Posts Tagged 'mollusks'

Linking social preferences and ocean acidification impacts in mussel aquaculture

Ocean Acidification (OA) has become one of the most studied global stressors in marine science during the last fifteen years. Despite the variety of studies on the biological effects of OA with marine commercial species, estimations of these impacts over consumers’ preferences have not been studied in detail, compromising our ability to undertake an assessment of market and economic impacts resulting from OA at local scales. Here, we use a novel and interdisciplinary approach to fill this gap. We experimentally test the impact of OA on commercially relevant physical and nutritional attributes of mussels, and then we use economic discrete choice models to assess the marginal effects of these impacts over consumers’ preferences and wellbeing. Results showed that attributes, which were significantly affected by OA, are also those preferred by consumers. Consumers are willing to pay on average 52% less for mussels with evidences of OA and are willing to increase the price they pay to avoid negative changes in attributes due to OA. The interdisciplinary approach developed here, complements research conducted on OA by effectively informing how OA economic impacts can be analyzed under the lens of marginal changes in market price and consumer’ welfare. Thereby, linking global phenomena to consumers’ wellbeing, and shifting the focus of OA impacts to assess the effects of local vulnerabilities in a wider context of people and businesses.

Continue reading ‘Linking social preferences and ocean acidification impacts in mussel aquaculture’

Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption

• A large bloom of phytoplankton was detected in the surface waters of the Reloncaví fjord following the Calbuco volcano eruption.

• Subsequent to the Calbuco volcano eruption, higher N2O, CH4 and SO42− concentrations were observed in Fjord surface waters close to areas of river discharge.

• Optimal juvenile mussel growth was observed in refugee subsurface depths coinciding with increased aragonite saturation.

• Thus, the observed trends in the carbonate system and nutrient outputs may be valuable for developing effective management strategies for mussel aquaculture in the Reloncaví Fjord.

This study investigates the immediate and mid-term effects of the biogeochemical variables input into the Reloncaví fjord (41°40′S; 72°23′O) as a result of the eruption of Calbuco volcano. Reloncaví is an estuarine system supporting one of the largest mussels farming production within Northern Chilean-Patagonia. Field-surveys were conducted immediately after the volcanic eruption (23–30 April 2015), one month (May 2015), and five months posterior to the event (September 2015). Water samples were collected from three stations along the fjord to determine greenhouse gases [GHG: methane (CH4), nitrous oxide (N2O)], nutrients [NO3−, NO2−, PO43−, Si(OH)4, sulphate (SO42−)], and carbonate systems parameters [total pH (pHT), temperature, salinity, dissolved oxygen (O2), and total alkalinity (AT)]. Additionally, the impact of physicochemical changes in the water column on juveniles of the produced Chilean blue mussel, Mytilus chilensis, was also studied. Following the eruption, a large phytoplankton bloom led to an increase in pHT, due to the uptake of dissolved-inorganic carbon in photic waters, potentially associated with the runoff of continental soil covered in volcanic ash. Indeed, high surface SO42− and GHG were observed to be associated with river discharges. No direct evidence of the eruption was observed within the carbonate system. Notwithstanding, a vertical pattern was observed, with an undersaturation of aragonite (ΩAr < 1) both in brackish surface (10 m), and saturated values in subsurface waters (3 to 7 m). Simultaneously, juvenile mussel shells showed maximized length and weight at 4 m depth. Results suggest a localized impact of the volcanic eruption on surface GHG, nutrients and short-term effects on the carbonate system. Optimal conditions for mussel calcification were identified within a subsurface refuge in the fjord. These specific attributes can be integrated into adaptation strategies by the mussel aquaculture industry to confront ocean acidification and changing runoff conditions.

Continue reading ‘Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption’

Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety

Large amounts of anthropogenic CO2 in the atmosphere are taken up by the ocean, which leads to ‘ocean acidification’ (OA). In addition, the increasing application of nanoparticles inevitably leads to their increased release into the aquatic environment. However, the impact of OA on the bioaccumulation of nanoparticles in marine organisms still remains unknown. This study investigated the effects of OA on the bioaccumulation of a model nanoparticle, titanium dioxide nanoparticles (nTiO2), in three edible bivalves. All species tested accumulated significantly greater amount of nTiO2 in pCO2-acidified seawater. Furthermore, the potential health threats of realistic nTiO2 quantities accumulated in bivalves under future OA scenarios were evaluated with a mouse assay, which revealed evident organ edema and alterations in hematologic indices and blood chemistry values under future OA scenario (pH at 7.4). Overall, this study suggests that OA would enhance the accumulation of nTiO2 in edible bivalves and may therefore increase the health risk for seafood consumers.

Continue reading ‘Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety’

A new mesocosm system to study the effects of environmental variability on marine species and communities

Climate change will shift mean environmental conditions and also increase the frequency and intensity of extreme events, exerting additional stress on ecosystems. While field observations on extremes are emerging, experimental evidence of their biological consequences is rare. Here, we introduce a mesocosm system that was developed to study the effects of environmental variability of multiple drivers (temperature, salinity, pH, light) on single species and communities at various temporal scales (diurnal ‐ seasonal): the Kiel Indoor Benthocosms (KIBs). Both, real‐time offsets from field measurements or various dynamic regimes of environmental scenarios, can be implemented, including sinusoidal curve functions at any chosen amplitude or frequency, stochastic regimes matching in situ dynamics of previous years and modeled extreme events. With temperature as the driver in focus, we highlight the strengths and discuss limitations of the system. In addition, we examined the effects of different sinusoidal temperature fluctuation frequencies on mytilid mussel performance. High‐frequency fluctuations around a warming mean (+2°C warming, ± 2°C fluctuations, wavelength = 1.5 d) increased mussel growth as did a constant warming of 2°C. Fluctuations at a lower frequency (+2 and ± 2°C, wavelength = 4.5 d), however, reduced the mussels’ growth. This shows that environmental fluctuations, and importantly their associated characteristics (such as frequency), can mediate the strength of global change impacts on a key marine species. The here presented mesocosm system can help to overcome a major short‐coming of marine experimental ecology and will provide more robust data for the prediction of shifts in ecosystem structure and services in a changing and fluctuating world.

Continue reading ‘A new mesocosm system to study the effects of environmental variability on marine species and communities’

Seawater acidification increases copper toxicity: a multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas


• Cu concentration was elevated in Cu-exposed oysters under OA.
• Seawater acidification could exacerbate the toxicity caused by Cu in oysters.
• Disturbed physiological functions were observed in oysters under Cu and/or OA.
• IBR results suggested that co-exposure was the most stressful condition.


Ocean acidification (OA) has been found to increase the release of free Cu2+ in seawater. However, only a handful of studies have investigated the influence of OA on Cu accumulation and cellular toxicity in bivalve species. In this study, Pacific oysters, Crassostrea gigas, were exposed to 25 μg/L Cu2+ at three pH levels (8.1, 7.8 and 7.6) for 14 and 28 days. Physiological and histopathological parameters [(clearance rate (CR), respiration rate (RR), histopathological damage and condition index (CI)), oxidative stress and neurotoxicity biomarkers [superoxide dismutase (SOD) and glutathione transferase (GST) activities, lipid peroxidation (LPO) and acetylcholinesterase (AChE) activity], combined with glycolytic enzyme activities [pyruvate kinase (PK) and hexokinase (HK)] were investigated in C. gigas. The bioconcentration of Cu was increased in soft tissues of Cu-exposed oysters under OA. Our results suggest that both OA and Cu could lead to physiological disturbance, oxidative stress, cellular damage, disturbance in energy metabolism and neurotoxicity in oysters. The inhibited CR, increased glycolytic enzymes activities and decreased CI suggested that the energy metabolism strategy adopted by oysters was not sustainable in the long term. Furthermore, integrated biomarker response (IBR) results found that OA and Cu exposure lead to severe stress to oysters, and co-exposure was the most stressful condition. Results from this study highlight the need to include OA in future environmental assessments of pollutants and hazardous materials to better elucidate the risks of those environmental perturbations.

Continue reading ‘Seawater acidification increases copper toxicity: a multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas’

Saxitoxin and tetrodotoxin bioavailability increases in future oceans

Increasing atmospheric levels of carbon dioxide are largely absorbed by the world’s oceans, decreasing surface water pH. In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life. Interactions between marine organisms are known to depend on biomolecules, but the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change significantly impacts two ecological keystone molecules in the ocean, the paralytic toxins saxitoxin (STX) and tetrodotoxin (TTX). Increasing temperatures and declining pH increase the abundance of the toxic forms of these two neurotoxins in the water. Our geospatial global model highlights where this increased toxicity could intensify the devastating impact of harmful algal blooms on ecosystems in the future, for example through an increased incidence of paralytic shellfish poisoning (PSP). We also use these results to calculate future saxitoxin toxicity levels in Alaskan clams, Saxidomus gigantea, showing critical exceedance of limits save for consumption. Our findings for TTX and STX exemplarily highlight potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals mediating species interactions such as foraging, reproduction, or predation in the ocean with unexplored consequences for ecosystem stability and ecosystem services.

Continue reading ‘Saxitoxin and tetrodotoxin bioavailability increases in future oceans’

A triple trophic boost: how carbon emissions indirectly change a marine food chain

The pervasive enrichment of CO2 in our oceans is a well‐documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top‐down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom‐up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.

Continue reading ‘A triple trophic boost: how carbon emissions indirectly change a marine food chain’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,178,834 hits


Ocean acidification in the IPCC AR5 WG II

OUP book