Posts Tagged 'dissolution'

Costs and mechanisms associated with resilience to acidification in marine bivalves

The unprecedented flux of CO2 into the ocean and the resulting chemical reactions has led to a reduction in pH, carbonate concentration, and saturation states of calcium carbonate, known as ocean acidification (OA). These conditions make it more difficult to precipitate biogenic calcium carbonate to mineralize shells because of the reduction in available carbonate ions. This represents a serious and growing threat to the future of commercially and ecologically important species, such as the northern quahog (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica). But clams and oysters are found in heterogeneous coastal environments and are already exposed to reductions in pH surpassing predictions for the decrease in open ocean pH for the end of the century (with pH dropping below 7 under ambient conditions). These bivalves have shown high levels of resilience to fluctuations in pH and a capacity to respond to altered carbonate chemistry. However, the accelerated pace of these changes requires additional understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Future acidification might result in reduction in average pH, changes in the scale of variability, more occurrences of extreme acidification, and less periods of relief, exceeding thresholds of tolerance.

Thus far, the majority of studies have focused on the physiological effects of elevated pCO2 on bivalve larvae. While important, this leaves a substantial gap in knowledge of the molecular mechanisms of resilience to elevated pCO2 or the effect of acidification on different life history stages. To fill this gap in our understanding, this dissertation aims to uncover the mechanisms of resilience to elevated pCO2 in clams and oysters at different stages of their life.

This study combined physiological assays with ‘omic’ approaches (transcriptomics, genomics, proteomics) to assess the susceptibility of clams and oysters to acidification and the factors conferring resilience. Mechanisms enabling bivalves to respond to elevated pCO2 (from the organism level to individual genes) were investigated, taking into consideration the potential costs of resilience to elevated pCO2. Gene silencing experiments (RNAi) and chemical inhibition were used to confirm the protective role of candidate genes (perlucin and carbonic anhydrase, respectively) associated with resilience to elevated pCO2. While there were consequences for surviving under stressful acidification conditions, demonstrated by a marked reduction in immunity, depletion of energy resources, and inability to remineralize damaged shell, M. mercenaria and C. virginica, having already been exposed to natural fluctuations in pH and carbonate chemistry for generations, appear to be capable of implementing strategies to mitigate the negative impacts of elevated pCO2 (acclimation). While acclimation can be costly, the potential for adaptation was also investigated, and there was evidence to suggest genetic selection for OA-resilient genotypes enabling clams and oysters to persist under future climate regimes.

Continue reading ‘Costs and mechanisms associated with resilience to acidification in marine bivalves’

The Paleocene-Eocene transition in the Gulf of Guinea: evidence of the Petm in the Douala Basin, Cameroon

The Paleocene-Eocene Thermal Maximum (PETM) was identified for the first time in two sections (Bongue and Dibamba) from the Douala sub-basin located in the Gulf of Guinea, Cameroon. This discovery was based on a multi-disciplinary approach including benthic and planktic foraminifera, ostracods, major and trace elements, mercury, carbon stable isotope (δ13C values), total organic carbon (TOC), whole-rock and clay mineralogy. A combination of lithology, microfossil assemblage, and carbon isotope data indicate zone P5 and the top of the Paleocene enabling the definition of the Paleocene-Eocene boundary (PEB). A negative carbon-isotope excursion (CIE) spanning from the uppermost Paleocene deposits to the earliest Eocene sediments (PETM interval) shows a shift in δ13Corg values of 1.5 ‰ in Bongue and 3.0 ‰ in Dibamba. In both sections, this interval is affected by widespread acidification, as revealed by carbonate dissolution and microfossil preservation (i.e., species are dwarfed, broken, thin shelled, and with holes). The very low carbonate content and the scarcity of microfauna indicate the severity of acidification during the PETM, especially in the early Eocene where only one species was identified (Igorina broedermanni). Mercury anomalies, TOC contents, and trace element concentration ratios, point to volcanic activity linked to the Cameroon Volcanic Line (CVL) intrusive magma, and a decrease in productivity prior to the PETM. In addition to climate change, our geochemical and mineralogical data support the hypothesis that other environmental perturbations such as an increase in productivity and detrital input, as well as a decrease in bottom water oxygenation occurred during the PETM in the Douala sub-basin.

Continue reading ‘The Paleocene-Eocene transition in the Gulf of Guinea: evidence of the Petm in the Douala Basin, Cameroon’

Foraminiferal assemblages and test characteristics associated with natural low pH waters at Puerto Morelos reef lagoon springs, QR Mexico

Ocean acidification is expected to negatively affect many ecologically important organisms. Here we explored the response of Caribbean benthic foraminiferal assemblages to naturally discharging low-pH waters similar to expected future projections for the end of the 21st century. At low pH (~7.7 pH units) and low calcite saturation, agglutinated and symbiont-bearing species were relatively more abundant, indicating higher resistance to potential carbonate chemistry changes. Diversity and other taxonomical metrics declined steeply with decreasing pH, despite exposure of this ecosystem for millennia to low pH conditions, suggesting that tropical foraminifera communities will be negatively impacted under acidification scenarios SSP3-7.0 and SSP5-8.5. The species Archaias angulatus, a major contributor to sediment production in the Caribbean, was able to calcify at conditions more extreme than those projected for the late 21st century (7.1 pH units), but the calcified tests were of lower density than those exposed to higher-pH ambient conditions (7.96 pH units), indicating that reef foraminiferal carbonate budget might decrease. Smaller foraminifera were highly sensitive to decreasing pH and our results demonstrate their potential as indicators to monitor increasing OA conditions.

Continue reading ‘Foraminiferal assemblages and test characteristics associated with natural low pH waters at Puerto Morelos reef lagoon springs, QR Mexico’

Taphonomy and dissolution rates of the razor clam Ensis magnus shells: current status and projected acidification scenarios

Highlights

  • Natural variability of seawater (TaΩaragonite and pCO2) revealed an increase of acidification though such change did not suppose abrupt detrimental effects for taphonomic characteristics of shells (length, thickness, organic content or strength).
  • Temperature affected negatively shell strength and thickness, although the large correlation between the environmental variables would disturb the individual characterization of environmental parameters.
  • Dissolution rates of shells subjected to projected laboratory scenarios were significantly greater for cold-acidic environment (more corrosive) as compared to warm-acidic. Mean dissolution time (DT50) for cold-acidic scenario was reduced by half (15 years) as compared to current water chemistry conditions (30 years).
  • More recent shells are being secreted in a progressively less saturated carbonate environment (at an annual rate of change of −0.0127 for Ωaragonite) and accordingly, were more prone to suffer dissolution (and weakening) in projected laboratory scenarios.
  • Marine shells support ecosystem services including refuge for multiple species, substrate to attach and settle of fauna that may change in future environments or may bring changes in the ecological interactions of our coastal areas affecting biodiversity and optimal functioning of the ecosystem services.

Abstract

The analysis of the natural variability of seawater (TaΩaragonite and pCO2) at Rodas Beach (NW Iberian Peninsula, Spain) revealed an increase of acidification. However, such pH change was not linked to any detrimental effect of the shell taphonomic characteristics of live razor clams harvested during distinct temporal series (length, thickness, organic content or strength). Temperature affected negatively shell strength and thickness, although the large correlation between the environmental variables would limit the individual characterization. Modelled trends in pH (and Ωaragonite) showed a significant decrease in the last 20 years, despite Ω > 1. Therefore, more recent shells are being secreted in a progressively less saturated carbonate environment and, consequently, more prone to suffer dissolution (and weakening) in projected climatic scenarios. When shells of harvested razor clams were exposed to projected climatic scenarios in the laboratory, dissolution rates were significantly greater for cold-acidic scenarios (more corrosive) as compared to warm-acidic. The median dissolution time (DT50) for shells under the cold-acidic scenario was reduced by half (15 years) when compared to the values observed for shells under current water chemistry conditions (30 years).

Galician coastline, often characterised by pCO2-rich and cold waters due to upwelling system, would represent the most corrosive scenario for the shells according to the responses monitored in our survey which highlight future compromise for the ecosystem services supplied by these hard skeletons. Future climate scenarios might condition performance of bivalves but also more complex processes related to carbonate structures. Local biodiversity may be lowered which may reduce the possibility that many species find shelter and feeding grounds, diminishing the optimal substrate for other organisms as needed elements for optimal services in the ecosystems.

Continue reading ‘Taphonomy and dissolution rates of the razor clam Ensis magnus shells: current status and projected acidification scenarios’

Evidence for an effective defence against ocean acidification in the key bioindicator pteropod Limacina helicina

The pteropod Limacina helicina has become an important bioindicator species for the negative impacts of ocean acidification (OA) on marine ecosystems. However, pteropods diversified during earlier high CO2 periods in Earth history and currently inhabit regions that are naturally corrosive to their shells, suggesting that they possess mechanisms to survive unfavourable conditions. Recent work, which is still under considerable debate, has proposed that the periostracum, a thin organic coating on the outer shell, protects pteropods from shell dissolution. Here, we provide direct evidence that shows that damage to the L. helicina periostracum results in dissolution of the underlying shell when exposed to corrosive water for ∼8 d, while an intact periostracum protects the shell from dissolution under the same conditions. This important first line of defence suggests that pteropods are more resistant to OA-induced shell dissolution than is generally accepted.

Continue reading ‘Evidence for an effective defence against ocean acidification in the key bioindicator pteropod Limacina helicina’

Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools

Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification, and likely already impacting marine ecosystems. In particular, there is concern that coastal, benthic calcifying organisms will be negatively affected by ocean acidification, a hypothesis largely supported by laboratory studies. The inter-relationships between carbonate chemistry and marine calcifying communities in situ are complex and natural mesocosms such as tidal pools can provide useful community-level insights. In this study, we manipulated the carbonate chemistry of intertidal pools to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC) at emersion. Adding CO2 at the start of the tidal emersion to simulate future acidification (+1500 μatm pCO2, target pH: 7.5) modified net production and calcification rates in the pools. By day, pools were fertilized by the increased CO2 (+20 % increase in NCP, from 10 to 12 mmol O2 m−2 hr−1), while there was no measurable impact on NCC. During the night, pools experienced net community dissolution (NCC < 0), even in present-day conditions, when waters were supersaturated with regards to aragonite. Adding CO2 in the pools increased nocturnal dissolution rates by 40 % (from −0.7 to −1.0 mmol CaCO3 m−2 hr−1) with no consistent impact on night community respiration. Our results suggest that ocean acidification is likely to alter temperate intertidal community metabolism on sub-daily timescales, enhancing both diurnal community production and nocturnal calcium carbonate dissolution.

Continue reading ‘Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools’

Abundance and size structure of Patella spp. (Mollusca, Gastropoda) under ocean acidification conditions at CO2 vents (Ischia Island, Italy)

Abundance and size structure of Patella spp. were studied at Ischia Island (Tyrrhenian Sea) in two populations living at CO2 vents off Castello Aragonese, under natural ocean acidification (OA) conditions (pH 7.4-7.9), and three control populations in sites characterized by normal pH conditions (pH 8.1). Both CO2 vent populations had 95% of heavily corroded shells and significant lower abundances than control populations, while the size structure showed individuals of higher dimensions (>2 cm), fewer small specimens (0-1 cm) and lack of new recruits in the vent’s populations subjected to OA conditions. These results confirm that, although with low densities, limpets thrive under OA conditions, and exhibit larger sizes, than in control areas, but a reduced recruitment of juveniles. This fact suggests a habitat selection only by adult specimens likely more robust to OA then juveniles, and the potential influence of other indirect factors, such as the amount and quality of the plant food (higher N content), which seems higher under OA conditions, or a reduced predation, that can explain the larger limpet’s size.

Continue reading ‘Abundance and size structure of Patella spp. (Mollusca, Gastropoda) under ocean acidification conditions at CO2 vents (Ischia Island, Italy)’

Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO2

Egg capsules of the gastropod Acanthina monodon were maintained during the entire period of encapsulated development at three temperatures (10, 15, 20 °C) and two pCO2 levels (400, 1200 μatm). Embryos per capsule, size at hatching, time to hatching, embryonic metabolic rates, and the resistance of juveniles to shell breakage were quantified. No embryos maintained at 20 °C developed to hatching. The combination of temperature and pCO2 levels had synergistic effects on hatching time and developmental success, antagonistic effects on number of hatchlings per capsule, resistance to juvenile shell cracking and metabolism, and additive effect on hatching size. Juveniles hatched significantly sooner at 15 °C, independent of the pCO2 level that they had been exposed to, while individuals hatched at significantly smaller sizes if they had been held under 15 °C/1200 μatm rather than at 10 °C/low pCO2. Embryos held at the higher pCO2 had a significantly greater percentage of abnormalities. For capsules maintained at low pCO2 and 15 °C, emerging juveniles had less resistance to shell breakage. Embryonic metabolism was significantly higher at 15 °C than at 10 °C, independent of pCO2 level. The lower metabolism occurred in embryos maintained at the higher pCO2 level. Thus, in this study, temperature was the factor that had the greatest effect on the encapsulated development of A. monodon, increasing the metabolism of the embryos and consequently accelerating development, which was expressed in a shorter intracapsular development time, but with smaller individuals at hatching and a lower resistance of their shells to breakage. On the other hand, the high pCO2 level suppressed metabolism, prolonged intracapsular development, and promoted more incomplete development of the embryos. However, the combination of the two factors can mitigate–to some extent–the adverse effects of both incomplete development and lower resistance to shell breakage.

Continue reading ‘Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO2’

Assessing the impact of ocean acidification: a methods comparison of SEM, CT and light microscopy on pteropod shells

Since the onset of the Industrial Revolution, the world’s oceans have absorbed approximately one third of all anthropogenic CO2 emissions and are experiencing acidification as a result. Pteropods are a marine group of snails that are vulnerable to acidification due to their thin shells composed of aragonite, which is 50% more soluble than calcite. Due to their vulnerability and ubiquity throughout the world’s oceans, pteropods are considered bioindicators of ocean acidification; their responses include decreased size, reduced shell thickness, and increased shell dissolution. Shell dissolution has been measured using a variety of metrics involving light microscopy, scanning electron microscopy (SEM), and computed tomography (CT). Assessing which method(s) effectively capture acidification’s impact on pteropod shells is still an active area of research. While CT and SEM metrics offer high resolution imaging, these analyses are cost- and time-intensive relative to light microscopy analyses and may be inaccessible for ocean monitoring projects and research. This research compares light microscopy, CT, and SEM shell dissolution metrics across three pteropod species: Limacina helicina, Limacina retroversa, and Heliconoides inflatus. Sourced from multiple localities, these taxa lived in tropical to subpolar environments and were exposed to varying aragonite saturations states due to stark oceanographic differences in these environments. Specimens were evaluated using light microscopy for the Limacina Dissolution Index (LDX), using SEM for average and maximum dissolution type, and using CT for shell thickness. Spearman correlation tests were run among the dissolution metrics within each species dataset and significance was assessed both before and viii after Bonferroni correction. Before Bonferroni correction, LDX and SEM average dissolution type were highly correlated for both the Limacina retroversa (rho = 0.81, p > 0.001) and Heliconoides inflatus (rho = 0.79, p > 0.001) datasets, and remained significant after Bonferroni correction. For Limacina retroversa, LDX was also significantly correlated to SEM maximum dissolution type (rho = 0.77, p > 0.001). The CT metrics for shell thickness were not significantly correlated to any other dissolution metrics for any species. However, severely dissolved (type 3) areas apparent in SEM were also visually discernible in CT thickness heatmaps. Although the genera Heliconoides and Limacina have different shell microstructures, the relationship between LDX and SEM average dissolution type did not vary by species. Additionally, the Heliconoides inflatus specimens were sourced from both the aragonite-undersaturated California Current and the aragonite-oversaturated Cariaco Basin; however, the differing localities and their respective oceanographic conditions did not have a significant influence on the relationship between LDX and SEM average dissolution. Overall, these findings show that the cheaper and faster LDX method, which needs only a light microscope, is a promising method for detecting dissolution resulting from ocean acidification across multiple species and oceanographic conditions.

Continue reading ‘Assessing the impact of ocean acidification: a methods comparison of SEM, CT and light microscopy on pteropod shells’

Oyster biomineralisation in acidifying oceans: from genes to shells

Biomineralisation is the process of biologically controlled shell fabrication in marine calcifiers including edible oysters where shell matrix proteins and organic molecules secreted by mantle tissue controls calcium carbonate nucleation, crystallisation, growth, and mechanical properties. It is also one of the key processes that is notably affected in marine calcifiers under human induced environmental stressor, ocean acidification (OA). Understanding molecular changes in the biomineralisation process under OA, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. In this PhD thesis, I have presented hierarchical analyses of biomineralisation mechanisms of Crassostrea hongkongensis (Hong Kong oysters) under OA. The hierarchical analyses include study of changes in DNA methylation and gene expression of mantle tissue of juvenile Hong Kong oysters under OA. On top of studying molecular changes, this study also has incorporated shell mechanical properties in terms of micro-structure, shell crystal orientation and micro-hardness. In addition to juveniles, larvae which are known to be sensitive to OA than juveniles and adults, were also studied for understanding their shell fabrication capacity under OA. This study is also the first to attempt characterisation of shell proteome changes in an oyster species under OA. The results indicate moderate resilience of Hong Kong oyster biomineralisation to OA. Specifically, calcium binding or signalling related genes were subtly differentially expressed in mantle under OA, with no correlation between gene expression and DNA methylation changes. Hong Kong oysters were able to make unimpaired shells in terms of micro-structure and nanostructure (crystal orientation) in both larval and juvenile stages. We conclude that OA would be still a dissolution problem for resilient species such as Hong Kong oysters despite the organism’s ability to make error free shells under OA. We also define the concept directional dissolution – where shell dissolution is directional from hinge to shell edge; and from outer periostracum to inner layers. Ecologists can adapt the directional dissolution concept for accurate use of shell dissolution as a parameter for OA biomonitoring. This thesis will be of interest not only to marine molecular biologists and ecologists but also to material scientists who are interested in biomimetic material designing.

Continue reading ‘Oyster biomineralisation in acidifying oceans: from genes to shells’

Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification

Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.

Continue reading ‘Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification’

Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys

For reef framework to persist, calcium carbonate production by corals and other calcifiers needs to outpace loss due to physical, chemical, and biological erosion. This balance is both delicate and dynamic and is currently threatened by the effects of ocean warming and acidification. Although the protection and recovery of ecosystem functions are at the center of most restoration and conservation programs, decision makers are limited by the lack of predictive tools to forecast habitat persistence under different emission scenarios. To address this, we developed a modelling approach, based on carbonate budgets, that ties species-specific responses to site-specific global change using the latest generation of climate models projections (CMIP6). We applied this model to Cheeca Rocks, an outlier in the Florida Keys in terms of high coral cover, and explored the outcomes of restoration targets scheduled in the coming 20 years at this site by the Mission: Iconic Reefs restoration initiative. Additionally, we examined the potential effects of coral thermal adaptation by increasing the bleaching threshold by 0.25, 0.5, 1 and 2˚C. Regardless of coral adaptative capacity or restoration, net carbonate production at Cheeca Rocks declines heavily once the threshold for the onset of annual severe bleaching is reached. The switch from net accretion to net erosion, however, is significantly delayed by mitigation and adaptation. The maintenance of framework accretion until 2100 and beyond is possible under a decreased emission scenario coupled with thermal adaptation above 0.5˚C. Although restoration initiatives increase reef accretion estimates, Cheeca Rocks will only be able to keep pace with future sea-level rise in a world where anthropogenic CO2 emissions are reduced. Present results, however, attest to the potential of restoration interventions combined with increases in coral thermal tolerance to delay the onset of mass bleaching mortalities, possibly in time for a low-carbon economy to be implemented and complementary mitigation measures to become effective.

Continue reading ‘Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys’

Clay-shielded estuarine gastropods are better protected against environmental acidification than unshielded individuals

Graphical abstract.

Highlights

  • Acidified estuaries compromise building and threaten dissolution of gastropods shells.
  • Periostracum of Neripteron snails directs formation of an outer shell clay shield.
  • Shield constructed of the mineral illite is tightly chemically-bonded to the periostracum.
  • The more reflective unshielded shells showed a greater rate of dissolution.
  • Ecological and evolutionary constraints on carbonate shell building predict outer protection.

Abstract

The effects of progressive global acidification on the shells of marine organisms is a topic of much current interest. Most studies on molluscan shell resistance to dissolution consider the carbonate mineral component, with less known about the protective role of the outer organic periostracum. Outer-shell resistance would seem especially important to gastropods living in carbonate-undersaturated and calcium-deficient estuarine waters that threaten shell dissolution and constrain CaCO3 production. We tested this prediction using gastropods from an acidified estuarine population (Neripteron violaceum) that form a clay shield outside the periostracum. Specifically, we aimed to show that the carbonate shell component lacks integrity, that the formation of the clay shield is directed by the organism, and that the clay shield functions to protect against shell dissolution. We found no evidence for any specific carbonate dissolution resistance strategy in the thin, predominantly aragonitic shells of these gastropods. Shield formation was directed by an ornamented periostracum which strongly bonded illite elements (e.g., Fe, Al and S), that become available through suspension in the water column. In unshielded individuals, CaCO3 erosion was initiated randomly across the shell (not age-related) and progressed rapidly when the periostracum was breached. A light reflectance technique showed qualitatively that shield consolidation is negatively-related to shell erosion. These findings support a conceptual framework for gastropod outer-shell responses to acidification that considers both environmental and evolutionary constraints on shell construction. We describe a novel strategy for shell protection against dissolution, highlighting the diversity of mechanisms available to gastropods facing extreme coastal acidification.

Continue reading ‘Clay-shielded estuarine gastropods are better protected against environmental acidification than unshielded individuals’

Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five

Bioerosion, resulting from microbioerosion or biogenic dissolution, macrobioerosion and grazing, is one the main processes involved in reef carbonate budget and functioning. On healthy reefs, most of the produced carbonates are preserved and accumulate. But in the context of global change, reefs are increasingly degraded as environmental factors such as ocean warming and acidification affect negatively reef accretion and positively bioerosion processes. The recent 2019 SROCC report suggests that if CO2 emissions in the atmosphere are not drastically reduced rapidly, 70%–99% of coral reefs will disappear by 2,100. However, to improve projections of coral reef evolution, it is important to better understand dynamics of bioerosion processes. Among those processes, it was shown recently that bioeroding microflora which actively colonize and dissolve experimental coral blocks, release significant amount of alkalinity in seawater both by day and at night under controlled conditions. It was also shown that this alkalinity production is enhanced under ocean acidification conditions (saturation state of aragonite comprised between 2 and 3.5) suggesting that reef carbonate accumulation will be even more limited in the future. To better understand the conditions of production of alkalinity in seawater by boring microflora and its possible consequences on reef resilience, we conducted a series of experiments with natural rubble maintained under natural or artificial light, and various saturation states of aragonite. We show here that biogenic dissolution of natural reef rubble colonized by microboring communities dominated by the chlorophyte Ostreobium sp., and thus the production of alkalinity in seawater, can occur under a large range of saturation states of aragonite, from 2 to 6.4 under daylight and that this production is directly correlated to the photosynthetic activity of microboring communities. We then discuss the possible implications of such paradoxical activities on reef resilience.

Continue reading ‘Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five’

An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: a rapid and complex process

Coccolith dissolution together with post-mortem morphological features are immensely important phenomena that can affect assemblage compositions, complicate taxonomic identification as well as provide valuable palaeoenvironmental insights. This study summarizes the effects of pH oscillations on post-mortem coccolith morphologies and the abundances and compositions of calcareous nannoplankton assemblages in three distinct types of material—(i) Cretaceous chalk, (ii) Miocene marls, and (iii) late Holocene calcareous ooze. Two independent experimental runs within a semi-enclosed system setting were realized to observe assemblage alterations. One experiment was realized with the presence of bacteria and, in contrast, the second one inhibited their potential effect on the studied system. The pH was gradually decreased within the range of 8.3–6.4 using a reaction of CO2 with H2O forming weak carbonic acid (H2CO3), thereby affecting CO32-. Further, a subsequent overgrowth study was carried out during spontaneous degassing accompanied by a gradual pH rise. The experiment revealed that the process and intensity of coccolith corrosion and subsequent overgrowth build-ups are influenced by a plethora of different factors such as (i) pH and associated seawater chemistry, (ii) mineral composition of the sediment, (iii) the presence of coccoliths within a protective substrate (faecal pellets, pores, pits), and (iv) the presence/absence of bacteria. Nannoplankton assemblages with corroded coccoliths or with coccoliths with overgrowth build-ups showed that the observed relative abundances of taxa experienced alteration from the original compositions. Additionally, extreme pH oscillations may result in enhanced morphological changes that make coccoliths unidentifiable structures, and might even evoke the absence of coccoliths in the fossil record.

Continue reading ‘An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: a rapid and complex process’

Environmental change impacts on shell formation in the muricid Nucella lapillus

Environmental change is a significant threat to marine ecosystems worldwide. Ocean acidification, global warming and long-term emissions of anthropogenic effluents are all negatively impacting aquatic life. Marine calcifying organisms, in particular, are expected to be severely affected by decreasing seawater pH, resulting in shell dissolution and retardations during the formation and repair of shells. Understanding the underlying biological and environmental factors driving species vulnerabilities to habitat alterations is thus crucial to our ability to faithfully predict impacts on marine ecosystems under an array of environmental change scenarios. So far, existing knowledge about organism responses mainly stems from short to medium term laboratory experiments of single species or over- simplified communities. Although these studies have provided important insights, results may not translate to organism responses in a complex natural system requiring a more holistic experimental approach. In this thesis, I investigated shell formation mechanisms and shape and elemental composition responses in the shell of the important intertidal predatory muricid Nucella lapillus both in situ and across heterogeneous environmental gradients. The aim was to identify potential coping mechanisms of N. lapillus to environmental change and provide a more coherent picture of shell formation responses along large ecological gradients in the spatial and temporal domain. To investigate shell formation mechanisms, I tested for the possibility of shell recycling as a function to reduce calcification costs during times of exceptional demand using a multi-treatment shell labelling experiment. Reports on calcification costs vary largely in the literature. Still, recent discoveries showed that costs might increase as a function of decreasing calcification substrate abundance, suggesting that shell formation becomes increasingly more costly under future environmental change scenarios. However, despite the anticipated costs, no evidence was found that would indicate the use of functional dissolution as a means to recycle shell material for a more cost-efficient shell formation in N. lapillus. To investigate shell formation responses, I combined morphometric and shell thickness analyses with novel statistical methods to identify natural shape and thickness response of N. lapillus to large scale variability in temperature, salinity, wind speed and the carbonate system across a wide geographic range (from Portugal to Iceland) and through time (over 130 years). I found that along geographical gradients, the state of the carbonate system and, more specifically, the substrate inhibitor ratio ([HCO3−][H+]−1) (SIR) was the main predictor for shape variations in N. lapillus. Populations in regions with a lower SIR tend to form narrower shells with a higher spire to body whorl ratio. In contrast, populations in regions with a higher SIR form wider shells with a much lower spire to body whorl ratio. The results suggest a widespread phenotypic response of N. lapillus to continuing ocean acidification could be expected, affecting its phenotypic response patterns to predator or wave exposure regimes with profound implications for North Atlantic rocky shore communities. On the contrary, investigations of shell shape and thickness changes over the last 130 years from adjacent sampling regions on the Southern North Sea coast revealed that contrary to global predictions, N. lapillus built continuously thicker shells while maintaining a consistent shell shape throughout the last century. Systematic modelling efforts suggested that the observed shell thickening resulted from higher annual temperatures, longer yearly calcification windows, nearshore eutrophication, and enhanced prey abundance, which mitigated the impact of other climate change factors. An investigation into the trace elemental composition of common pollutant metals in the same archival N. lapillus specimens revealed that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant throughout the last 130 years despite substantial shifts in the environmental concentration. However, Pb/Ca concentration ratios showed a definite trend closely aligned with leaded petrol emissions in Europe over the same period. Discussing physiological and environmental drivers for the observed shell bound heavy metal patterns, I argue that, unlike for Pb, constraints on environmental dissolved Cu species abundance and biologically mediated control on internal Zn levels were likely responsible for a decoupling of shell-bound to total ambient Cu and Zn concentrations. The results highlight the complexity of internal and external pathways that govern the uptake of heavy metals into the molluscan shell and suggest that the shell of N. lapillus could be a suitable archive for a targeted investigation of Pb pollution in the intertidal zone.

Continue reading ‘Environmental change impacts on shell formation in the muricid Nucella lapillus’

The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges

Ocean acidification (OA) is expected to modify the structure and function of coral reef ecosystems by reducing calcification, increasing bioerosion, and altering the physiology of many marine organisms. Much of our understanding of these relationships is based upon experiments with static OA treatments, though evidence suggests that the magnitude of diurnal fluctuations in carbonate chemistry may modulate the calcification response to OA. These light-mediated swings in seawater pH are projected to become more extreme with OA, yet their impact on bioerosion remains unknown. We evaluated the influence of diurnal carbonate chemistry variability on the bioerosion rates of two Caribbean sponges: the zooxanthellate Cliona varians and azooxanthellate Cliothosa delitrix. Replicate fragments from multiple colonies of each species were exposed to four precisely-controlled pH treatments: contemporary static (8.05 ± 0.00; mean pH ± diurnal pH oscillation), contemporary variable (8.05 ± 0.10), future OA static (7.80 ± 0.00), and future OA variable (7.80 ± 0.10). Significantly enhanced bioerosion rates, determined using buoyant weight measurements, were observed under more variable conditions in both the contemporary and future OA scenarios for C. varians, whereas the same effect was only apparent under contemporary pH conditions for C. delitrix. These results indicate that variable carbonate chemistry has a stimulating influence on sponge bioerosion, and we hypothesize that bioerosion rates evolve non-linearly as a function of pCO2 resulting in different magnitudes and directions of rate enhancement/reduction between day and night, even with an equal fluctuation around the mean. This response appeared to be intensified by photosymbionts, evident by the consistently higher percent increase in bioerosion rates for photosynthetic C. varians across all treatments. These findings further suggest that more variable natural ecosystems may presently experience elevated sponge bioerosion rates and that the heightened impact of OA enhanced bioerosion on reef habitat could occur sooner than prior predictions.

Continue reading ‘The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges’

Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Warming and ocean acidification are currently critical global change drivers for marine ecosystems due to their complex and irreversible effects on the ecology and evolution of marine communities. Changes in the chemistry and the temperature of the ocean impact the biological performance of marine resources by affecting their energy budget and thus imposing energetic restrictions and trade-offs on their survival, growth, and reproduction. In this study, we evaluated the interplaying effects of increased pCO2 levels and temperature on the economically relevant clam Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range along the coast of Chile. Juvenile clams collected from southern Chile were exposed to a 90-day experimental set-up emulating the current and a future scenario projeced to the end of the current century for both high pCO2/low-pH and temperature (10 and 15°C) projected for the Chilean coast. Clams showed physiological plasticity to different projected environmental scenarios without mortality. In addition, our results showed that the specimens under low-pH conditions were not able to meet the energetic requirements when increased temperature imposed high maintenance costs, consequently showing metabolic depression. Indeed, although the calcification rate was negative in the high-pCO2 scenario, it was the temperature that determined the amount of shell loss. These results indicate that the studied clam can face environmental changes for short-term periods modifying energetic allocation on maintenance and growth processes, but with possible long-term population costs, endangering the sustainability of an important benthic artisanal fisheries resource.

Continue reading ‘Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Cold-water coral ecosystems under future ocean change: live coral performance vs. framework dissolution and bioerosion

Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr < 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs.

Continue reading ‘Cold-water coral ecosystems under future ocean change: live coral performance vs. framework dissolution and bioerosion’

The impact of carbonate chemistry on bioeroding sponges and the persistence of south Florida coral reefs

Coral reef ecosystems are being threatened by the growing effects of anthropogenically-induced climate change. At a global-scale, diminished reef development and growth potential has culminated in a consequential shift towards the net loss of reef habitat. While the impacts of climate change have been well established for reef calcifiers, the response by bioeroders is vastly understudied in the literature.      

This Ph.D project evaluated the impacts of ocean acidification (OA) and diurnal carbonate chemistry variability on zooxanthellate (C. varians) and azooxanthellate (P. lampa and C. delitrix) sponge species common to Caribbean reef ecosystems. Physiological and molecular analysis identified a sponge stress response under OA conditions, as depressed bioerosion rates and differentially expressed genes implicated in a generalized stress response were measured in the 7.75 pH treatment. Diurnal carbonate chemistry variability was also found to be a significant driver of sponge bioerosion, with higher bioerosion rates measured under both contemporary and OA variable conditions relative to that of the static treatment groups, an effect that was more pronounced for the zooxanthellate sponge species.      

Additionally, this Ph.D project used a carbonate budget approach to evaluate spatial and temporal trends in reef growth potential for 723 South Florida reef sites. The results reported a net erosional state for coral reefs throughout the Florida Reef Tract (FRT). While these data detailed a considerable trend towards habitat loss throughout South Florida, the inclusion of reef type data revealed that mid-channel reefs in the Upper and Lower Keys may be potential hold-outs for reef development compared to their inshore and offshore counterparts.      

Altogether, the conclusions drawn from these studies address critical research gaps related to sponge bioerosion and reef development. This Ph.D will enhance prospective evaluations of habitat growth potential and improve future assessments modeling the fate of coral reef ecosystems in response to projected environmental scenarios.

Continue reading ‘The impact of carbonate chemistry on bioeroding sponges and the persistence of south Florida coral reefs’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: