Posts Tagged 'echinoderms'

Ocean acidification does not overlook sex: review of understudied effects and implications of low pH on marine invertebrate sexual reproduction

Sexual reproduction is a fundamental process essential for species persistence, evolution, and diversity. However, unprecedented oceanographic shifts due to climate change can impact physiological processes, with important implications for sexual reproduction. Identifying bottlenecks and vulnerable stages in reproductive cycles will enable better prediction of the organism, population, community, and global-level consequences of ocean change. This article reviews how ocean acidification impacts sexual reproductive processes in marine invertebrates and highlights current research gaps. We focus on five economically and ecologically important taxonomic groups: cnidarians, crustaceans, echinoderms, molluscs and ascidians. We discuss the spatial and temporal variability of experimental designs, identify trends of performance in acidified conditions in the context of early reproductive traits (gametogenesis, fertilization, and reproductive resource allocation), and provide a quantitative meta-analysis of the published literature to assess the effects of low pH on fertilization rates across taxa. A total of 129 published studies investigated the effects of ocean acidification on 122 species in selected taxa. The impact of ocean acidification is dependent on taxa, the specific reproductive process examined, and study location. Our meta-analysis reveals that fertilization rate decreases as pH decreases, but effects are taxa-specific. Echinoderm fertilization appears more sensitive than molluscs to pH changes, and while data are limited, fertilization in cnidarians may be the most sensitive. Studies with echinoderms and bivalve molluscs are prevalent, while crustaceans and cephalopods are among the least studied species even though they constitute some of the largest fisheries worldwide. This lack of information has important implications for commercial aquaculture, wild fisheries, and conservation and restoration of wild populations. We recommend that studies expose organisms to different ocean acidification levels during the entire gametogenic cycle, and not only during the final stages before gametes or larvae are released. We argue for increased focus on fundamental reproductive processes and associated molecular mechanisms that may be vulnerable to shifts in ocean chemistry. Our recommendations for future research will allow for a better understanding of how reproduction in invertebrates will be affected in the context of a rapidly changing environment.

Continue reading ‘Ocean acidification does not overlook sex: review of understudied effects and implications of low pH on marine invertebrate sexual reproduction’

How does climate change affect a fishable resource? The case of the royal sea cucumber (Parastichopus regalis) in the central Mediterranean Sea

Holothurians or sea cucumbers are key organisms in marine ecosystems that, by ingesting large quantities of sediments, provide important ecosystem services. Among them, Parastichopus regalis (Cuvier, 1817) is one of the living sea cucumbers in the Mediterranean actively fished for human consumption mainly in Spain, where it is considered a gastronomic delicacy. In the Strait of Sicily (central Mediterranean Sea), this species is not exploited for commercial use even if it is used as bait by longline fishery. P. regalis is frequently caught by bottom trawling and discarded at sea by fishers after catch, and because of its capacity to resist air exposition (at least in cold months), it is reasonable to consider that it is not affected by fishing mortality. Having observed a significant decrease in abundance since 2018, the possible effects of some ecological factors related to current climate change (i.e., temperature and pH) were sought. Generalized additive models (GAMs) were applied to investigate the relationship among the abundance of P. regalis and environmental variables and fishing effort. Long time series of P. regalis densities (2008–2021) were extracted from the MEDITS bottom trawling survey and modeled as function of environmental parameters (i.e., salinity, dissolved oxygen, ammonium, pH, and chlorophyll α) and fishing effort (i.e., total number of fishing days per gross tonnage). Our results showed that this species prefers the soft bottoms (50–200 m) of the Adventure Bank and Malta Plateau, and its distribution changed over time with a slight deepening and a rarefaction of spatial distribution starting from 2011 and 2017, respectively. In addition, a positive relationship with pH concentration in surface waters during the larval dispersal phase (3-year lag before the survey) and nutrient concentration at sea bottom (1-year lag) has been found, suggesting that this species is sensitive to climate change and food availability. This study adds new knowledge about the population dynamics of an unexploited stock of P. regalis under fishing impact and environmental under climate change in fisheries management.

Continue reading ‘How does climate change affect a fishable resource? The case of the royal sea cucumber (Parastichopus regalis) in the central Mediterranean Sea’

Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus

Seawater temperature, oxygen, salinity and pH are important abiotic factors, changes in which can generate stress in marine organisms. Subtidal and intertidal species, such as the sand dollar Dendraster excentricus, are daily exposed to stressors against which they have developed survival mechanisms to face environmental challenges. Analysing the expression of some key genes in response to stress factors due to changes in temperature and pH, especially in the early stages of development, opens a window of knowledge on the effect that these stressors have on benthos marine organisms. In the present work larvae and post-larvae of D. excentricus were exposed to high temperature and low pH scenarios. Survival, size and gene expression of five genes, involved in both stress response (hsp70 IV and hsp90 beta-like) and biomineralization for skeletogenesis (sm29sm30Acarbonic anhydrase 14-like and mitochondrial proton/calcium exchanger protein LOC575637), were analysed in 4-, 6-, 8-arms, competent larvae and post-larvae. Survival of stressed larvae and post-larvae presented a significant decrease, up to 37% in some stages. A size reduction of almost 30 μm was observed when larvae were exposed to stressful conditions, except in competent larvae and in post-larvae where no significant changes were detected. After stress treatments, transcripts of hsp90 beta-like were up-regulated in all larval stages but hsp70 IV transcripts were not. Under tested stressful conditions sm29 and sm30A expression was down-regulated in larvae and post-larvae, while carbonic anhydrase 14-like and LOC575637 expressions were up-regulated. It is evident that tolerance to changes in seawater temperature and pH has a direct effect on metabolic functions of D. excentricus larvae and post-larvae, which depends on the developmental stage. If laboratory results are extrapolated to marine ecosystems, it is possible that populations of this structuring organism may be disturbed with subsequent damage to ecosystem balance, until resilient organisms acclimatize and adapt to their changing habitats.

Continue reading ‘Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus’

Ocean acidification will impede swimming in sea urchin sperm

A kina sea urchin. Photo credit: Mary Sewell.

The grim impact of ocean acidification on many marine creatures is becoming brutally evident. Pretty much any animal that depends on a calcium carbonate shell or skeleton – including molluscs and coral reefs – is at risk as the oceans soak up human CO2 emissions. But other aspects of their lifestyle may also be affected by the oceans’ plummeting pH. Sea urchin sperm are triggered into action when released into seawater with a pH higher than 8, raising their internal pH and activating the motor proteins that drive their powerful beating tails as they search for an egg. However, some researchers are concerned that the lower pH of seawater as acidification takes hold may mean it will no longer activate sea urchin sperm when released. Without the essential internal pH rise, the sperm may be too sluggish to locate and fertilise eggs. But no one had directly checked how the ocean pH reductions that are predicted to occur by 2100 and 2150 could impact the New Zealand sea urchin (Evechinus chloroticus – known in Māori as the kina). Michael Hudson and Mary Sewell from the University of Auckland, New Zealand, decided to check out what the future may hold for the self-propelled gametes.

‘We prepared the experimental seawaters by bubbling precise mixes of gases through special injectors at a set temperature’, says Hudson, who then diluted fresh kina sperm into two versions of future seawater – simulating the sea in the year 2100 (pH 7.77) and in 2150 (pH 7.51) – to monitor how the gametes would propel themselves. Unfortunately, only 74% of the sperm were able to swim in the turn-of-the-century predicted water conditions, falling to 64% by 2150, compared with 83% in present day seawater. And when Hudson checked their swimming style, he found the 2150 sperm were no more sluggish than the 2100 sperm; however, the gametes took more indirect curving paths, slowing their forward movement, with implications for future fertility. ‘Fertilisation requires sperm to collide with eggs and it is known that the end result of fewer sperm swimming and lower swimming speeds is reduced levels of sperm–egg collisions and lower fertilisation rates’, says Hudson.

A related article has been published: Ocean acidification impacts sperm swimming performance and pHi in the New Zealand sea urchin Evechinus chloroticus

Continue reading ‘Ocean acidification will impede swimming in sea urchin sperm’

Ocean warming amplifies the effects of ocean acidification on skeletal mineralogy and microstructure in the Asterinid starfish Aquilonastra yairi

Ocean acidification and ocean warming compromise the capacity of calcifying marine organisms to generate and maintain their skeletons. While many marine calcifying organisms precipitate low-Mg calcite or aragonite, the skeleton of echinoderms consists of more soluble Mg-calcite. To assess the impact of exposure to elevated temperature and increased pCO2 on the skeleton of echinoderms, in particular the mineralogy and microstructure, the starfish Aquilonastra yairi (Echinodermata: Asteroidea) was exposed for 90 days to simulated ocean warming (27 °C and 32 °C) and ocean acidification (455 µatm, 1052 µatm, 2066 µatm) conditions. The results indicate that temperature is the major factor controlling the skeletal Mg (Mg/Ca ratio and Mgnorm ratio), but not for skeletal Sr (Sr/Ca ratio and Srnorm ratio) and skeletal Ca (Canorm ratio) in A. yairi. Nevertheless, inter-individual variability in skeletal Sr and Ca ratios increased with higher temperature. Elevated pCO2 did not induce any statistically significant element alterations of the skeleton in all treatments over the incubation time, but increased pCO2 concentrations might possess an indirect effect on skeletal mineral ratio alteration. The influence of increased pCO2 was more relevant than that of increased temperature on skeletal microstructures. pCO2 as a sole stressor caused alterations on stereom structure and degradation on the skeletal structure of A. yairi, whereas temperature did not; however, skeletons exposed to elevated pCO2 and high temperature show a strongly altered skeleton structure compared to ambient temperature. These results indicate that ocean warming might exacerbate the skeletal maintaining mechanisms of the starfish in a high pCO2 environment and could potentially modify the morphology and functions of the starfish skeleton.

Continue reading ‘Ocean warming amplifies the effects of ocean acidification on skeletal mineralogy and microstructure in the Asterinid starfish Aquilonastra yairi’

Ocean acidification impacts sperm swimming performance and pHi in the New Zealand sea urchin Evechinus chloroticus

In sea urchins, spermatozoa are stored in the gonads in hypercapnic conditions (pH<7.0). During spawning, sperm are diluted in seawater of pH>8.0, and there is an alkalinization of the sperm’s internal pH (pHi) through the release of CO2 and H+. Previous research has shown that when pHi is above 7.2-7.3, the dynein ATPase flagellar motors are activated, and the sperm become motile. It has been hypothesised that ocean acidification (OA), which decreases the pH of seawater, may have a narcotic effect on sea urchin sperm by impairing the ability to regulate pHi, resulting in decreased motility and swimming speed. Here we use data collected from the same individuals to test the relationship between pHi and sperm motility/performance in the New Zealand sea urchin Evechinus chloroticus (Valenciennes) under near- (2100) and far-future (2150) atmospheric pCO2 conditions (RCP 8.5: pH 7.77, 7.51). Decreasing seawater pH significantly negatively impacted the proportion of motile sperm), and four of the six computer-assisted sperm analysis (CASA) sperm performance measures. In control conditions, sperm had an activated pHi of 7.52. E. chloroticus sperm could not defend pHi. in future OA conditions; there was a stepped decrease in the pHi at pH 7.77, with no significant difference in mean pHi between pH 7.77 and 7.51. Paired measurements in the same males showed a positive relationship between pHi and sperm motility, but with a significant difference in the response between males. Differences in motility and sperm performance in OA conditions may impact fertilization success in a future ocean.

Continue reading ‘Ocean acidification impacts sperm swimming performance and pHi in the New Zealand sea urchin Evechinus chloroticus’

Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades

Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.

Continue reading ‘Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades’

Fluctuating pH simulating natural variability modulates larval growth for Strongylocentrotus droebachiensis

Ocean acidification (OA) is the downward trend of ocean pH mainly resulting from the absorption of carbon dioxide (CO2) emissions from anthropogenic sources. pH of the open ocean is expected to drop to 7.7 by the end of the century. Previous experiments investigating biological response to OA often use this open ocean prediction to assess response and neglect the potential modulating effects of a dynamic, fluctuating coastal ecosystem. pH in the Gullmar Fjord on the west coast of Sweden experiences natural fluctuations of pH as a result of biological processes that exceed the end-of-the century predictions, and as such these natural fluctuations need to be considered. The aim of this study was to investigate which part of the natural variability cycle, minimum pH experienced or duration of exposure under fluctuating conditions, drives the biological response of green sea urchin larvae (Strongylocentrotus droebachiensis), which are residents in the Gullmar Fjord. It was hypothesized that both intensity and duration of different pH exposures contributes to the stress experienced by an organism and further that (1) the level of stress is dependent on both intensity and duration of exposure in a cumulative manner (intensity*time); (2) for a given intensity, the negative effect on sea urchin larvae will increase with the duration of exposure; and (3) for a given duration of exposure, the negative effect on sea urchin larvae will increase with the intensity. The main results were that overall fluctuating conditions were beneficial to growth relative to constant conditions, intensity*time predicted stress response for body length growth, ignoring the role of modulating effects on pH can overestimate biological response to OA, and an overall change in shape was observed under fluctuating conditions. Future studies should further investigate this change in shape and also assess biological response in the context of natural fluctuations combined with other global change stressors.

Continue reading ‘Fluctuating pH simulating natural variability modulates larval growth for Strongylocentrotus droebachiensis’

The effect of ocean acidification on the escape behaviour of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar

Ocean acidification (OA) driven by sea water uptake of anthropogenic atmospheric CO2 has broad deleterious effects on marine species including modified behavioural interactions such as between predators and prey. Predatory sea stars are key species in many marine ecosystems and often elicit defensive responses in their prey. This study investigated the effect of elevated CO2 on the escape response of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar. In response to touch by M. calcarP. exigua exhibits a distinct fleeing response. The escape response of P. exigua with respect to velocity and escape trajectory was investigated after both species were acclimated in OA conditions. At pHT 7.6 and 7.8 velocity and escape trajectory of the fleeing response of P. exigua did not differ from that seen in the ambient treatment. However, there was a delay in the time that P. exigua started to flee with the initiation time being 2.8 times slower (10 vs 28 s) at pHT 7.6. This delay may increase the vulnerability of P. exigua to predation by M. calcar and have ecological effects with respect to the role of this species as an algal grazer on rocky shores of southeast Australia where these sea star species co-occur.

Continue reading ‘The effect of ocean acidification on the escape behaviour of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar’

A regional view of the response to climate change: a meta-analysis of European benthic organisms’ responses

Climate change is impacting organisms in every region of the world ocean by acting though on individuals in response to their local environments. Given projected future risks derived from these changes, it is becoming increasingly important to understand regional signals of how organisms respond to facilitate their governance and protection. Benthic organisms structure ecological compositions and ecosystem dynamics, therefore not only providing insights into their own response to climate change but also how ecosystems might respond to future conditions. European seas are transitional areas including boreal, warm-temperate, and subarctic waters with organisms frequently at limits of their distributions. Here, we use a meta-analytical approach to assess how calcification, growth, metabolism, photosynthesis, reproduction, and survival in European benthic organisms respond to ocean acidification and warming. Using meta-regression, we examine how study design factors influence effect-size outcomes. Longer experimental periods generally amplified the effects of climate change on taxonomic groupings and related physiological traits and against expectation do not result in acclimation. In agreement with global studies, we find that impacts vary considerably on different taxonomic groupings and their physiological traits. We found calcifying organisms are an at-risk taxon in European waters, with climate stressors decreasing growth rates, reproduction, and survival rates. Fleshy algal species demonstrate resilience to climate stressors, suggesting future European benthic ecosystems will undergo restructuring based on current climate emission pathways.

Continue reading ‘A regional view of the response to climate change: a meta-analysis of European benthic organisms’ responses’

Acclimation to low pH does not affect the thermal tolerance of Arbacia lixula progeny

As the ocean warms, the thermal tolerance of marine invertebrates is key to determining their distributional change, where acclimation to low pH may impact the thermal range of optimal development. We compared thermal tolerance of progeny from a low pH-acclimated sea urchin (Arbacia lixula) population from the CO2 vents of Ischia (Italy) and a nearby population living at ambient pH. The percentages of normally developing gastrulae and two-armed larvae were determined across 10 temperatures representing present and future temperature conditions (16–34°C). Vent-acclimated sea urchins showed a greater percentage of normal development at 24 h, with a larger optimal developmental temperature range than control sea urchins (12.3°C versus 5.4°C range, respectively). At 48 h, upper lethal temperatures for 50% survival with respect to ambient temperatures were similar between control (+6.8°C) and vent (+6.2°C) populations. Thus, acclimation to low pH did not impact the broad thermal tolerance of A. lixula progeny. With A. lixula‘s barrens-forming abilities, its wide thermotolerance and its capacity to acclimate to low pH, this species will continue to be an important ecological engineer in Mediterranean macroalgal ecosystems in a changing ocean.

Continue reading ‘Acclimation to low pH does not affect the thermal tolerance of Arbacia lixula progeny’

Transgenerational effects and phenotypic plasticity in sperm and larvae of the sea urchin Paracentrotus lividus under ocean acidification


  • Transgenerational effects of OA were studied in P. lividus sperm and larvae
  • Gametogenesis under OA resulted in increased sperm ATP content
  • Slower decrease of swimming velocity was found in sperm from males kept at low pH
  • Parental exposure to OA decreased larval survival but increased larval growth
  • Parental pH affected offspring performances more than post-spawning pH


In marine organisms, differing degree of sensitivity to ocean acidification (OA) is expected for each life stage, and disturbance at one stage can carry over into the following stage or following generation. In this study we investigated phenotypic changes of sperm and larvae of the sea urchin Paracentrotus lividus in response to different pH conditions (8.0, 7.7, 7.4) experienced by the parents during gametogenesis. In sperm from two-months exposed males, sperm motility, velocity, ATP content, ATP consumption and respiration rate were evaluated at three pH values of the activating medium (8.0, 7.7 and 7.4). Moreover, larvae from each parental group were reared at pH 8.0 and 7.7 for 20 days and larval mortality and growth were then assessed. Sperm motility and respiration rate were not affected either by exposure of males to low pH or by the post-activation pH. Sperm velocity did not differ among post-activation pH values in all sperm groups, but it decreased slower in sperm developed under acidified conditions, suggesting the presence of positive carryover effect on sperm longevity. This positive carryover effect of exposure of males to low pH values was highlighted also for the sperm ATP content, which was higher in these groups of sperm. ATP consumption rate was affected by post-activation pH with higher values at pH 8.0 in sperm from males maintained at control condition and pH 7.7 while the energy consumption appeared to be differently modulated at different experimental conditions. A negative carry over effect of OA was observed on survival of larvae from parents acclimated at pH 7.4 and additive negative effects of both parental and larval exposure to low pH can be suggested. In all groups of larvae, decreased somatic growth was observed at low rearing pH, thus larvae from parents maintained at low pH did not show an increased capability to cope with OA.

Continue reading ‘Transgenerational effects and phenotypic plasticity in sperm and larvae of the sea urchin Paracentrotus lividus under ocean acidification’

Adaptive potential of coastal invertebrates to environmental stressors and climate change

Climate change presents multiple stressors that are impacting marine life. As carbon dioxide emissions continue to increase in the atmosphere, atmospheric and sea water temperatures increase. In addition, more carbon dioxide is absorbed into the oceans, reducing pH and aragonite saturation state, resulting in ocean acidification (OA). Tightly coupled with OA is hypoxia due to deep stratified sea water becoming increasingly acidified and deoxygenated. The effects of these climate stressors have been studied in detail for only a few marine animal models. However, there are still many taxa and developmental stages in which we know very little about the impacts. Using genomic techniques, we examine the adaptive potential of three local marine invertebrates under three different climate stressors: marine disease exacerbated by thermal stress, OA, and combined stressors OA with hypoxia (OAH). As sea water temperatures rise, the prevalence of marine diseases increases, as seen in the sea star wasting syndrome (SSWS). The causation of SSWS is still widely debated; however reduced susceptibility to SSWS could aid in understanding disease progression. By examining genetic variation in Pisaster ochraceous collected during the SSWS outbreak, we observed weak separation between symptomatic and asymptomatic individuals. OA has been widely studied in many marine organisms, including Crassostrea gigas. However, limited studies have parsed the effects of OA during settlement, with no studies assessing the functionality of settlement and how it is impacted by OA. We investigated the effects of OA on settlement and gene expression during the transition from larval to juvenile stages in Pacific oysters. While OA and hypoxia are common climate stressors examined, the combined effects have scarcely examined. Further, the impacts of OAH have been narrowly focused on a select few species, with many economically important organisms having no baseline information on how they will persist as OAH severity increases. To address these gaps in our knowledge, we measured genetic variation in metabolic rates during OA for the species Haliotis rufescens to assess their adaptive potential through heritability measurements. We discuss caveats and considerations when utilizing similar heritability estimate methods for other understudied organisms. Together, these studies will provide novel information on the biological responses and susceptibility of difference coastal species to stressors associated with global climate change. These experiments provide information on both the vulnerability of current populations and their genetic potential for adaptation to changing ocean conditions.

Continue reading ‘Adaptive potential of coastal invertebrates to environmental stressors and climate change’

Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development


  • Ocean acidification and microplastics altered the morphology of P. lividus larvae.
  • Ocean acidification and microplastics reduce growth of P. lividus larvae.
  • Alterations occurred before and after larvae start to feed exogenously.
  • The combined effect of both stressors on P. lividus morphology is non additive.
  • SET is an ideal method to study the impact of ocean acidification at a lab scale.


One of the major consequences of increasing atmospheric CO2 is a phenomenon known as ocean acidification. This alteration of water chemistry can modulate the impact on marine organisms of other stressors also present in the environment, such as microplastics (MP). The objective of this work was to determine the combined impact of microplastic pollution and ocean acidification on the early development of Paracentrotus lividus. To study these multi-stressor impacts on development P. lividus the sea urchin embryo test (SET) was used. Newly fertilised embryos of P. lividus were exposed to a control treatment (filtered natural seawater), MP (3000 particles/mL), acidified sea water (pH = 7.6), and a combination of MP and acidification (3000 particles/mL + pH = 7.6). After 48, 72, and 96 h measurements of growth and morphometric parameters were taken. Results showed that ocean acidification and MP cause alterations in growth and larval morphology both before and after the larvae start to feed exogenously. The exposure to MP under conditions of ocean acidification did not produce any additional effect on growth, but differences were observed at the morphological level related to a decrease in the width of larvae at 24 h. Overall, changes in larvae shape observed at three key points of their development could modify their buoyancy affecting their ability to obtain and ingest food. Therefore, ocean acidification and MP pollution might compromise the chances of P. lividus to survive in the environment under future scenarios of global climate change.

Continue reading ‘Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development’

Characterization factors for ocean acidification impacts on marine biodiversity

Rising greenhouse gas emissions do not only accelerate climate change but also make the ocean more acidic. This applies above all to carbon dioxide (CO2). Lower ocean pH levels threaten marine ecosystems and especially strongly calcifying species. Impacts on marine ecosystem quality are currently underrepresented in life cycle assessments (LCAs). Here, we developed characterization factors for the life cycle impact assessment of ocean acidification. Our main contribution was developing new species sensitivity distributions (SSDs), from which we derived effect factors for different impact perspectives: Marginal, linear, and average changes for both the past and four future emission scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Based on a dataset that covered five taxa (corals, crustaceans, echinoderms, fishes, molluscs) and three climate zones, we showed significantly higher sensitivities for strongly calcifying than slightly calcifying taxa and in polar regions compared to tropical and temperate regions. Experimental duration, leading to acute, subchronic, or chronic toxicological endpoints, did not significantly affect the species sensitivities. With ocean acidification impacts still accelerating, the future-oriented average effects are higher than the marginal or past-oriented average effects. While our characterization factors are ready for use in LCA, we also point to opportunities for improvement in future developments.

Continue reading ‘Characterization factors for ocean acidification impacts on marine biodiversity’

Responses of sea urchins (Strongylocentrotus intermedius) with different sexes to CO2-induced seawater acidification: histology, physiology, and metabolomics


  • Impacts of seawater acidification on different sexes of Strongylocentrotus intermedius were investigated.
  • Specific growth rate and the numbers of mature gametes were measured.
  • A comparative metabolomics analysis was performed.
  • Sex-specific significantly differentially expressed metabolites were identified and annotated.
  • Male S. intermedius may be more sensitive than females in coping with seawater acidification.


Responses of different sexes of farmed Strongylocentrotus intermedius to chronic CO2-induced seawater acidification were investigated in 120-day lab-based experiments. Four experimental groups were set up as one control group and three seawater acidification groups. The results showed that 1) Specific growth rate and the numbers of mature gamete cells declined in a pH-dependent way in both sexes of adult S. intermedius. 2) There were differences in SDMs identified in females and males reared in acidified seawater reflecting sex-specific response variation in adult S. intermedius. 3) The number of altered metabolic pathways exhibited a linear increasing trend as seawater pH declined in both sexes of adult S. intermedius. Meanwhile seawater acidification might affect metabolic processes via changing the relative expression and activity of key enzymes controlling the corresponding metabolic pathways of adult S. intermedius.

Continue reading ‘Responses of sea urchins (Strongylocentrotus intermedius) with different sexes to CO2-induced seawater acidification: histology, physiology, and metabolomics’

Effects of seawater acidification on echinoid adult stage: a review

The continuous release of CO2 in the atmosphere is increasing the acidity of seawater worldwide, and the pH is predicted to be reduced by ~0.4 units by 2100. Ocean acidification (OA) is changing the carbonate chemistry, jeopardizing the life of marine organisms, and in particular calcifying organisms. Because of their calcareous skeleton and limited ability to regulate the acid–base balance, echinoids are among the organisms most threatened by OA. In this review, 50 articles assessing the effects of seawater acidification on the echinoid adult stage have been collected and summarized, in order to identify the most important aspects to consider for future experiments. Most of the endpoints considered (i.e., related to calcification, physiology, behaviour and reproduction) were altered, highlighting how various and subtle the effects of pH reduction can be. In general terms, more than 43% of the endpoints were modified by low pH compared with the control condition. However, animals exposed in long-term experiments or resident in CO2-vent systems showed acclimation capability. Moreover, the latitudinal range of animals’ distribution might explain some of the differences found among species. Therefore, future experiments should consider local variability, long-term exposure and multigenerational approaches to better assess OA effects on echinoids.

Continue reading ‘Effects of seawater acidification on echinoid adult stage: a review’

Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors

End-of-the-century predictions on carbon dioxide (CO2) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species’ early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced. Here we compared the transgenerational responses to a multiple stressor scenario in sea urchins (Paracentrotus lividus) that experienced different environments since their settlement: i.e., animals from a highly variable environment, such as the Venice lagoon, versus animals from a coastal area with prevailing oligotrophic conditions in the Northern Adriatic Sea. After long-term maintenance (2 and 6 months) of adult sea urchins at natural and −0.4 units reduced pH, the F1 generations were obtained. Embryos were reared under four experimental conditions: natural and −0.4 pH both in the absence and in the presence of an emerging contaminants’ mixture (glyphosate and aminomethylphosphonic acid at environmentally relevant concentrations, 100 μg/L). A significant detrimental effect of both the parental and the filial pH was highlighted, affecting embryo development and growth. Nonetheless, sea urchins from both sites were able to cope with ocean acidification. The 6-months F1 response was better than that of the 2-months F1. Conversely, the F1 response of the sea urchins maintained at natural conditions did not change sensibly after more prolonged parental exposure. An additive but mild negative effect of the mixture was observed, mostly in lagoon offspring. Results suggest that long-term exposure to reduced pH leads to transgenerational acclimation but does not affect susceptibility to the tested pollutants.

Continue reading ‘Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors’

Low-pH seawater alters indirect interactions in rocky-shore tidepools

Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the anti-predator behavior of snails, bolstering their grazing, and diminishing the top-down influence of predators on basal resources. This attenuation of top-down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.

Continue reading ‘Low-pH seawater alters indirect interactions in rocky-shore tidepools’

Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: direct and indirect effects


  • Ocean acidification increase growth and gross primary production of Cymodocea nodosa.
  • The rise of temperature limited the net and gross primary production of Cymodocea nodosa.
  • A positive effect of decrased pH on greater vulnerability to consumption by Paracentrotus lividus.
  • A future scenario of climate change will affect metabolic rates of C.nodosa.
  • Different responses to climate change have been observed by C. nodosa from Canary Islands.


As detected in warming and ocean acidification, global change can have profound impact on marine life. Its effects on seagrasses are becoming increasingly well-known, since several studies have focused on the responses of these species to global change conditions. However a few studies have assessed the combined effect of temperature and acidification on seagrasses. Overall in this study, the combined effects of increased ocean temperature and pH levels expected at the end of this century (+5 °C and pH 7.5) on Cymodocea nodosa from Canary Islands, were evaluated for one month through manipulative laboratory experiments. Growth, net production, respiration, gross primary production, chlorophyll-a concentration and its vulnerability to herbivory were quantified. Results showed a positive effect of decreased pH on growth and gross primary production, as well as greater vulnerability to consumption by the sea urchin Paracentrotus lividus. In contrast, increased temperature limited net and gross primary production. This study shows than in future scenarios, C. nodosa from the Canary Islands may be a losing species in the global change stakes.

Continue reading ‘Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: direct and indirect effects’

  • Reset


OA-ICC Highlights

%d bloggers like this: