Posts Tagged 'dissolution'

Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification

Previous studies have found that calcification in coral reefs is generally stronger during the day, whereas dissolution is prevalent at night. On the basis of these contrasting patterns, the diel variations of net community calcification (NCC) were monitored to examine the relative sensitivity of CaCO3 production (calcification) and dissolution in coral reefs to ocean acidification (OA), using two mesocosms that replicated a typical subtropical coral reef ecosystem in southern Taiwan. The results revealed that the daytime NCC remained unchanged, whereas the nighttime NCC decreased between the control (ambient) and treatment (OA) conditions, suggesting that carbonate dissolution could be more sensitive to OA than coral calcification. The average sensitivity of the integrated daily NCC to changes in the seawater saturation state (Ωa) was estimated to be a reduction of 54% in NCC per unit change in Ωa, which is consistent with the global average. In summary, our results support the prevailing anticipation that OA would lead to a reduction in the overall accretion of coral reef ecosystems. However, increased CaCO3 dissolution rather than decreased coral calcification could be the dominant driving force responsible for this OA-induced reduction in NCC.

Continue reading ‘Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification’

Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients

Highlights

• Coastal habitats with the steepest ocean acidification gradients are most detrimental for larval Dungeness crabs.

• Severe carapace dissolution was observed in larval Dungeness crabs along the US west coast.

• Mechanoreceptors with important sensory and behavioral functions were destabilized.

• Dissolution is negatively related to the growth, demonstrating energetic trade-offs.

• 10% dissolution increase over the last two decades estimated due to atmospheric CO2.

Abstract

Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life. Dungeness crab (Metacarcinus magister) is perennially one of the most valuable commercial and recreational fisheries. We focused on establishing OA-related vulnerability of larval crustacean based on mineralogical and elemental carapace to external and internal carapace dissolution by using a combination of different methods ranging from scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping and X-ray diffraction. By integrating carapace features with the chemical observations and biogeochemical model hindcast, we identify the occurrence of external carapace dissolution related to the steepest Ω calcite gradients (∆Ωcal,60) in the water column. Dissolution features are observed across the carapace, pereopods (legs), and around the calcified areas surrounding neuritic canals of mechanoreceptors. The carapace dissolution is the most extensive in the coastal habitats under prolonged (1-month) long exposure, as demonstrated by the use of the model hindcast. Such dissolution has a potential to destabilize mechanoreceptors with important sensory and behavioral functions, a pathway of sensitivity to OA. Carapace dissolution is negatively related to crab larval width, demonstrating a basis for energetic trade-offs. Using a retrospective prediction from a regression models, we estimate an 8.3% increase in external carapace dissolution over the last two decades and identified a set of affected OA-related sublethal pathways to inform future risk assessment studies of Dungeness crabs.

Continue reading ‘Exoskeleton dissolution with mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean acidification vertical gradients’

Aragonite pteropod abundance and preservation records from the Maldives, equatorial Indian Ocean: inferences on past oceanic carbonate saturation and dissolution events

Highlights

• 1.2 Myr record of pteropod abundance/preservation variations from the Maldives

• Periods of enhanced ventilation during MIS 8, 3, 2 and MIS 14-13, 6-5 transitions

• MBDI marked by very poor preservation of pteropods during MIS 13 to 11

• Seawater carbonate chemistry plays a role in shell calcification.

• Glacial periods, MIS 16, 14, 6, 4, 2 are marked by larger and pristine shells.

Abstract

During the International Ocean Discovery Program (IODP) Expedition 359, a long continuous carbonate-rich sequence was recovered from the Inner Sea of Maldives. We investigated pteropod proxies (absolute abundance of pteropods species, total pteropods, epipelagic to mesopelagic ratio, fragmentation ratio, Limacina Dissolution Index (LDX), mean shell size variations of L. inflata) from Sites U1467 (water depth: 487 m) and U1468 (water depth: 521 m) to understand both surface and sub-surface paleoceanographic changes in the equatorial Indian Ocean and to improve our understanding of the factors responsible for pteropod preservation on longer timescales. A total of 15 species of pteropods were identified, and their downcore variations were documented from the core top to 707.49 mbsf in U1467 and from 447.4 to 846.92 mbsf in U1468. At the Site U1467, pteropod shells show high abundances/preservation up to a depth of 45 mbsf (~1.2 Ma), which is consistent with the presence of aragonite content in sediments (with the top 50 m bearing high aragonite content). Beyond 45 mbsf, only fragmented pteropod shells were seen down to 50 mbsf (corresponding to 1.5 Ma) followed by a total absence of pteropod shells and fragments from 50 mbsf (~1.5 Ma) to the end of the core at 846.92 mbsf (~24 Ma). A decrease in the SO42ˉconcentration and alkalinity in the interstitial fluid geochemistry is seen at these depths. The presence of dolomite content below 50 mbsf also indicates the alteration of aragonite into dolomite. Analyses of the carbonate preservation proxies reveal that the pteropods exhibit considerable fluctuation in abundance/preservation during the last 1.2 Myr. A good to moderate preservation (LDX: 2 to 3) is seen which correlates well with the fragmentation ratio but with an inverse relation with calcification rate. The proxies for in-life pteropod shell dissolution (average size of L. inflata and LDX) indicate that glacial periods (MIS 16, 14, 6, 4 and 2) have shown no signs of dissolution pointing better calcification under aragonite-saturated water column which is in good correlation with reduced atmospheric CO₂ concentration. Epipelagic/mesopelagic ratio indicates that the water column exhibited enhanced ventilation and mixing during glacial to interglacial periods, but intervals of intense stratification, a sign of poor ventilation or weakened circulation, was prevalent beyond MIS 14. The longest interval of poorest preservation was marked during MIS 11 and 13, which corresponds to the ‘Mid-Brunhes Dissolution Interval (MBDI).’ On a longer time scale, the abundances/preservation of pteropods in the Maldives seems to be controlled by changes in the seawater chemistry associated with monsoon productivity, water column ventilation, and atmospheric CO2 concentration.

Continue reading ‘Aragonite pteropod abundance and preservation records from the Maldives, equatorial Indian Ocean: inferences on past oceanic carbonate saturation and dissolution events’

Coccolith morphological and assemblage responses to dissolution in the recent sediments of the East China Sea

Highlights

• Gephyrocapsa coccoliths (>3 μm) got thinner and lighter in response to dissolution in the sediments of East China Sea.

• The acidification experiments showed selective dissolution of the four dominant coccolith species/genera.

• Coccolith morphological parameters can be used as indices to evaluate coccolith dissolution in sediments.

Abstract

Evaluating carbonate dissolution in deep sea sediments is of key importance in understanding the variation of the carbonate compensation depth and the ocean carbon cycle in the geological past. Since coccoliths are one of the main contributors to oceanic CaCO3, their dissolution and preservation degrees in sediments can be a useful indicator for deep sea carbonate chemistry. Varying coccolith preservation conditions have been found due to dissolution caused by organic matter degradation in the recent surface sediments of the East China Sea, which provides a good basis for the study of coccolith morphological and assemblage responses to dissolution. We measured the coccolith weight, thickness, and length of Gephyrocapsa spp. (>3 μm) using a circularly polarized light microscope. It has been found that Gephyrocapsa spp. (>3 μm) coccoliths become thinner and lighter in response to dissolution, and coccolith assemblages are also altered in poorly preserved sediments. This phenomenon was confirmed by an acidification experiment on a sediment sample, which also showed that coccoliths became thinner and lighter under increasingly acidified conditions. There is selective dissolution, i.e., Emiliania huxleyi coccoliths are most dissolution-prone, followed by Gephyrocapsa spp. (3 μm), and Helicosphaera spp.. Coccolith morphological parameters can be used to quantitatively evaluate coccolith preservation and dissolution in sediment samples. We suggest that using size-normalized weight, a mean coccolith weight loss of ~30–50% can be assigned to moderate-poor preservation for coccoliths, as reflected by the measured coccolith morphological changes in the surface sediments and in the acidification experiment.

Continue reading ‘Coccolith morphological and assemblage responses to dissolution in the recent sediments of the East China Sea’

Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species

Made up of calcareous coralline algae, maerl beds play a major role as ecosystem engineers in coastal areas throughout the world. They undergo strong anthropogenic pressures, which may threaten their survival. The aim of this study was to gain insight into the future of maerl beds in the context of global and local changes. We examined the effects of rising temperatures (+3°C) and ocean acidification (−0.3 pH units) according to temperature and pH projections (i.e., the RCP 8.5 scenario), and nutrient (N and P) availability on three temperate maerl species (Lithothamnion corallioides, Phymatolithon calcareum, and Lithophyllum incrustans) in the laboratory in winter and summer conditions. Physiological rates of primary production, respiration, and calcification were measured on all three species in each treatment and season. The physiological response of maerl to global climate change was species‐specific and influenced by seawater nutrient concentrations. Future temperature–pH scenario enhanced maximal gross primary production rates in P. calcareum in winter and in L. corallioides in both seasons. Nevertheless, both species suffered an impairment of light harvesting and photoprotective mechanisms in winter. Calcification rates at ambient light intensity were negatively affected by the future temperature–pH scenario in winter, with net dissolution observed in the dark in L. corallioides and P. calcareum under low nutrient concentrations. Nutrient enrichment avoided dissolution under future scenarios in winter and had a positive effect on L. incrustans calcification rate in the dark in summer. In winter conditions, maximal calcification rates were enhanced by the future temperature–pH scenario on the three species, but P. calcareum suffered inhibition at high irradiances. In summer conditions, the maximal calcification rate dropped in L. corallioides under the future global climate change scenario, with a potential negative impact on CaCO3 budget for maerl beds in the Bay of Brest where this species is dominant. Our results highlight how local changes in nutrient availability or irradiance levels impact the response of maerl species to global climate change and thus point out how it is important to consider other abiotic parameters in order to develop management policies capable to increase the resilience of maerl beds under the future global climate change scenario.

Continue reading ‘Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species’

Seasonal variability of calcium carbonate precipitation and dissolution in shallow coral reef sediments

Shallow, permeable calcium carbonate (CaCO3) sediments make up a large proportion of the benthic cover on coral reefs and account for a large fraction of the standing stock of CaCO3. There have been a number of laboratory, mesocosm, and in situ studies examining shallow sediment metabolism and dissolution, but none of these have considered seasonal variability. Advective benthic chambers were used to measure in situ net community calcification (NCC) rates of CaCO3 sediments on Heron Island, Australia (Great Barrier Reef) over an annual cycle. Sediments were, on average, net precipitating during the day and net dissolving at night throughout the year. Night dissolution rates (−NCCNIGHT) were highest in the austral autumn and lowest in the austral winter driven by changes in respiration (R) and to a lesser extent temperature and Ωarag/pH. Similarly, precipitation during the day (+NCCDAY) was highest in March and lowest in winter, driven primarily by benthic net primary production (NPP) and temperature. On average, sediments were net precipitating over a diel cycle (NCC24h) but shifted to net dissolving in July and December. This shift was largely caused by the differential effects of seasonal cycles in organic metabolism and carbonate chemistry on NCCDAY and NCCNIGHT. The results from this study highlight the large variability in sediment CaCO3 dynamics and the need to include repeated measurements over different months and seasons, particularly in shallow reef systems that can experience large swings in light, temperature, and carbonate chemistry.

Continue reading ‘Seasonal variability of calcium carbonate precipitation and dissolution in shallow coral reef sediments’

Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows

The net ecosystem productivity (NEP) of two seagrass meadows within one of the largest seagrass ecosystems in the world, Florida Bay, was assessed using direct measurements over consecutive diel cycles during a short study in the fall of 2018. We report significant differences between NEP determined by dissolved inorganic carbon (NEPDIC) and by dissolved oxygen (NEPDO), likely driven by differences in air–water gas exchange and contrasting responses to variations in light intensity. We also acknowledge the impact of advective exchange on metabolic calculations of NEP and net ecosystem calcification (NEC) using the “open-water” approach and attempt to quantify this effect. In this first direct determination of NEPDIC in seagrass, we found that both seagrass ecosystems were net heterotrophic, on average, despite large differences in seagrass net above-ground primary productivity. NEC was also negative, indicating that both sites were net dissolving carbonate minerals. We suggest that a combination of carbonate dissolution and respiration in sediments exceeded seagrass primary production and calcification, supporting our negative NEP and NEC measurements. However, given the limited spatial (two sites) and temporal (8 d) extent of this study, our results may not be representative of Florida Bay as a whole and may be season-specific. The results of this study highlight the need for better temporal resolution, accurate carbonate chemistry accounting, and an improved understanding of physical mixing processes in future seagrass metabolism studies.

Continue reading ‘Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,324,272 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book