Posts Tagged 'toxicants'

Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions

Highlights

• Effects of Benzophenone-3 and low pH on the yellow clam, Amarilladesma mactroides

• Benzophenone-3 affects antioxidant defenses in gills and digestive glands.

• Water acidification affects Ca2+-ATPase activity.

• Water acidification and Benzophenone-3 together inhibit carbonic anhydrase activity.

• Acidification may enhance the toxicity of Benzophenone-3.

Abstract

This work aimed to investigate effects of the ocean contamination by the sunscreen Benzophenone-3 (BP3) and acidification, caused by CO2 enrichment, to the yellow clam, Amarilladesma mactroides. Biochemical biomarkers were analyzed in tissues (gills, digestive gland, and mantle) of clams exposed to the environmental concentration of 1 μg/L BP3, at seawater natural pH (pH 8.1) and at lower pH (pH 7.6). The tissues responded in different ways considering their physiological roles. In general, BP3 altered activity of the enzymes, glutathione-S-transferase (GST) and glutathione cysteine ligase (GCL); but mostly increased the level of glutathione (GSH). These effects were enhanced by acidification, without augmenting lipid peroxidation (LPO). Carbonic anhydrase activity (CA) increased after BP3 exposure in the digestive gland and decreased in the gills at pH 7.6, while Ca2+-ATPase activity was affected by acidification only. Changing levels of these enzymes can alter shell formation and affect the bivalve maintenance in impacted environments.

Continue reading ‘Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions’

Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification

Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T. pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal EPS ( 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.

Continue reading ‘Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification’

Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios

Highlights

•Calcifying algae were exposed to herbicide and future climate scenarios combined.

•Half of the algae were given long acclimation to future climate-change conditions.

•Experimental effects were exaggerated for algae that were not acclimated.

•Still, herbicide effects on acclimated algae stronger in future climate conditions

•Results show the need of climate-adjusted thresholds for water quality guidelines.

Abstract

Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 μg L−1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm′), photosynthesis and calcification in future climate scenarios were significantly stronger (by −24, −46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm′, while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering ‘climate adjusted thresholds’. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.

Continue reading ‘Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios’

The influence of plastic pollution and ocean change on detrital decomposition

Highlights

•The combined effects of plastic pollution, ocean warming, and acidification on macrophyte decomposition were tested.

•High quantities of plastic slowed the decomposition of seagrass and kelp.

•Ocean warming increased the decomposition rates of seagrass and kelp.

•Ocean acidification did not significantly influence macrophyte decomposition.

•Reducing plastic pollution and CO2 emissions is likely the best approach for preserving detritus-based ecosystem processes.

Abstract

Plastic pollution and ocean change have mostly been assessed separately, missing potential interactions that either enhance or reduce future impacts on ecosystem processes. Here, we used manipulative experiments with outdoor mesocosms to test hypotheses about the interactive effects of plastic pollution, ocean warming and acidification on macrophyte detrital decomposition. These experiments focused on detritus from kelp, Ecklonia radiata, and eelgrass, Zostera muelleri, and included crossed treatments of (i) no, low and high plastic pollution, (ii) current/future ocean temperatures, and (iii) ambient/future ocean partial pressure of carbon dioxide (pCO2). High levels of plastic pollution significantly reduced the decomposition rate of kelp and eelgrass by approximately 27% and 36% in comparison to controls respectively. Plastic pollution also significantly slowed the nitrogen liberation from seagrass and kelp detritus. Higher seawater temperatures significantly increased the decomposition rate of kelp and eelgrass by 12% and 5% over current conditions, respectively. Higher seawater temperatures were also found to reduce the nitrogen liberation in eelgrass. In contrast, ocean acidification did not significantly influence the rate of macrophyte decomposition or nutrient liberation. Overall, our results show how detrital processes might respond to increasing plastic pollution and ocean temperatures, which has implications for detrital-driven secondary productivity, nutrient dynamics and carbon cycling.

Continue reading ‘The influence of plastic pollution and ocean change on detrital decomposition’

Abalone populations are most sensitive to environmental stress effects on adult individuals

Marine organisms are exposed to stressors associated with climate change throughout their life cycle, but a majority of studies focus on responses in single life stages, typically early ones. Here, we examined how negative impacts from stressors associated with climate change, ocean acidification, and pollution can act across multiple life stages to influence long-term population dynamics and decrease resilience to mass mortality events. We used a continuous-size-structured density-dependent model for abalone (Haliotis spp.), calcifying mollusks that support valuable fisheries, to explore the sensitivity of stock abundance and annual catch to potential changes in growth, survival, and fecundity across the organism’s lifespan. Our model predicts that decreased recruitment from lowered fertilization success or larval survival has small negative impacts on the population, and that stock size and fishery performance are much more sensitive to changes in parameters that affect the size or survival of adults. Sensitivity to impacts on subadults and juveniles is also important for the population, though less so than for adults. Importantly, likelihood of recovery following mortality events showed more pronounced sensitivity to most possible parameter impacts, greater than the effects on equilibrium density or catch. Our results suggest that future experiments on environmental stressors should focus on multiple life stages to capture effects on population structure and dynamics, particularly for species with size-dependent fecundity.

Continue reading ‘Abalone populations are most sensitive to environmental stress effects on adult individuals’

Exposure to pet-made microplastics: Particle size and pH effects on biomolecular responses in mussels

Highlights

•PET-MPs are able to induce biochemical stress in mussels.

•LPO and GPx were more effective in detecting the PET-MPs induced stress.

•Biomarkers expression was influenced by the size of PET-MPs.

•L-PET-MPs (0.5–3.0 mm) induced grater effect than other sizes.

•Interaction was recorded among PET-MPs sizes and initial pH (8.0–7.5 units).

Abstract

This study aims to evaluate the expression of biomarkers of oxidative stress (LPO, GPx, AtCh, SOD) in mussels (Mytilus galloprovincialis) following the exposure to suspensions of microparticles irregular shaped fibres of Polyethylene terephthalate of different sizes (small 5–60 μm, S-PET; medium 61–499 μm, M-PET; large 500–3000 μm, L-PET) at a single dose of 0.1 g/L. Mussels were tested under two different starting pH conditions of marine water: standard (8.0) and acidified (7.5). The results obtained from this study show that: i) PET microplastics are able to induce biochemical stress in mussels; ii) among the biomarkers tested, LPO and GPx were more effective in detecting the stress induced by microplastic in both initial pH conditions; iii) the expression of biomarkers was influenced by the size of the microparticle. In particular, greater effects were associated with the largest PET particle tested (0.5–3.0 mm); iv) regarding the effect of pH, in experiments starting from 7.5 pH the animals showed a lower biomarker expression than those starting from 8.0 pH.

Continue reading ‘Exposure to pet-made microplastics: Particle size and pH effects on biomolecular responses in mussels’

Effects of pH on salicylic acid toxicity in terms of biomarkers determined in the marine gastropod Gibbula umbilicalis

Highlights

• Physiological alterations were enhanced under SA exposure at lower pH levels.

• Lipid peroxidation increased after seawater acidification.

• Neurotoxic effects were reported under SA exposure.

• Prostaglandins biosynthesis pathway inhibited by SA absorption at lower pH levels.

Abstract

Alterations of the physical-chemical properties of the oceans due to anthropogenic activities are, at present, one of the most concerning environmental issues studied by researchers. One of these issues is ocean acidification, mainly caused by overproduction and release of carbon dioxide (CO2) from anthropogenic sources. Another component of environmental degradation is related to the production and release of potential toxic compounds, namely active pharmaceutical ingredients, into the aquatic environment that, combined with oceanic acidification, can cause unpredictable and never before considered deleterious effects on non-target marine organisms. Regarding this issue, the hereby study used predictions of future ocean acidification to simulate realistic scenarios of environmental exposure to a common therapeutic drug, salicylic acid (SA), in the marine gastropod Gibbula umbilicalis under different pH values. This species was exposed to a range of pH values (8.2, 7.9 and 7.6), and to already reported environmentally realistic concentrations (5, 25 and 125 μg/L) of SA. To evaluate the effects of these environmental stressors, key physiological biomarkers (GSTs, CAT, TBARS, AChE and COX) and shell hardness (SH) were quantified. Results from the present study showed that CAT and GSTs activities were enhanced by SA under water acidification; increased lipid peroxidation was also observed in organisms exposed to SA in more acidic media. In addition, the hereby study demonstrated the neurotoxic effects of SA through the inhibition of AChE. Effects were also observed in terms of COX activity, showing that SA absorption may be affected by water acidification. In terms of SH, the obtained data suggest that SA may alter the physical integrity of shells of exposed organisms. It is possible to conclude that the combination of seawater acidification and exposure to toxic xenobiotics (namely to the drug SA) may be strenuous to marine communities, making aquatic biota more susceptible to xenobiotics, and consequently endangering marine life in an unpredictable extent.

Continue reading ‘Effects of pH on salicylic acid toxicity in terms of biomarkers determined in the marine gastropod Gibbula umbilicalis’

Exposure to decreased pH and caffeine affects hemocyte parameters in the mussel Mytilus galloprovincialis

Combined effects of reduced pH, as predicted under climate change scenarios, and the most popular and widely used stimulant caffeine were assessed in hemocyte parameters of the mussel Mytilus galloprovincialis, being hemocytes involved in immune defense. Bivalves were exposed for one week to natural pH (8.1) and two reduced pH values (pH -0.4 units and pH -0.7 units). Exposure continued for additional two weeks, both in the absence and in the presence of environmentally relevant concentrations of caffeine (0.05 and 0.5 µg/L). Hemocyte parameters (total hemocyte count, hemocyte volume and diameter, neutral red uptake and hemocyte proliferation) were measured after 7 days of exposure to pH only, and after 14 (T1) and 21 (T2) days of exposure to the various pH*caffeine combinations. At all sampling times, pH significantly affected all the biological variables considered, whereas caffeine exhibited a significant influence at T2 only. Among the various hemocyte parameters, caffeine caused a significant increase in total hemocyte count at T2, and in hemocyte volume and diameter at both T1 and T2, when a significant interaction between pH and caffeine was also found. Overall, results demonstrated that hemocyte functionality was strongly influenced by the experimental conditions tested. Further studies are needed to assess combined effects of climate changes and emerging contaminants on bivalve immune system when challenged with environmental pathogens.

Continue reading ‘Exposure to decreased pH and caffeine affects hemocyte parameters in the mussel Mytilus galloprovincialis’

Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario

Highlights

• Triclosan bioaccumulation was enhanced under forecasted climate change conditions.

• Triclosan strongly affected clams’ antioxidant defences.

• Cellular damage was prevented by enzymatic and behaviour defence mechanisms.

• Greater response of the Manila clam to TCS exposure combined with climate change scenario.

Abstract

Ocean acidification and warming are among the man-induced factors that most likely impact aquatic wildlife worldwide. Besides effects caused by temperature rise and lowered pH conditions, chemicals of current use can also adversely affect aquatic organisms. Both climate change and emerging pollutants, including toxic impacts in marine invertebrates, have been investigated in recent years. However, less information is available on the combined effects of these physical and chemical stressors that, in nature, occur simultaneously. Thus, this study contrasts the effects caused by the antimicrobial agent and plastic additive, Triclosan (TCS) in the related clams Ruditapes philippinarum (invasive) and Ruditapes decussatus (native) and evaluates if the impacts are influenced by combined temperature and pH modifications. Organisms were acclimated for 30 days at two conditions (control: 17 °C; pH 8.1 and climate change scenario: 20 °C, pH 7.7) in the absence of the drug (experimental period I) followed by a 7 days exposure under the same water physical parameters but either in absence (unexposed) or presence of TCS at 1 μg/L (experimental period II). Biochemical responses covering metabolic, oxidative defences and damage-related biomarkers were contrasted in clams at the end of experimental period II. The overall picture showed a well-marked antioxidant activation and higher TCS bioaccumulation of the drug under the forecasted climate scenario despite a reduction on respiration rate and metabolism in the exposed clams. Since clams are highly consumed shellfish, the consequences for higher tissue bioaccumulation of anthropogenic chemicals to final consumers should be alerted not only at present conditions but more significantly under predicted climatic conditions for humans but also for other components of the marine trophic chain.

Continue reading ‘Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario’

Cold-water coral (Lophelia pertusa) response to multiple stressors: high temperature affects recovery from short-term pollution exposure

There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosystem services in the deep ocean. These corals are threatened by increasing anthropogenic impacts to the deep-sea, such as global ocean change and hydrocarbon extraction. This study implemented two sets of experiments to assess the effects of future conditions (temperature: 8 °C and 12 °C, pH: 7.9 and 7.6) and hydrocarbon exposure (oil, dispersant, oil + dispersant combined) on coral health. Phenotypic response was assessed through three independent observations of diagnostic characteristics that were combined into an average health rating at four points during exposure and recovery. In both experiments, regardless of environmental condition, average health significantly declined during 24-hour exposure to dispersant alone but was not significantly altered in the other treatments. In the early recovery stage (24 hours), polyp health returned to the pre-exposure health state under ambient temperature in all treatments. However, increased temperature resulted in a delay in recovery (72 hours) from dispersant exposure. These experiments provide evidence that global ocean change can affect the resilience of corals to environmental stressors and that exposure to chemical dispersants may pose a greater threat than oil itself.

Continue reading ‘Cold-water coral (Lophelia pertusa) response to multiple stressors: high temperature affects recovery from short-term pollution exposure’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,376,294 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book