Posts Tagged 'echinoderms'

Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum

The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios.

Continue reading ‘Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum’

Dissolution of abiogenic and biogenic calcium carbonate under ocean acidification conditions

Under ocean acidification conditions, the chemistry of the seawater will change including a decrease in pH, a decrease in carbonate ion concentration and a decrease in the calcium carbonate saturation state of the water (Ω). This has implications for solid marine calcium carbonates including calcifying organisms and carbonate sediments. The dissolution kinetics of marine carbonates are poorly understood, therefore modelling of the future ocean under ocean acidification scenarios is hampered. The goal of this research was to provide an increased understanding of the kinetics of marine carbonate dissolution, including dependence of the dissolution rate of calcium carbonate mineral phases (calcite, calcite-aragonite, low Mg-calcite) on conditions relevant to ocean acidification, and then to apply this to biogenic samples (Pāua, kina and oyster). The effects of saturation state (Ω), surface area, and temperature were studied. Two methods were refined and used to collect and analyze the dissolution data – a pH-stat method and a pH free-drift method, with manipulation of the carbonate chemistry by addition of NaHCO3 and HCl. A LabVIEW® based program was developed for instrument control and automation and for data acquisition. The empirical equation R = k(1-Ω)n, was used to determine the reaction rates (R), the rate constants (k) and the reaction orders (n) for the each of the mineral phases and shellfish species.

Continue reading ‘Dissolution of abiogenic and biogenic calcium carbonate under ocean acidification conditions’

Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios

Coastal hypoxia is a problem that is predicted to increase rapidly in the future. At the same time we are facing rising atmospheric CO2 concentrations, which are increasing the pCO2 and acidity of coastal waters. These two drivers are well studied in isolation however; the coupling of low O2 and pH is likely to provide a more significant respiratory challenge for slow moving and sessile invertebrates than is currently predicted. The Gullmar Fjord in Sweden is home to a range of habitats such as sand and mud flats, seagrass beds, exposed and protected shorelines, and rocky bottoms. Moreover, it has a history of both natural and anthropogenically enhanced hypoxia as well as North Sea upwelling, where salty water reaches the surface towards the end of summer and early autumn. A total of 11 species (Crustacean, Chordate, Echinoderm and Mollusc) of these ecosystems were exposed to four different treatments (high/low oxygen and low/high CO2; varying pCO2 of 450 and 1300 ppm and O2 concentrations of 2–3.5 and 9–10 mg L−1) and respiration measured after 3 and 6 days, respectively. This allows us to evaluate respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiratory responses. Management plans should avoid the generalized assumption that combined stressors will results in multiplicative effects and focus attention on alleviating hypoxia in the region.
Continue reading ‘Variable metabolic responses of Skagerrak invertebrates to low O2 and high CO2 scenarios’

Morphological response of the larvae of Arbacia lixula to near-future ocean warming and acidification

The distribution of the sea urchin Arbacia lixula, a warm affinity species, has been expanding in the Mediterranean Sea. To address questions on potential for future success of this species in the region, the thermotolerance of larval development was investigated in context of regional warming. The larvae were reared in present day spawning period (20 °C) and warming conditions (+4 = 24 and +6 = 26 °C). As the calcifying larvae of sea urchins are vulnerable to stunted growth caused by ocean acidification, the impact of lower pH (−0.3 pH units) on larval development was also investigated in combination with warming. Morphological traits of the larvae, post-oral length arms, overall length of larvae and body length, were affected by increased temperature across pH treatments, indicating that for the larvae of southern Mediterranean population here, 24 °C appears to approximate the optimal temperature for development. A slightly negative effect of pH was evident. Increased temperature ameliorated the stunting effect of acidification on growth. The thermal tolerance of A. lixula development overlaps with projections for warming in the region by 2100 and also indicates that this species has acclimatized or adapted its reproductive biology to the broad environmental conditions of the Mediterranean Sea. Due to the broad thermal range (∼10 °C) of development of A. lixula across its distribution, this species is likely to be a winner in the climate change stakes. The broad thermal tolerance of the larvae is likely to assure population connectivity between Mediterranean sub-basins populations. The continued success of A. lixula can have a strong consequences for the ecological structure of Mediterranean rocky habitat.

Continue reading ‘Morphological response of the larvae of Arbacia lixula to near-future ocean warming and acidification’

Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers

Increasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, because carnivores failed to contain herbivore outbreaks. Instead, these higher-order consumers collapsed (apparent stressor-effect on carnivores) suggesting limited trophic propagation to predator populations. The dominance of primary producers and their lower-order consumers along with the loss of carnivores reflects the duality of intensifying ocean acidification acting both as resource-effect (i.e. bottom-up control) and stressor-effect (i.e. top-down control) to simplify community and trophic structure and function. This shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides new insights into how the trophic dynamics might stabilize against or propagate future environmental change.

Continue reading ‘Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers’

Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification

The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanicashoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters.

Continue reading ‘Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification’

Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO2 environment

The effects of global change on biological systems and functioning are already measureable, but how ecological interactions are being altered is poorly understood. Ecosystem resilience is strengthened by ecological functionality, which depends on trophic interactions between key species and resilience generated through biogenic buffering. Climate-driven alterations to coral reef metabolism, structural complexity and biodiversity are well documented, but the feedbacks between ocean change and trophic interactions of non-coral invertebrates are understudied. Sea cucumbers, some of the largest benthic inhabitants of tropical lagoon systems, can influence diel changes in reef carbonate dynamics. Whether they have the potential to exacerbate or buffer ocean acidification over diel cycles depends on their relative production of total alkalinity (AT) through the dissolution of ingested calcium carbonate (CaCO3) sediments and release of dissolved inorganic carbon (CT) through respiration and trophic interactions. In this study, the potential for the sea cucumber, Stichopus herrmanni, a bêche-de-mer (fished) species listed as vulnerable to extinction, to buffer the impacts of ocean acidification on reef carbonate chemistry was investigated in lagoon sediment mesocosms across diel cycles. Stichopus herrmanni directly reduced the abundance of meiofauna and benthic primary producers through its deposit-feeding activity under present-day and near-future pCO2. These changes in benthic community structure, as well as AT (sediment dissolution) and CT (respiration) production by S. herrmanni, played a significant role in modifying seawater carbonate dynamics night and day. This previously unappreciated role of tropical sea cucumbers, in support of ecosystem resilience in the face of global change, is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean.

Continue reading ‘Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO2 environment’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,040,102 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book