Posts Tagged 'echinoderms'

Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus

While the value of giant kelp (Macrocystis pyrifera) as a habitat-forming foundation species is well-understood, it is unclear how they impact the oxygen concentration and pH of the surrounding seawater, and further, how such a dynamic abiotic environment will affect eco-evolutionary dynamics in a context of global change. Here, we profiled the nearshore kelp forest environment in Southern California to understand changes in dissolved oxygen (DO) and pH with high spatiotemporal resolution. We then examined transgenerational effects using sea urchins (Strongylocentrotus purpuratus) as our study organism. Using enclosures on the benthos, we conditioned adult sea urchins in situ at two locations – one inside the kelp forest and one outside the kelp forest. After a 11-week conditioning period timed to coincide with gametogenesis in the adults, the urchins were collected, spawned, and cultures of their progeny were raised in the laboratory in order to assess their performance to simulated ocean acidification. In terms of the physical observations, we observed significant changes in DO and pH not only when comparing sites inside and outside of the kelp forest, but also between surface and benthic sensors at the same site. DO and pH at the benthos differed in mean, the amplitude of the diel signal, and in the profile of background noise of the signal. Ultimately, these results indicated that both DO and pH were more predictably variable inside of the kelp forest environment. On the biological side, we found that adult sea urchins inside the kelp forest produced more protein-rich eggs that developed into more pH-resilient embryos. Overall, this study in a temperate kelp forest ecosystem is one of the first studies to not only observe biological response to highly characterized environmental variability in situ, but also to observe such changes in a transgenerational context.

Continue reading ‘Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus’

Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus

Highlights

• Acidification delayed larval development, stunted growth, and increased asymmetry.

• Warming decreased fertilization success and accelerated larval development.

• Warming outweighed acidification and led to accelerated development.

• Acidification and warming had additive effects on fertilization and growth.

Abstract

Ocean acidification and warming are predicted to affect the early life of many marine organisms, but their effects can be synergistic or antagonistic. This study assessed the combined effects of near-future (2100) ocean acidification (pH 7.8) and warming (+3 °C) on the fertilization, larval development and growth of the green sea urchin, Lytechinus variegatus, common in tropical reefs of Florida and the Caribbean. Acidification had no effect on fertilization, but delayed larval development, stunted growth, and increased asymmetry. Warming decreased fertilization success when the sperm:egg ratio was higher (1847:1), accelerated larval development, but had no effect on growth. When exposed to both acidification and warming, fertilization rates decreased, larval development accelerated (due to increased respiration/metabolism), but larvae were smaller and more asymmetric, meaning acidification and warming had additive effects. Thus, climate change is expected to decrease the abundance of this important herbivore, exacerbating macroalgal growth and dominance on coral reefs.

Continue reading ‘Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus’

The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates

Highlights

• Ocean Acidification may act as an endocrine disruptor on invertebrate gonads

• Different species show different response to low pH in a simultaneous exposure

• Gametogenic stage and feeding condition affect the species response to low pH

Abstract

CO2 atmospheric pressure is increasing since industrial revolution, leading to a lowering of the ocean surface water pH, a phenomenon known as ocean acidification, with several reported effects on individual species and cascading effects on marine ecosystems. Despite the great amount of literature on ocean acidification effects on calcifying organisms, the response of their reproductive system still remains poorly known. In the present study, we investigated the histopathological effects of low pH on the gonads of three key macroinvertebrates of the Terra Nova Bay (Ross Sea) littoral area: the sea urchin Sterechinus neumayeri, the sea star Odontaster validus and the scallop Adamussium colbecki. After 1 month of exposure at control (8.12) and reduced (7.8 and 7.6) pH levels, we dissected the gonads and performed histological analyses to detect potential differences among treatments. Results showed significant effects on reproductive conditions of A. colbecki and S. neumayeri, while O. validus did not show any kind of alteration. Present results reinforce the need to focus on ocean acidification effects on soft tissues, particularly the gonads, whose damage may exert large effects on the individual fitness, with cascading effects on the population dynamic of the species.

Continue reading ‘The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates’

Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)

Biotic interactions are increasingly known to shape ecosystem community structure. Recently, there has been a renewed focus on species interactions in light of global change, especially ocean warming (OW) and ocean acidification (OA) in marine ecosystems. In coastal environments, macroalgae are among the most important taxa as they are often the most abundant primary producers and form the base of food webs. However, due to their sedentary nature, they are also vulnerable to the effects of climate change. In order to better understand how species interactions will be affected by climate change stressors, a solid understanding of how interspecies interactions operate under present-day conditions is needed. The first chapter of this thesis attempts to characterize seasonal variation in macroalgal physiology and biochemistry, and how interspecific interactions might affect algal fitness and palatability to a sea urchin herbivore (Echinometra lucunter). Specimens of Jania rubens, Sargassum cymosum, and Ulva lactuca were collected from monospecific patches or from associations , where individuals were in physical contact with another species, in both summer and winter. Net photosynthesis, nitrogen reductase activity, and pigment, phenolic and carbonate content of algae were evaluated among different associations across the two seasons. The results indicate that in addition to seasonal variation in most parameters measured, interactions between algae could change in both magnitude and sign (positive, negative or neutral) in different seasons. The no-choice herbivory assay (conducted in winter) revealed that both Jania and Ulva were consumed at higher rates when they were associated with each other, whereas Sargassum was not affected. These results suggest that macroalgae may influence the physiology and biochemical composition of neighboring species and subsequently affect their palatability, which may influence local community structure. To further evaluate effects of species interactions under climate change stressors, an experiment was performed to assess algal-herbivore interactions under OW and OA conditions. The most preferentially consumed algae from the first experiment (Jania rubens) and the sea urchin E. lucunter were evaluated in a 21-day mesocosm study with treatments of control, OW, OA, and OW+OA. Algal physiology was unaffected by increased temperature (+4°C) and pCO2 (1,000 ppm), but changes in the biochemical composition of the algal tissue were found. Metabolic rates of the sea urchin E. lucunter were higher in the ambient temperature, high pCO2 treatment, and feeding assays showed that this influenced consumption, with increased feeding rates in this treatment. The results here show that although algal biochemical composition was affected by future pCO2, at least in the short term, direct effects to sea urchin metabolism were more important for impacting this algae-herbivore interaction.

Continue reading ‘Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)’

Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris

The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.

Continue reading ‘Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris’

Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario

Highlights

  • Biomechanical properties of sea urchin test have a great importance in their individual fitness.
  • Combined effect of decreased pH and macroalgal diet highlights potential cascading effects.
  • No direct short-term effect of decreased pH and macroalgal diet on plate mechanical properties.
  • Longer term exposure needed to observe substantial differences on skeletal plate structure.

Abstract

Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.

Continue reading ‘Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario’

The weakest link: sensitivity to climate extremes across life stages of marine invertebrates

Predicting the effects of climate change on Earth’s biota becomes even more challenging when acknowledging that most species have life cycles consisting of multiple stages, each of which may respond differently to extreme environmental conditions. There is currently no clear consensus regarding which stages are most susceptible to increasing environmental stress, or ‘climate extremes’. We used a meta‐analytic approach to quantify variation in responses to environmental stress across multiple life stages of marine invertebrates. We identified 287 experiments in 29 papers which examined the lethal thresholds of multiple life stages (embryo, larva, juvenile, and adult) of both holoplanktonic and meroplanktonic marine invertebrates subjected to the same experimental conditions of warming, acidification, and hypoxia stress. Most studies considered short acute exposure to stressors. We calculated effect sizes (log response ratio) for each life stage (unpaired analysis) and the difference in effect sizes between stages of each species (paired analysis) included in each experiment. In the unpaired analysis, all significant responses were negative, indicating that warming, acidification and hypoxia tended to increase mortality. Furthermore, embryos, larvae, and juveniles were more negatively affected by warming than adults. The paired analysis revealed that, when subjected to the same experimental conditions, younger life stages were more negatively affected by warming than older life stages, specifically among pairings of adults vs. juveniles and larvae vs. embryos. Although responses to warming are well documented, few studies of the effects of acidification and hypoxia met the criteria for inclusion in our analyses. Our results suggest that while most life stages will be negatively affected by climate change, younger stages of marine invertebrates are more sensitive to extreme heating events.

Continue reading ‘The weakest link: sensitivity to climate extremes across life stages of marine invertebrates’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,178,819 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book