning depends on complex interactions between microorganisms, hosts, and the environment. Changes in environmental conditions (e.g., ocean acidification) in combination with anthropogenic pollution have been shown to affect the composition and function of free-living microbial communities, but little is known about the effects these stressors on host-associated communities. This study aims to characterize the response of host-associated bacterial communities of the bottom-dwelling polychaete Hediste diversicolor and the epibenthic gastropod Peringia ulvae to oil contamination and reduced seawater pH. The independent and interactive effects of both stressors were simulated under controlled conditions. The response of host-associated bacterial communities was assessed using the high-throughput sequencing of the 16S rRNA gene and several biochemical markers related to host metabolic pathways, e.g., neurotransmission, anaerobic metabolism, biotransformation, oxidative stress, and energy consumption. In H. diversicolor, reduced seawater pH was associated with a high relative abundance of Cyanobacteria, while in P. ulvae oil contamination was associated with a reduction in the relative abundance of Chitinophagales. In P. ulvae, enrichment with oil hydrocarbon-degrading bacteria suggests a possible role of these organisms in the dispersion of oil hydrocarbon degraders. Furthermore, oil supplementation shifted some specific biochemical markers of gastropods related to oxidative stress and energy consumption, which suggests host stress. In general, the bacterial communities and biochemical markers of the gastropod were more affected by stressors than those of the polychaete. Overall, this study contributes to a better understanding of the response of host-associated bacterial communities of benthic macrofauna to anthropogenic contamination and environmental change.

Continue reading ‘Effects of reduced seawater pH and oil contamination on bacterial communities and biochemical markers of estuarine animal hosts’

Fouling communities from the South African west coast are vulnerable to cooling and ocean acidification

Changing temperature and ocean acidification are well-recognised consequences of climate change in marine systems. In contrast to global trends, the South African west coast is experiencing cooling due to increased frequency and intensity of upwelling. The implications of concurrent cooling and acidification for marine biota are poorly understood, particularly at the community level. This laboratory study assessed how cooling and acidification might affect fouling communities along the South African west coast. Communities were experimentally exposed to two temperatures, 13℃ (current) and 9℃ (cooling), and three pH treatments, 7.9 (current), 7.6 and 7.4, for 18 days. Cooling and acidification altered community structure. Species diversity declined in response to acidification but was not affected by cooling. This was driven by greatest loss of species at 7.4 pH. Notably, acidification reduced the abundance of both calcifying and soft-bodied taxa, highlighting the vulnerability of taxa like ascidians to acidification. Overall, these results highlight the dominant threat posed by acidification, even for alien taxa that are often perceived as resilient to climate change. Additionally, in regions experiencing cooling, acidification may pose a greater threat to fouling communities than thermal changes.

Continue reading ‘Fouling communities from the South African west coast are vulnerable to cooling and ocean acidification’

Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects

Highlights

  • Copper and cerium bioavailability may increase under ocean acidification.
  • Ocean acidification impacts metal accumulation in mussel gills.
  • Biochemical responses in M. galloprovincialis altered by trace metals and OA.
  • Complex interplay of oxidative stress markers affected by OA and metals.

Abstract

This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.

Continue reading ‘Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects’

Quantifying the impacts of multiple stressors on the production of marine benthic resources

Coastal ecosystems are among the most heavily affected by climate change and anthropogenic activities, which impacts their diversity, productivity and functioning and puts many of the key ecosystem services that they provide at risk. Although empirical studies have moved beyond single-stressor-single-species experiments with limited extrapolation potential and have increasingly investigated the cumulative effects of simultaneously occurring multiple stressors, consistent generalities have not yet been identified. Upscaling from controlled experiments to natural ecosystems, therefore, remains an unsolved challenge. Disentangling the independent and cumulative effects of multiple stressors across different levels of biological complexity, revealing the underlying mechanisms and understanding how coastal ecosystems may respond to predicted scenarios of global change is critical to manage and protect our natural capital.

In this thesis, I advance multiple stressor research by applying complementary approaches to quantify the impact of multiple stressors on marine benthic resources and thereby help predict the consequences of expected climate change for coastal habitats. First, I present the newly developed experimental platform QIMS (Quantifying the Impacts of Multiple Stressors) that overcomes some of the shortfalls of previous multiple stressor research (Chapter 2). Second, in a novel empirical study, I investigate the independent and combined effects of moderate ocean warming and acidification on the functioning and production of mussels and algae, considering the effects of interspecific interactions in the presence or absence of the respective other species (Chapter 3). Third, I synthesise monitoring data from Dublin Bay (representative of a typical metropolitan estuary) using conditional interference and a Bayesian Network model and provide alternative system trajectories according to different climate change scenarios. From this new model, I deepen the understanding of the complex linkages between environmental conditions and the diversity and functioning of Dublin Bay to support local decision making and management (Chapter 4).

Continue reading ‘Quantifying the impacts of multiple stressors on the production of marine benthic resources’

Potential distribution of Crassostrea sikamea (Amemiya, 1928) along coastal China under global climate change

Highlights

  • The salinity and temperature primarily dictate the distribution of C. sikamea.
  • C. sikamea exhibits a south-to-north future migration pattern due to rising sea temperatures.
  • By 2100s, C. sikamea’s northern boundary is expected to surpass 33–34°N.
  • C. sikamea’s habitat suitability may decline by 2050s but recover gradually by 2100s.

Abstract

Global climate change has led to ocean warming, acidification, hypoxia, and alterations in the biogeochemical circulation, thereby influencing the distribution, abundance, and population patterns of marine organisms. Particularly, oysters, which tend to attach to rocks in intertidal zones, may be more vulnerable to climate change. The Kumamoto oyster, Crassostrea sikamea (Amemiya, 1928), is renowned for its nutritional content, breeding benefits, and ecosystem restoration abilities. Previous research has demonstrated that the geographical range of C. sikamea in China has gradually shifted. In this study, the Maximum Entropy (MaxEnt) model was employed to predict the suitability for C. sikamea under different climate scenarios. We utilized first-hand data collected by our research team over the past 14 years, which consisted of 3030 C. sikamea samples from seven provinces in China. The contribution rate of the environmental variables and the jackknife test revealed that salinity (13–21PSS) and temperature (24.6–25.5 °C) are the primary factors influencing the distribution of C. sikamea. The future distribution shows a south-to-north migration pattern triggered by increased sea temperature, resulting in increased suitability at higher latitudes. The migratory effect is more dramatic under the high-emission scenario (Representative Concentration Pathways 8.5 (RCP8.5)) compared to medium-(RCP4.5/RCP6.0) and low-emission scenarios (RCP2.6) and becomes increasingly evident over time. Model predictions indicated that C. sikamea could maintain its suitability under all climate scenarios until the 2050s. However, by the 2100s, the suitability is expected to shift northward beyond the 33–34°N boundary under RCP2.6, RCP6.0, and RCP8.5, extending to the northern coast of Jiangsu. The suitability of C. sikamea within its habitat may experience a significant decline by the 2050s, followed by a gradual recovery over the next 50 years. The potential northward migration of C. sikamea presents new prospects for oyster aquaculture and artificial reefs establishment in China. However, this migration will inevitably lead to significant impacts on the invaded ecosystems and overall biodiversity.

Continue reading ‘Potential distribution of Crassostrea sikamea (Amemiya, 1928) along coastal China under global climate change’

Ocean acidification alters shellfish-algae nutritional value and delivery

Highlights

  • Ocean acidification promotes microalgae growth.
  • The nutrient value of microalgae is positively altered under acidifying conditions.
  • Nutrient changes in primary producers can have indirect effects through trophic transfer.
  • Fatty acid content of food sources affects shellfish macromolecular ratios.

Abstract

The ecological effects of climate change and ocean acidification (OA) have been extensively studied. Various microalgae are ecologically important in the overall pelagic food web as key contributors to oceanic primary productivity. Additionally, no organism exists in isolation in a complex environment, and shifts in food quality may lead to indirect OA effects on consumers. This study aims to investigate the potential effects of OA on algal trophic composition and subsequent bivalve growth. Here, the growth and nutrient fractions of Chlorella sp., Phaeodactylum tricornutum and Chaetocetos muelleri were used to synthesize and assess the impact of OA on primary productivity. Total protein content, total phenolic compounds, and amino acid (AA) and fatty acid (FA) content were evaluated as nutritional indicators. The results demonstrated that the three microalgae responded positively to OA in the future environment, significantly enhancing growth performance and nutritional value as a food source. Additionally, certain macromolecular fractions found in consumers are closely linked to their dietary sources, such as phenylalanine, C14:0, C16:0, C16:1, C20:1n9, C18:0, and C18:3n. Our findings illustrate that OA affects a wide range of crucial primary producers in the oceans, which can disrupt nutrient delivery and have profound impacts on the entire marine ecosystem and human food health.

Continue reading ‘Ocean acidification alters shellfish-algae nutritional value and delivery’

Probing the role of carbonic anhydrase in shell repair mechanisms in the eastern oyster Crassostrea virginica under experimental acidification stress

Highlights

  • Shell repair dramatically decreased in oysters after chronic high pCO2 exposure.
  • Carbonic anhydrase (CA) inhibition further reduces shell repair.
  • Oysters increased hemocyte intracellular pH under low pH seawater.
  • Ability to increase intracellular pH of hemocytes was lost when CA was inhibited.
  • CA plays a role in maintaining calcification under low pH.

Abstract

The reduction in pH from atmospheric inputs of CO2 (ocean acidification, OA) threatens marine calcifiers, including the eastern oyster (Crassostrea virginica), that precipitate biogenic CaCO3 for shell formation. Recent investigations have demonstrated that alterations in gene expression enable bivalves to respond to episodic low pH. Evidence generated from several studies highlighted the importance of upregulating genes related to biomineralizationion transport, and acid-base balance such as carbonic anhydrase (CA) genes. Two experiments were designed to evaluate the effect of acidification on calcification processes and to probe the specific role of CA in oyster resilience to low pH. First, adult oysters were exposed to eight months of chronic acidification stress (pH ∼7.3, pCO2 ∼3300 ppm) or control conditions (pH ∼7.9, pCO2 ∼500 ppm) before shells were artificially damaged and shell repair monitored. Results showed a dramatic decrease in shell regeneration after chronic high pCO2 exposure (only 30% of oysters regrew any shell) suggesting that mechanisms that promote calcification under high pCO2 conditions may not be sustainable for extended periods of time. To further explore these mechanisms, a second experiment was designed by focusing on the role of CA in mitigating acidification stress. Here, adult oysters received an injection of acetazolamide in dimethyl sulfoxide (DMSO) to inhibit CA or DMSO (control) before rearing in control (pH ∼8.1, pCO2 ∼340 ppm) or acidified (pH ∼7.3, pCO2 ∼3300 ppm) conditions. After three weeks, oyster shells were damaged and shell repair monitored. Oysters incubated at low pH seawater with CA inhibition had the least amount of shell regeneration at the end of 21-day regrowth period. Interestingly, oysters were able to increase intracellular pH (pHi) of hemocytes under low pH conditions; however, this ability was significantly diminished with CA inhibition. Results highlight the role of CA in maintaining calcification under low pH conditions by establishing an intracellular environment favorable to calcium carbonate precipitation.

Continue reading ‘Probing the role of carbonic anhydrase in shell repair mechanisms in the eastern oyster Crassostrea virginica under experimental acidification stress’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources