Posts Tagged 'dissolution'

Multiscale mechanical consequences of ocean acidification for cold-water corals

Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45–67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.

Continue reading ‘Multiscale mechanical consequences of ocean acidification for cold-water corals’

Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster’s inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.

Continue reading ‘Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification’

Calcium carbonate dissolution patterns in the ocean

Calcium carbonate (CaCO3) minerals secreted by marine organisms are abundant in the ocean. These particles settle and the majority dissolves in deeper waters or at the seafloor. Dissolution of carbonates buffers the ocean, but the vertical and regional distribution and magnitude of dissolution are unclear. Here we use seawater chemistry and age data to derive pelagic CaCO3 dissolution rates in major oceanic regions and provide the first data-based, regional profiles of CaCO3 settling fluxes. We find that global CaCO3 export at 300 m depth is 76 ± 12 Tmol yr−1, of which 36 ± 8 Tmol (47%) dissolves in the water column. Dissolution occurs in two distinct depth zones. In shallow waters, metabolic CO2 release and high-magnesium calcites dominate dissolution while increased CaCO3 solubility governs dissolution in deeper waters. Based on reconstructed sinking fluxes, our data indicate a higher CaCO3 transfer efficiency from the surface to the seafloor in high-productivity, upwelling areas than in oligotrophic systems. These results have implications for assessments of future ocean acidification as well as palaeorecord interpretations, as they demonstrate that surface ecosystems, not only interior ocean chemistry, are key to controlling the dissolution of settling CaCO3 particles.

Continue reading ‘Calcium carbonate dissolution patterns in the ocean’

Global declines in coral reef calcium carbonate production under ocean acidification and warming

Significance

The growth of coral reefs is threatened by the dual stressors of ocean warming and acidification. Despite a wealth of studies assessing the impacts of climate change on individual taxa, projections of their impacts on coral reef net carbonate production are limited. By projecting impacts across 233 different locations, we demonstrate that the majority of coral reefs will be unable to maintain positive net carbonate production globally by the year 2100 under representative concentration pathways RCP4.5 and 8.5, while even under RCP2.6, coral reefs will suffer reduced accretion rates. Our results provide quantitative projections of how different climate change stressors will influence whole ecosystem carbonate production across coral reefs in all major ocean basins.

Abstract

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world’s coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.

Continue reading ‘Global declines in coral reef calcium carbonate production under ocean acidification and warming’

Geographical variation in phenotypic plasticity of intertidal sister limpet’s species under ocean acidification scenarios

Ocean Acidification (OA) can have pervasive effects in calcifying marine organisms, and a better understanding of how different populations respond at the physiological and evolutionary level could help to model the impacts of global change in marine ecosystems. Due to its natural geography and oceanographic processes, the Chilean coast provides a natural laboratory where benthic organisms are frequently exposed to diverse projected OA scenarios. The goal of this study was to assess whether a population of mollusks thriving in a more variable environment (Talcaruca) would present higher phenotypic plasticity in physiological and morphological traits in response to different pCO2 when compared to a population of the same species from a more stable environment (Los Molles). To achieve this, two benthic limpets (Scurria zebrina and Scurria viridula) inhabiting these two contrasting localities were exposed to ocean acidification experimental conditions representing the current pCO2 in the Chilean coast (500 μatm) and the levels predicted for the year 2100 in upwelling zones (1500 (μatm). Our results show that the responses to OA are species-specific, even in this related species. Interestingly, S. viridula showed better performance under OA than S. zebrina (i.e., similar sizes and carbonate content in individuals from both populations; lower effects of acidification on the growth rate combined with a reduction of metabolism at higher pCO2). Remarkably, these characteristics could explain this species’ success in overstepping the biogeographical break in the area of Talcaruca, which S. zebrina cannot achieve. Besides, the results show that the habitat factor has a strong influence on some traits. For instance, individuals from Talcaruca presented a higher growth rate plasticity index and lower shell dissolution rates in acidified conditions than those from Los Molles. These results show that limpets from the variable environment tend to display higher plasticity, buffering the physiological effects of OA compared with limpets from the more stable environment. Taken together, these findings highlight the key role of geographic variation in phenotypic plasticity to determine the vulnerability of calcifying organisms to future scenarios of OA.

Continue reading ‘Geographical variation in phenotypic plasticity of intertidal sister limpet’s species under ocean acidification scenarios’

Unexpected role of communities colonizing dead coral substrate in the calcification of coral reefs

Global and local anthropogenic stressors such as climate change, acidification, overfishing, and pollution are expected to shift the benthic community composition of coral reefs from dominance by calcifying organisms to dominance by non‐calcifying algae. These changes could reduce the ability of coral reef ecosystems to maintain positive net calcium carbonate accretion. However, relationships between community composition and calcification rates remain unclear. We performed field experiments to quantify the metabolic rates of the two most dominant coral reef substrate types, live coral and dead coral substrate colonized by a mixed algal assemblage, using a novel underwater respirometer. Our results revealed that calcification rates in the daytime were similar for the live coral and dead coral substrate communities. However, in the dark, while live corals continued to calcify at slower rates, the dead coral substrate communities exhibited carbonate dissolution. Daytime net photosynthesis of the dead coral substrate communities was up to five times as much as for live corals, which we hypothesize may have created favorable conditions for the precipitation of carbonate minerals. We conclude that: (1) calcification from dead coral substrate communities can contribute to coral reef community calcification during the day, and (2) dead coral substrate communities can also contribute to carbonate mineral dissolution at night, decreasing ecosystem calcification over a diel cycle. This provides evidence that reefs could shift from slow, long‐term accretion of calcium carbonate to a state where large daily cycling of calcium carbonate occurs, but with little or no long‐term accumulation of the carbonate minerals needed to sustain the reef against erosional forces.

Continue reading ‘Unexpected role of communities colonizing dead coral substrate in the calcification of coral reefs’

Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea

Highlights

• Spatial and temporal variation in estuarine acidification cause severe biological responses.

• Extreme low saturation state and duration of exposure cause pteropod shell dissolution.

• Changing estuarine conditions cause cumulative stress that was used to generate stress index.

• Compensatory mechanisms allow pelagic calcifiers to persist in extreme OA estuarine habitats.

Abstract

Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking. By combining physical, biogeochemical, and biological time-series observations over relevant seasonal-to-interannual time scales, this study is the first to describe both the spatial and temporal variation of biological response in the pteropod Limacina helicina to estuarine acidification in association with other stressors. Using clustering and principal component analyses, sampling sites were grouped according to their distribution of physical and biogeochemical variables over space and time. This identified the most exposed habitats and time intervals corresponding to the most severe negative biological impacts across three seasons and three years. We developed a cumulative stress index as a means of integrating spatial-temporal OA variation over the organismal life history. Our findings show that over the 2014–2016 study period, the severity of low aragonite saturation state combined with the duration of exposure contributed to overall cumulative stress and resulted in severe shell dissolution. Seasonally-variable estuaries such as the Salish Sea (Washington, U.S.A.) predispose sensitive organisms to more severe acidified conditions than those of coastal and open-ocean habitats, yet the sensitive organisms persist. We suggest potential environmental factors and compensatory mechanisms that allow pelagic calcifiers to inhabit less favorable habitats and partially offset associated stressors, for instance through food supply, increased temperature, and adaptation of their life history. The novel metric of cumulative stress developed here can be applied to other estuarine environments with similar physical and chemical dynamics, providing a new tool for monitoring biological response in estuaries under pressure from accelerating global change.

Continue reading ‘Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea’

Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach

In the present study, we depict the structural modification of test minerals, physiological response and ovarian damage in the tropical sea urchin Salmacis virgulata using microcosm CO2 (Carbon dioxide) perturbation experiment. S. virgulata were exposed to hypercapnic conditions with four different pH levels using CO2 gas bubbling method that reflects ambient level (pH 8.2) and elevated pCO2 scenarios (pH 8.0, 7.8 and 7.6). The variations in physical strength and mechanical properties of S. virgulata test were evaluated by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanned electron microscopy analysis. Biomarker enzymes such as glutathione-S-transferase, catalase, acetylcholine esterase, lipid peroxidase and reduced glutathione showed physiological stress and highly significant (p < 0.01) towards pH 7.6 and 7.8 treatments. Ovarian cells were highly damaged at pH 7.6 and 7.8 treatments. This study proved that the pH level 7.6 and 7.8 drastically affect calcification, physiological response and ovarian cells in S. virgulata.

Continue reading ‘Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach’

Biological impact of ocean acidification in the Canadian Arctic: widespread severe pteropod shell dissolution in Amundsen Gulf

Increasing atmospheric CO2, cold water temperatures, respiration, and freshwater inputs all contribute to enhanced acidification in Arctic waters. However, ecosystem effects of ocean acidification (derived from anthropogenic and/or natural sources) in the Arctic Ocean are highly uncertain. Zooplankton samples and oceanographic data were collected in August 2012–2014 and again in August 2017 to investigate the pelagic sea snail, Limacina helicina, a biological indicator of the presence and potential impact of acidified waters in the Canadian Beaufort Sea. Between 2012 and 2014 L. helicina abundance ranged from <1 to 1942 Ind. m–2, with highest abundances occurring at stations on the Canadian Beaufort Shelf in 2012. The majority of individuals (66%) were located between 25 and 100 m depth, corresponding to upper halocline water of Pacific origin. In both 2014 and 2017, >85% of L. helicina assessed (n = 134) from the Amundsen Gulf region displayed shell dissolution and advanced levels of dissolution occurred at all stations. The severity of dissolution was not significantly different between 2014 and 2017 despite the presence of larger individuals that are less prone to dissolution, and higher food availability that can provide some physiological benefits in 2014. Corrosive water conditions were not widespread in the Amundsen Gulf at the time of sampling in 2017, and aragonite undersaturation (Ωar < 1) occurred primarily at depths >150 m. The majority of dissolution was observed on the first whorl of the shells strongly indicating that damage was initiated during the larval stage of growth in May or early June when sea ice is still present. Evidence of shell modification was present in 2014, likely supported by abundant food availability in 2014 relative to 2017. The proportion of damaged L. helicina collected from coastal embayments and offshore stations is higher than in other Arctic and temperate locations indicating that exposure to corrosive waters is spatially widespread in the Amundsen Gulf region, and periods of exposure are extreme enough to impact the majority of the population.

Continue reading ‘Biological impact of ocean acidification in the Canadian Arctic: widespread severe pteropod shell dissolution in Amundsen Gulf’

Response of large benthic foraminifera to climate and local changes: implications for future carbonate production

Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under‐represented in favour of macro reef‐builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef‐scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low‐lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well‐understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well‐studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host‐symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.

Continue reading ‘Response of large benthic foraminifera to climate and local changes: implications for future carbonate production’

Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa

Ocean acidification is expected to impact the high latitude oceans first, as CO2 dissolves more easily in colder waters. At the current rate of anthropogenic CO2 emissions, the sub-Antarctic Zone will start to experience undersaturated conditions with respect to aragonite within the next few decades, which will affect marine calcifying organisms. Shelled pteropods, a group of calcifying zooplankton, are considered to be especially sensitive to changes in carbonate chemistry because of their thin aragonite shells. Limacina retroversa is the most abundant pteropod in sub-Antarctic waters, and plays an important role in the carbonate pump. However, not much is known about its response to ocean acidification. In this study, we investigated differences in calcification between L. retroversa individuals exposed to ocean carbonate chemistry conditions of the past (pH 8.19; mid-1880s), present (pH 8.06), and near-future (pH 7.93; predicted for 2050) in the sub-Antarctic. After 3 days of exposure, calcification responses were quantified by calcein staining, shell weighing, and Micro-CT scanning. In pteropods exposed to past conditions, calcification occurred over the entire shell and the leading edge of the last whorl, whilst individuals incubated under present and near-future conditions mostly invested in extending their shells, rather than calcifying over their entire shell. Moreover, individuals exposed to past conditions formed larger shell volumes compared to present and future conditions, suggesting that calcification is already decreased in today’s sub-Antarctic waters. Shells of individuals incubated under near-future conditions did not increase in shell weight during the incubation, and had a lower density compared to past and present conditions, suggesting that calcification will be further compromised in the future. This demonstrates the high sensitivity of L. retroversa to relatively small and short-term changes in carbonate chemistry. A reduction in calcification of L. retroversa in the rapidly acidifying waters of the sub-Antarctic will have a major impact on aragonite-CaCO3 export from oceanic surface waters to the deep sea.

Continue reading ‘Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa’

Ocean acidification reduces skeletal density of hardground‐forming high‐latitude crustose coralline algae

Crustose coralline algae (CCA) function as foundation species by creating marine carbonate hardground habitats. High‐latitude species may be vulnerable to regional warming and acidification. Here, we report the results of an experiment investigating the impacts of CO2‐induced acidification (pCO2 ∼350, 490, 890, 3200 µatm) and temperature (∼6.5, 8.5, 12.5°C) on the skeletal density of two species of high‐latitude CCA: Clathromorphum compactum (CC) and C. nereostratum (CN). Skeletal density of both species significantly declined with pCO2. In CN, the density of previously deposited skeleton declined in the highest pCO2 treatment. This species was also unable to precipitate new skeleton at 12.5°C, suggesting that CN will be particularly sensitive to future warming and acidification. The decline in skeletal density exhibited by both species under future pCO2 conditions could reduce their skeletal strength, potentially rendering them more vulnerable to disturbance, and impairing their production of critical habitat in high‐latitude systems.

Continue reading ‘Ocean acidification reduces skeletal density of hardground‐forming high‐latitude crustose coralline algae’

Calcification does not necessarily protect articulated coralline algae from urchin grazing

Calcification is widely thought to be an adaptation that reduces the impact of herbivory. Recent work has shown that ocean acidification may negatively impact calcification of marine organisms, including coralline red algae, which could theoretically increase the susceptibility of corallines to benthic grazers. By manipulating calcium carbonate content of three articulated coralline algal species, we demonstrated that calcification has a variable and species-specific effect on urchin grazing. For two species, Corallina vancouveriensis and Corallina officinalis var. chilensis, reductions in calcium carbonate content did not cause a significant increase in urchin grazing, raising questions about the benefit of calcification in these species. For Calliarthron tuberculosum, reduced calcium carbonate content caused an increase in urchin grazing rates but only after calcium carbonate had been reduced by more than 15%, suggesting that only dramatic shifts in calcification would make C. tuberculosum more susceptible to urchin grazing. We hypothesize that the herbivory-reducing benefits of calcification likely depend upon coralline thallus morphology. Negative impacts of ocean acidification on calcification in coralline algae may not necessarily increase herbivory rates.

Continue reading ‘Calcification does not necessarily protect articulated coralline algae from urchin grazing’

Coccolithophore calcification studied by single-cell impedance cytometry: towards single-cell PIC:POC measurements

Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The coccolithophore Emiliania huxleyi is considered to be globally the most dominant calcifying algal species, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle.

In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a noninvasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified).

We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.

Continue reading ‘Coccolithophore calcification studied by single-cell impedance cytometry: towards single-cell PIC:POC measurements’

Late afternoon seasonal transition to dissolution in a coral reef: an early warning of a net dissolving ecosystem?

There are concerns that reefs will transition from net calcifying to net dissolving in the near future due to decreasing calcification and increasing dissolution rates. Here we present in situ rates of net ecosystem calcification (NEC) and net ecosystem production (NEP) on a coral reef flat using a slack‐water approach. Up until dusk, the reef was net calcifying in most months but shifted to net dissolution in austral summer, coinciding with high respiration rates and a lower aragonite saturation state (Ωarag). The estimated sediment contribution to NEC ranged from 8 – 21 % during the day and 45 – 78 % at night, indicating that high rates of sediment dissolution may cause the transition to reef dissolution. This late afternoon seasonal transition to negative NEC may be an early warning sign of the reef shifting to a net dissolving state and may be occurring on other reefs.

Continue reading ‘Late afternoon seasonal transition to dissolution in a coral reef: an early warning of a net dissolving ecosystem?’

Pteropods make thinner shells in the upwelling region of the California Current ecosystem

Shelled pteropods are widely regarded as bioindicators for ocean acidification, because their fragile aragonite shells are susceptible to increasing ocean acidity. While short-term incubations have demonstrated that pteropod calcification is negatively impacted by ocean acidification, we know little about net calcification in response to varying ocean conditions in natural populations. Here, we examine in situ calcification of Limacina helicina pteropods collected from the California Current Ecosystem, a coastal upwelling system with strong spatial gradients in ocean carbonate chemistry, dissolved oxygen and temperature. Depth-averaged pH ranged from 8.03 in warmer offshore waters to 7.77 in cold CO2-rich waters nearshore. Based on high-resolution micro-CT technology, we showed that shell thickness declined by ~ 37% along the upwelling gradient from offshore to nearshore water. Dissolution marks covered only ~ 2% of the shell surface area and were not associated with the observed variation in shell thickness. We thus infer that pteropods make thinner shells where upwelling brings more acidified and colder waters to the surface. Probably the thinner shells do not result from enhanced dissolution, but are due to a decline in calcification. Reduced calcification of pteropods is likely to have major ecological and biogeochemical implications for the cycling of calcium carbonate in the oceans.

Continue reading ‘Pteropods make thinner shells in the upwelling region of the California Current ecosystem’

Ocean acidification alters properties of the exoskeleton in adult tanner crabs, Chionoecetes bairdi

Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as Cbairdi, may be especially susceptible to ocean acidification.

Continue reading ‘Ocean acidification alters properties of the exoskeleton in adult tanner crabs, Chionoecetes bairdi’

Acidification stress effect on umbonate veliger larval development in Panopea globosa

Highlights

  • The pH significantly influenced the biometric variables in Panopea globosa larvae.
  • Larvae exposed to lower pH showed shell dissolution at the umbo level.
  • The metabolic rate was higher in larvae exposed to acidification compared to the control.
  • Nicotinamide adenine dinucleotide dehydrogenase expression levels to pH 7.5 suggest a higher energy requirement.

Abstract


Ocean acidification generates a decrease in calcium carbonate availability essential for biomineralization in organisms such as mollusks. This effect was evaluated on Panopea globosa exposing for 7 days umbonate veliger larvae to two pH treatments: experimental (pH 7.5) and control (pH 8.0). Exposure to pH 7.5 affected growth, reducing larval shell length from 5.15–13.34% compared to the control group. This size reduction was confirmed with electron microscopy, also showing shell damage. The physiological response showed an increase in oxygen consumption in larvae exposed to low pH with a maximum difference of 1.57 nmol O2 h−1 larvae−1 at day 7. The gene expression analyses reported high expression values for nicotinamide adenine dinucleotide (NADH) dehydrogenase and Perlucin in larvae at pH 7.5, suggesting a higher energetic cost in this larval group to maintain homeostasis. In conclusion, this study showed that acidification affected development of P. globosa umbonate veliger larvae.

Continue reading ‘Acidification stress effect on umbonate veliger larval development in Panopea globosa’

Juvenile Eastern oysters more resilient to extreme ocean acidification than their mud crab predators

Ocean acidification is predicted to impair marine calcifiers’ abilities to produce shells and skeletons. We conducted laboratory experiments investigating the impacts of CO2‐induced ocean acidification (pCO2 = 478 – 519, 734 – 835, 8980 – 9567; Ωcalcite = 7.3 – 5.7, 5.6 – 4.3, 0.6 – 0.7) on calcification rates of two estuarine calcifiers involved in a classic predator‐prey model system: adult Panopeus herbstii (Atlantic mud crab) and juvenile Crassostrea virginica (eastern oyster). Both oyster and crab calcification rates significantly decreased at the highest pCO2 level. Notably, however, oysters maintained positive net calcification rates in the highest pCO2 treatment that was undersaturated with respect to calcite, while mud crabs exhibited net dissolution (i.e., net loss of shell mass) in calcite‐undersaturated conditions. Secondary electron imaging of oyster shells revealed minor microstructural alterations in the moderate‐pCO2 treatment, and major micro‐ and macro‐structural changes (including shell dissolution, delamination of periostracum) in the high‐pCO2 treatment. These results underscore the threat that ocean acidification poses for marine organisms that produce calcium carbonate shells, illustrate the strong biological control that some marine calcifiers exert over their shell‐building process, and shows that ocean acidification differentially impacts the crab and oyster species involved in this classical predator‐prey model system.

Continue reading ‘Juvenile Eastern oysters more resilient to extreme ocean acidification than their mud crab predators’

Futureproofing the green-lipped mussel aquaculture industry against ocean acidification

Two mitigation strategies – waste shell and aeration – were tested in field experiments to see how effective they are at mitigating acidification around mussel farms. This report outlines the results and recommendations from this research. 


Primary results:

  • The inner Firth of Thames currently experiences the lowest seasonal pH of the sites monitored, with a daily minimum of 7.84 (7.79–7.96) in autumn, with short-term (15-minute) pH minima as low as 7.2. Time-series data in the inner and outer Firth of Thames, and also on a mussel farm in the western Firth, show episodic declines in carbonate saturation to the critical carbonate saturation state ΩAR = 1.0 at which solid aragonite (the form of carbonate in mussel shells) will start to dissolve. Consequently, mussels in the Firth of Thames experience episodic corrosive conditions.
  • The mean pH in the Marlborough Sounds region is projected to decrease by 0.15–0.4 by 2100 depending on future emission scenario. The corresponding decline of 0.5–1.25 in the saturation state of aragonite (ΩAR), results in the critical threshold of ΩAR =1 being reached by 2100 under the worst-case scenario. These projections are based only on future CO2 emission scenarios and do not consider other coastal sources of acidity in coastal waters which may also alter in the future.

Continue reading ‘Futureproofing the green-lipped mussel aquaculture industry against ocean acidification’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: