Posts Tagged 'toxicants'

Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber

Highlights

• Combined effects of acidification and cadmium were analysed in the scallop, F. glaber.
• Reduced pH slightly increased bioaccumulation of Cd.
• Synergistic and antagonistic effects occurred at cellular level.
• Tissue-specific responses indicate higher sensitivity of gills than digestive gland.
• Ocean acidification modulates the cellular toxicity of metals.

Abstract

Ocean acidification (OA) may affect sensitivity of marine organisms to metal pollution modulating chemical bioavailability, bioaccumulation and biological responsiveness of several cellular pathways. In this study, the smooth scallop Flexopecten glaber was exposed to various combinations of reduced pH (pH/pCO2 7.4/∼3000 μatm) and Cd (20 μg/L). The analyses on cadmium uptake were integrated with those of a wide battery of biomarkers including metallothioneins, single antioxidant defenses and total oxyradical scavenging capacity in digestive gland and gills, lysosomal membrane stability and onset of genotoxic damage in haemocytes. Reduced pH slightly increased concentration of Cd in scallop tissues, but no effects were measured in terms of metallothioneins. Induction of some antioxidants by Cd and/or low pH in the digestive gland was not reflected in variations of the total oxyradical scavenging capacity, while the investigated stressors caused a certain inhibition of antioxidants and reduction of the scavenging capacity toward peroxyl radical in the gills. Lysosomal membrane stability and onset of genotoxic damages showed high sensitivity with possible synergistic effects of the investigated factors. The overall results suggest that indirect effects of ocean acidification on metal accumulation and toxicity are tissue-specific and modulate oxidative balance through different mechanisms.

Continue reading ‘Oxidative and interactive challenge of cadmium and ocean acidification on the smooth scallop Flexopecten glaber’

Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus

Highlights

• Combined effects of pH and nano-ZnO on biochemical responses of mussels are investigated.
• Low pH and nano-ZnO induce a similar anti-oxidative responses.
• Gills are not only susceptible to nano-ZnO but also seawater acidification.

Abstract

Increased production of engineered nanoparticles (NPs) has raised extensive concerns about the potential toxic effects on marine organisms. Extensive evidences documented the impact of ocean acidification (OA) on the physiology and fitness of bivalves. In the present study, we investigated the biochemical responses of the mussel Mytilus coruscus exposed to both nano-ZnO and low pH relevant for ocean acidification conditions for 14 d followed by a 7-d recovery period. Most biochemical indexes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acid phosphatase (ACP) and alkaline phosphatase (ALP)) measured in gills and hemocytes were increased when the mussels were subject to low pH or high concentration of nano-ZnO, suggesting oxidative stress responses. No significant interactions between the two stressors were observed for most measured parameters. After a 1 week recovery period, low pH and nano-ZnO had less marked impact for SOD, GPx, ACP and ALP in hemocytes as compared to the end of the 14 d exposure. However, no recovery was observed in gills. Overall, our results suggest that both low pH and nano-ZnO induce an anti-oxidative response in Mytilus coruscus with gills being more sensitive than hemocytes.

Continue reading ‘Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus’

Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus

Highlights

• Combined effects of pH and nano-ZnO on immune responses of mussels are investigated.
• High-concentration nano-ZnO induced greater haemocyte parameter alterations than low pH.
• Nano-ZnO and low pH induced interactive and carry-over effects on haemocyte parameters.

Abstract

Flow cytometry was used to investigate the immune parameters of haemocytes in thick-shell mussel Mytilus coruscus exposed to different concentrations of ZnO nanoparticles (NPs) (0, 2.5, and 10 mg l− 1) at two pH levels (7.3 and 8.1) for 14 days following a recovery period of 7 days. ZnO NPs significantly affected all of the immune parameters throughout the experiment. At high ZnO NPs concentrations, total haemocyte counting, phagocytosis, esterase, and lysosomal content were significantly decreased whereas haemocyte mortality and reactive oxygen species (ROS) were increased. Although low pH also significantly influenced all of the immune parameters of the mussels, its effect was not as strong as that of ZnO NPs. Interactive effects were observed between pH and ZnO NPs in most haemocyte parameters during the exposure period. Although a slight recovery from the stress of ZnO NPs and pH was observed for all immune parameters, significant carry-over effects of low pH and ZnO NPs were still detected. This study revealed that high concentration of ZnO NPs and low pH exert negative and synergistic effects on mussels, and these effects remain even after the mussels are no longer exposed to such stressors.

Continue reading ‘Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus’

Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves

Highlights

• Temperature and pH effects on emerging contaminants’ bioaccumulation were assessed.
• Increased temperature promoted the bioaccumulation of Dec 602, Dec 604 and TBBPA.
• Lower pH increased Dec’s bioaccumulation, but also iAs and PFCs’ elimination.
• Human exposure to some compounds may increase with climate change.

Abstract

Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4 °C) and lower pH levels (Δ = − 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves’ capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants’ bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and develop recommendations/regulations for their presence in seafood, considering the prevailing environmental conditions expected in tomorrow’s ocean.

Continue reading ‘Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves’

Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris

Highlights

  • Ocean acidification enhanced growth inhibition of algal cells caused by TiO2 NPs.
  • Ocean acidification increased oxidative damage of TiO2 NPs on Chlorella vulgaris.
  • Elevated internalization of NPs contributed to enhanced toxicity of TiO2 NPs.
  • Slighter aggregation and more suspended NPs in acidified seawater were detected.

Abstract

Concerns about the environmental effects of engineered nanoparticles (NPs) on marine ecosystems are increasing. Meanwhile, ocean acidification (OA) has become a global environmental problem. However, the combined effects of NPs and OA on marine organisms are still not well understood. In this study, we investigated the effects of OA (pH values of 7.77 and 7.47) on the bioavailability and toxicity of TiO2 NPs to the marine microalga Chlorella vulgaris. The results showed that OA enhanced the growth inhibition of algal cells caused by TiO2 NPs. We observed synergistic interactive effects of pH and TiO2 NPs on oxidative stress, indicating that OA significantly increased the oxidative damage of TiO2 NPs on the algal cells. Importantly, the elevated toxicity of TiO2 NPs associated with OA could be explained by the enhanced internalization of NPs in algal cells, which was attributed to the slighter aggregation and more suspended particles in acidified seawater. Overall, these findings provide useful information on marine environmental risk assessments of NPs under near future OA conditions.

Continue reading ‘Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris’

Interactive effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on the fitness and breeding of the amphipod Gammarus locusta

Highlights

  • Combined effects of temperature, pCO2 and levonorgestrel on G. locusta were assessed.
  • G. locusta was strongly negatively affected under warming exposure (+4 °C).
  • Growth rates were significantly affected by the interactions of LNG with temperature and pCO2.
  • A negative effect of higher temperature and acidification on G. locusta fecundity was observed, contrarily to LNG.
  • Increased temperature and pCO2 were clearly more adverse for G. locusta than exposure to LNG.

Abstract

Given the lack of knowledge regarding climate change-chemical exposure interactions, it is vital to evaluate how these two drivers jointly impact aquatic species. Thus, for the first time, we aimed at investigating the combined effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on survival, growth, consumption rate and reproduction of the amphipod Gammarus locusta. For that, a full factorial design manipulating temperature [ambient temperature and warming (+4 °C)], pCO2 [normocapnia and hypercapnia (Δ pH 0.5 units)] and the progestin levonorgestrel (LNG: L1 – 10 ngLL−1 and L2 – 1000 ngLL−1, control – no progestin and solvent control – vehicle ethanol (0.01%)) was implemented for 21 days. G. locusta was strongly negatively affected by warming, experiencing higher mortality rates (50–80%) than in any other treatments. Instead, growth rates were significantly affected by interactions of LNG with temperature and pCO2. It was observed, in the short-term (7d) that under ambient temperature (18 °C) and hypercapnic conditions (pH 7.6), the LNG presence promoted the amphipod’s growth, while in the medium-term (21d) this response was not observed. Relative consumption rates (RCRs), during the first week were higher than in the third week. Furthermore, in the first week, RCRs were negatively affected by higher temperature while in the third week, RCRs were negatively affected by acidification. Furthermore, it was observed a negative effect of higher temperature and acidification on G. locusta fecundity, contrarily to LNG. Concluding, the impact of increased temperature and pCO2 was clearly more adverse for the species than exposure to the synthetic progestin, however, some interactions between the progestin and the climate factors were observed. Thus, in a future scenario of global change, the presence of LNG (and other progestins alike) may modulate to a certain level the effects of climate drivers (and vice-versa) on the gammarids fitness and reproduction.

Continue reading ‘Interactive effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on the fitness and breeding of the amphipod Gammarus locusta’

Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius)

Highlights

• Atmospheric and water conditions/contaminants influence animal physiology status.
• Scarcely studied multi-stressor effects were extricated via full-factorial design.
• Warming stimulated mercury accumulation, but was offset by acidification.
• Co-occurring acidification countered oxidative stress elicited by other stressors.
• Enhanced mitigation pathways or chemical dynamics may underpin stressor antagonism.

Abstract

Increases in carbon dioxide (CO2) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT = 4 °C) and acidification (ΔpCO2 = 1100 μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30 days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO2-promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic).

Continue reading ‘Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,051,359 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book