Posts Tagged 'toxicants'

The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum

Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.

Continue reading ‘The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum’

Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions


• The immunity and digestion of mussels were impaired by MPs and OA.

• OA can enhance the toxicity of MPs to mussels.

• Digestion was more severely affected by OA and MPs than antioxidant system.

• The negative effects on PES and AMS showed a reversible trend.


In the marine environment, microplastic contamination and acidification may occur simultaneously, this study evaluated the effects of ocean acidification and microplastics on oxidative stress responses and digestive enzymes in mussels. The thick shell mussels Mytilus coruscus were exposed to four concentrations of polystyrene microspheres (diameter 2 μm, 0, 10, 104 and 106 particles/L) under two pH levels (7.7 and 8.1) for 14 days followed by a 7-day recovery acclimation. Throughout the experiment, we found that microplastics and ocean acidification exerted little oxidative stress to the digestive gland. Only catalase (CAT) and glutathione (GSH) showed a significant increase along with increased microplastics during the experiment, but recovered to the control levels once these stressors were removed. No significant effects of pH and microplastics on glutathione peroxidase (GPx) and superoxide dismutase (SOD) were observed. The responses of digestive enzymes to both stressors were more pronounced than antioxidant enzymes. During the experiment, pepsin (PES), trypsin (TRS), alpha-amylase (AMS) and lipase (LPS) were significantly inhibited under microplastics exposure and this inhibition was aggravated by acidification conditions. Only PES and AMS tended to recover during the recovery period. Lysozyme (LZM) increased significantly under microplastic exposure conditions, but acidification did not exacerbate this effect. Therefore, combined stress of microplastics and ocean acidification slightly impacts oxidative responses but significantly inhibits digestive enzymes in mussels.

Continue reading ‘Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions’

The influence of climate change related factors on the response of two clam species to diclofenac


• Diclofenac strongly affected clams antioxidant defences, especially in Ruditapes decussatus.

• Cellular damage was prevented by enzymatic and behaviour defence mechanisms.

• Redox balance was most affected in Ruditapes philippinarum.

•Diclofenac bioaccumulation was reduced under forecasted climate change conditions.


Diclofenac (DIC) is one of the non-steroidal anti-inflammatory drugs (NSAID) with higher consumption rates, used in both human and veterinary medicine. Previous studies already demonstrated the presence of this drug in aquatic environments and adverse effects towards inhabiting organisms. However, with the predictions of ocean acidification and warming, the impacts induced by DIC may differ from what is presently known and can be species-dependent. Thus, the present study aimed to comparatively assess the effects caused by DIC in the clams Ruditapes philippinarum and Ruditapes decussatus and evaluate if these impacts were influenced by pH and temperature. For this, organisms were acclimated for 30 days at two different temperature and pH (control conditions: pH 8.1, 17 °C; climate change forecasted scenario: pH 7.7, 20 °C) in the absence of drugs (experimental period I) followed by 7 days exposure under the same water physical parameters but in absence or presence of the pharmaceutical drug (at 1 μg/L, experimental period II). Biochemical responses covering metabolic capacity, oxidative stress and damage-related biomarkers were contrasted in clams at the end of the second experimental period. The results showed that under actual conditions, R. philippinarum individuals exposed to DIC presented enhanced antioxidant activities and reduced their respiration rate compared with non-contaminated clams. When exposed to the predicted climate change conditions, a similar response was observed in contaminated clams, but in this case clams increased their metabolic activities probably to fight the stress caused by the combination of both stressors. When R. decussatus was exposed to DIC, even at actual pH and temperature conditions, their antioxidant defences were also elevated but their baseline enzymatic activities were also naturally higher in respect to R. philippinarum. Although clams may use different strategies to prevent DIC damage, both clam species showed under low pH and high temperature limited oxidative stress impacts in line with a lower DIC bioaccumulation. The present findings reveal that predicted climate change related factors may not enhance the impacts of DIC in Ruditapes clams in a species-dependent manner although both displayed particular mechanisms to face stress.

Continue reading ‘The influence of climate change related factors on the response of two clam species to diclofenac’

Specific dynamic action of mussels exposed to TiO2 nanoparticles and seawater acidification


• Low pH can enhance the toxicity of TiO2 NPs to mussels.

• The feeding and metabolism of mussels are impaired by TiO2 NPs and low pH.

• TiO2 NPs and low pH have significant interactions and carry-over effects on mussels.


Both nanoparticles (NPs) and ocean acidification (OA) pose threats to marine animals as well as marine ecosystems. The present study aims to evaluate the combined effects of NPs and OA on specific dynamic action (SDA) of mussels. The thick shell mussels Mytilus coruscus were exposed to two levels of pH (7.3 and 8.1) and three concentrations of TiO2 NPs (0, 2.5, and 10 mg L−1) for 14 days followed by a 7-day recovery period. The SDA parameters, including standard metabolic rate, peak metabolic rate, aerobic metabolic scope, SDA slope, time to peak, SDA duration and SDA, were measured. The results showed that TiO2 NPs and low pH significantly affected all parameters throughout the experiment. When the mussels were exposed to seawater acidification or TiO2 NPs conditions, standard metabolic rate, aerobic metabolic scope, SDA slope and SDA significantly decreased, whereas peak metabolic rate, time to peak and SDA duration significantly increased. In addition, interactive effects between TiO2 NPs and pH were observed in SDA parameters except time to peak and SDA. Therefore, the synergistic effect of TiO2 NPs and low pH can adversely affect the feeding metabolism of mussels.

Continue reading ‘Specific dynamic action of mussels exposed to TiO2 nanoparticles and seawater acidification’

Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo–larval development of marine medaka (Oryzias melastigma)

Ocean acidification (OA) and crude oil pollution have been highlighted as some of the most pervasive anthropogenic influences on the ocean.In marine teleosts, early life-history stages are particularly vulnerable to disturbance by CO2-driven acidification as they lack pH-mediated intracellular regulation. Embryos exposed to trace levels of crude oil constituents dissolved in water exhibit a common syndrome of developmental abnormalities. So far, little is known about the combined effects of OA and crude oil on the early life history of marine fish. Eggs and larvae of the marine medaka (Oryzias melastigma) were treated with CO2 (1080 μatm atmospheric CO2), the water-soluble fraction (WSF) of crude oil (500 μg/L) and a CO2 (1080 μatm atmospheric CO2)/WSF (500 μg/L) mixture within 4 h after oviposition. Isolated and combined OA/WSF had no detectable effect on embryonic duration, egg survival rate and size at hatching. Histopathological anomalies of tissue and lipid metabolic disorder were significant when CO2 or WSF was given alone at 30 days of age. Combination of CO2 and WSF enhanced their toxicity compared to their separate administration. Since the early life-history stage of marine fish is thought to be impacted more heavily by increasing CO2 partial pressure (pCO2) levels and crude oil pollution, OA and crude oil pollution have the potential to act as an additional source of natural mortality.

Continue reading ‘Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo–larval development of marine medaka (Oryzias melastigma)’

Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification

• Effects of OA and nano-TiO2 on the digestive enzyme activity of mussels were studied.

• The Seven-day recovery was not sufficient for digestive enzymes to fully recover.

• Nano-TiO2 showed greater negative effects compared with low pH.

• Significant interactions between low pH and nano-TiO2 occurred.

With the development of nanotechnology and increased nanomaterial application, TiO2 nanoparticles have been released into the aquatic environment, causing potential ecotoxicological effects on aquatic organisms. Ocean acidification caused by anthropogenic CO2 is one of the most common environmental stressors, occurring simultaneously with marine contaminants, e.g., nanoparticles. Marine bivalves can accumulate nanoparticles and their digestive functions may be affected. In this study, we investigated the potential influences of TiO2 nanoparticles on the digestive enzyme activities of marine mussels Mytilus coruscus under ocean acidification. Mussels were exposed to combined treatments with three concentrations of nano-TiO2 (0, 2.5, 10 mg/L) and two pH values (8.1, 7.3) for 14 days, and then recovered under ambient condition (pH 8.1 and no nanoparticle) for 7 days. Samples were taken on the 1st, 3rd, 7th, 14th, and 21st day, the digestive enzymes, including amylase, pepsin, trypsin, lipase, and lysozyme, were investigated. Our results showed that nano-TiO2 and low pH had negative effects on amylase, pepsin, trypsin, and lipase, while both of them led an increase in lysozyme activity. Nano-TiO2 showed greater effects on the digestive capacity of M. coruscus rather than low pH. Moreover, a recovery period of 7 days was not sufficient for these enzymes to fully recover.

Continue reading ‘Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification’

Harmful effects of cocaine byproduct in the reproduction of sea urchin in different ocean acidification scenarios


• Impact of different acidification scenarios by enrichment of CO2 on contaminants of emerging concern.

• Toxicity of a cocaine byproduct in different scenarios of ocean acidification.

• Combined effects of crack cocaine and low pH on reproduction of sea urchin.

• Hazards and risks of illicit drugs pose to public health and the environment.


This study has as main objective assessing the toxicity of crack-cocaine combined with different scenarios of ocean acidification on fertilization rate and embryo-larval development of Echinometra lucunter sea urchin. Effects on early life stages were assessed at five different concentrations (6,25 mg.L-1; 12,5 mg.L-1; 25 mg.L-1; 50 mg.L-1 and 100 mg.L-1) of crack-cocaine at four different pH values (8.5; 8.0; 7.5; 7.0). The pH values were achieved using two different methodologies: adding hydrochloric acid (HCl) and injecting carbon dioxide (CO2). The fertilization test did not show significant differences (p≤0.05) compared with control sample at pH values 8.5; 8.0 and 7.5. Results of embryo-larval assays showed a half maximal effective concentration (EC50) of crack-cocaine at pH values tested (8.5, 8.0, 7.5) as 58.83, 10.67 and 11.58 mg/L-1 for HCl acidification and 58.83, 23.28 and 12.57 mg/L-1 for CO2 enrichment. At pH 7.0 the effects observed in fertilization rate and embryo development were associated with the acidification. This study is the first ecotoxicological assessment of illicit drug toxicity in aquatic ecosystems at different ocean acidification scenarios.

Continue reading ‘Harmful effects of cocaine byproduct in the reproduction of sea urchin in different ocean acidification scenarios’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,318,642 hits


Ocean acidification in the IPCC AR5 WG II

OUP book