Posts Tagged 'echinoderms'

Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios (update)

Coastal hypoxia is a problem that is predicted to increase rapidly in the future. At the same time, we are facing rising atmospheric CO2 concentrations, which are increasing the pCO2 and acidity of coastal waters. These two drivers are well studied in isolation; however, the coupling of low O2 and pH is likely to provide a more significant respiratory challenge for slow moving and sessile invertebrates than is currently predicted. The Gullmar Fjord in Sweden is home to a range of habitats, such as sand and mud flats, seagrass beds, exposed and protected shorelines and rocky bottoms. Moreover, it has a history of both natural and anthropogenically enhanced hypoxia as well as North Sea upwelling, where salty water reaches the surface towards the end of summer and early autumn. A total of 11 species (Crustacean, Chordate, Echinoderm and Mollusc) of these ecosystems were exposed to four different treatments (high or low oxygen and low or high CO2; varying pCO2 of 450 and 1300 µatm and O2 concentrations of 2–3.5 and 9–10 mg L−1) and respiration measured after 3 and 6 days, respectively. This allowed us to evaluate respiration responses of species of contrasting habitats to single and multiple stressors. Results show that respiratory responses were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiratory responses. Management plans should avoid the generalized assumption that combined stressors will result in multiplicative effects and focus attention on alleviating hypoxia in the region.

Continue reading ‘Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios (update)’

Impact of ocean acidification and warming on the diversity and the functioning of macroalgal communities (full thesis in French)

Predicted ocean acidification and warming for the end of the century may have drastic consequences on the structure and functioning of marine ecosystems. However, a lack of knowledge persists on the impact of future changes on the response of marine communities. This thesis aims to provide new understanding of the impact of ocean acidification and warming at the community level. For this, two ecosystems have been considered: rockpools, characterized by high physico-chemical variations, and maerl beds, with smaller variations. In the laboratory, artificial assemblages were created from the main calcareous and fleshy macroalgal and grazer species present in these two ecosystems. Created assemblages have been subjected to ambient and future temperature and pCO2 conditions. Ocean acidification and warming altered the structure and functioning of maerl bed assemblages, through an increase in the productivity of non-calcareous macroalgae and a decline in maërl calcification rates. The physiology of grazers is negatively impacted by future changes, which altered assemblages’ trophic structure. On the other hand, ocean acidification and warming had no effect on the productivity of rockpool assemblages. The highly variable environment may thus increase the resistance of rockpool communities to future changes, compared to communities from more stable environments, such as maerl beds.

Continue reading ‘Impact of ocean acidification and warming on the diversity and the functioning of macroalgal communities (full thesis in French)’

Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins


• Ocean acidification increase the feeding rates of juveniles of P. lividus on algae reared at low pH.
• However the effects of ocean acidification on feeding rates of D. africanum were not differences between algae reared under low pH and control pH.
• This investigation highlights indirect effects of ocean acidification such as increase in herbivores pressure as consequence of change in algae palatability.
• Ocean acidification affects growth of 9 algae species from Canary Islands.
• A future scenario of climate change could affect the palatability of algae and their growth.


The recent decrease in seawater pH has stimulated a great deal of research on the effects of ocean acidification on various organisms. Most of these studies have mainly focused on the direct effects of acidification on organisms. However, the effects on ecological interactions have been poorly studied. In this paper we have focused on determining the effects of acidification on feeding rates of two species of sea urchins, Paracentrotus lividus and Diadema africanum through laboratory experiments. Nine algae species were reared under two pH treatmens (ph = 8.1 vs. pH = 7.6) for 10 days. We evaluated possible changes in calcification rates, growth and internal structure. Then these algae were offered to juvenile sea urchins for 7 days, evaluating the consumption rates of juvenile sea urchins under these different pH conditions. The algae reared in the control treatment showed higher growth rates and concentration of calcium carbonate, however no internal structural changes were observed in any algae. Juvenile Paracentrotus lividus showed higher consumption rates on algae previously subjected to pH 7.6 than on algae reared under control conditions and between algae species in low pH.The algae most consumed were C. liebetruthii, C. abies-marina and C. elongata by P. lividus juveniles from low pH treatment. However in D. africanum the feeding rates were similar between treatments. This study demonstrated the negative effects of low pH on various species of algae in growth, and indirectly the increase in herbivory rates of juvenile sea urchins on algae reared under low pH.

Continue reading ‘Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins’

Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates

Feeding is fundamental for all heterotrophic organisms, providing the means to acquire energy for basic life processes. Recent studies have suggested that experimental ocean acidification (OA) can alter the feeding performance of marine calcifying invertebrates, but results have been inconsistent. While several reviews pertaining to the biological effects of OA exist, none provide a synthesis of OA effects on feeding performance. Here, we provide a quantitative analysis of published experiments testing for effects of elevated CO2 on feeding rates of marine calcifying invertebrates. Results revealed that suspension-feeding molluscs and predatory and grazing echinoderms experienced depressed feeding rates under elevated CO2, while arthropods appeared unaffected; larval and juvenile animals were more susceptible to CO2 effects than adults. Feeding strategy did not appear to influence the overall taxonomic trend, nor did habitat, although exposure time did have an effect. AIC model selection revealed that Phylum best predicted effect size; life stage and exposure time were also included in candidate models. Based on these results, we synthesize potential physiological attributes of different taxa that may drive OA sensitivities in feeding rates, which could potentially result in community-level impacts. We also discuss CO2 effects on calcifier feeding in the context of elevated temperature and other global marine change stressors, and highlight other areas for future research.

Continue reading ‘Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates’

Residing at low pH matters, resilience of the egg jelly coat of sea urchins living at a CO2 vent site

The sea urchin egg jelly coat is important in fertilisation as a source of sperm activating compounds, in species-specific gamete recognition and in increasing egg target size for sperm. The impact of ocean acidification (− 0.3 to 0.5 pHT units) on the egg jelly coat of Arbacia lixula was investigated comparing populations resident in a control (pHT 8.00) and a CO2 vent site (mean pHT 7.69) in Ischia. Measurements of egg and jelly coat size showed no significant differences between sea urchins from the different sites; however, sensitivity of the jelly coat to decreased pH differed depending on the origin of the population. Acidification to pHT 7.7 and 7.5 significantly decreased egg jelly coat size of control urchins by 27 and 23%, respectively. In contrast, the jelly coat of the vent urchins was not affected by acidification. For the vent urchins, there was a significant positive relationship between egg and jelly coat size, a relationship not seen for the eggs of females from the control site. As egg and jelly coat size was similar between both populations, vent A. lixula jelly coats are likely to be chemically fine-tuned for the low pH environment. That the egg jelly coat of sea urchins from the vent site was robust to low pH shows intraspecific variation in this trait, and that this difference may be a maternal adaptive strategy or plastic response. If this is a common response in sea urchins, this would facilitate the maintenance of gamete function, facilitating fertilisation success in a low pH ocean.

Continue reading ‘Residing at low pH matters, resilience of the egg jelly coat of sea urchins living at a CO2 vent site’

Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus


• The radionuclide method allowed accurate tracing of the metal incorporation within this microscopic planktonic species.
• Metal incorporation in sea urchin larvae strongly correlates with the indirect delaying effect of acidification on larval size.
• Independently of the size effect, acidification directly affects the incorporation behavior of four metals (Mn, Ag, Se, Zn).
• The nature of the modulation is specific to each metallic element (see graphical abstract).
• Relationships between speciation, bioaccumulation and toxicity in the context of changing seawater pH requires more research.


The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline.

The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to −1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide (241Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development.

Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals.

Continue reading ‘Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus’

A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos

Efficient pH regulation is a fundamental requisite of all calcifying systems in animals and plants but with the underlying pH regulatory mechanisms remaining largely unknown. Using the sea urchin larva this work identified the SLC4 HCO3 transporter family member SpSlc4a10 to be critically involved in the formation of an elaborate calcitic endoskeleton. SpSlc4a10 is specifically expressed by calcifying primary mesenchyme cells with peak expression during de novo formation of the skeleton. Knock-down of SpSlc4a10 led to pH regulatory defects accompanied by decreased calcification rates and skeleton deformations. Reductions in seawater pH, resembling ocean acidification scenarios, led to an increase in SpSlc4a10 expression suggesting a compensatory mechanism in place to maintain calcification rates. We propose a first pH regulatory and HCO3 concentrating mechanism that is fundamentally linked to the biological precipitation of CaCO3. This knowledge will help understanding biomineralization strategies in animals and their interaction with a changing environment.

Continue reading ‘A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,399 hits


Ocean acidification in the IPCC AR5 WG II

OUP book