Posts Tagged 'dissolution'

Comment on “Bioerosion: the other ocean acidification problem”: on field studies and mechanisms

In a recent review, “Bioerosion: the other ocean acidification problem,” Schönberg et al. claim that studies of bioerosion across natural chemical gradients are “flawed” or “compromised” by co-variation among environmental factors. Their discussion falls largely on two publications, Silbiger et al. and DeCarlo et al. Here, we demonstrate that critical errors in plotting, statistical analysis, and data selection in Schönberg et al.’s reanalysis, result in a gross misrepresentation of these studies. Further, we argue three key points regarding field-based studies that require broader discussion within the bioerosion community and marine scientists in general: (1) that natural variability in field studies is not a flaw, (2) interpretations must be supported by mechanistic understanding, and (3) field-based studies play an essential role in elucidating interactions between OA and natural variability that is not captured by laboratory CO2-manipulation experiments. Our goal with this comment is to encourage open discussion of the advantages and caveats of field-based studies in general, and ultimately, advance our understanding of bioerosion patterns observed in nature.

Continue reading ‘Comment on “Bioerosion: the other ocean acidification problem”: on field studies and mechanisms’

Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates

Health of tropical coral reefs depends largely on the balance between constructive (calcification and cementation) and destructive forces (mechanical-chemical degradation). Gradual increase in dissolved CO2 and the resulting decrease in carbonate ion concentration (“ocean acidification”) in ocean surface water may tip the balance toward net mass loss for many reefs. Enhanced nutrients and organic loading in surface waters (“eutrophication”), may increase the susceptibility of coral reef and near shore environments to ocean acidification. The impacts of these processes on coral calcification have been repeatedly reported, however the synergetic effects on bioerosion rates by sponges are poorly studied. Erosion by excavating sponges is achieved by a combination of chemical dissolution and mechanical chip removal. In this study, Cliona caribbaea, a photosymbiont-bearing excavating sponge widely distributed in Caribbean reef habitats, was exposed to a range of CO2 concentrations, as well as different eutrophication levels. Total bioerosion rates, estimated from changes in buoyant weights over 1 week, increased significantly with pCO2 but not with eutrophication. Observed chemical bioerosion rates were positively affected by both pCO2 and eutrophication but no interaction was revealed. Net photosynthetic activity was enhanced with rising pCO2 but not with increasing eutrophication levels. These results indicate that an increase in organic matter and nutrient renders sponge bioerosion less dependent on autotrophic products. At low and ambient pCO2, day-time chemical rates were ~50% higher than those observed at night-time. A switch was observed in bioerosion under higher pCO2 levels, with night-time chemical bioerosion rates becoming comparable or even higher than day-time rates. We suggest that the difference in rates between day and night at low and ambient pCO2 indicates that the benefit of acquired energy from photosynthetic activity surpasses the positive effect of increased pCO2 levels at night due to holobiont respiration. This implies that excavation must cost cellular energy, by processes, such as ATP usage for active Ca2+ and/or active proton pumping. Additionally, competition for dissolved inorganic carbon species may occur between bioerosion and photosynthetic activity by the symbionts. Either way, the observed changing role of symbionts in bioerosion can be attributed to enhanced photosynthetic activity at high pCO2 levels.

Continue reading ‘Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates’

Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge

Excavating sponges are prominent bioeroders on coral reefs that in comparison to other benthic organisms may suffer less or may even benefit from warmer, more acidic and more eutrophic waters. Here, the photosymbiotic excavating sponge Cliona orientalis from the Great Barrier Reef was subjected to a prolonged simulation of both global and local environmental change: future seawater temperature, partial pressure of carbon dioxide (as for 2100 summer conditions under “business-as-usual” emissions), and diet supplementation with particulate organics. The individual and combined effects of the three factors on the bioerosion rates, metabolic oxygen and carbon flux, biomass change and survival of the sponge were monitored over the height of summer. Diet supplementation accelerated bioerosion rates. Acidification alone did not have a strong effect on total bioerosion or survival rates, yet it co-occurred with reduced heterotrophy. Warming above 30 °C (+2.7 °C above the local maximum monthly mean) caused extensive bleaching, lower bioerosion, and prevailing mortality, overriding the other factors and suggesting a strong metabolic dependence of the sponge on its resident symbionts. The growth, bioerosion capacity and likelihood of survival of C. orientalis and similar photosymbiotic excavating sponges could be substantially reduced rather than increased on end-of-the-century reefs under “business-as-usual” emission profiles.

Continue reading ‘Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge’

Dissolution of abiogenic and biogenic calcium carbonate under ocean acidification conditions

Under ocean acidification conditions, the chemistry of the seawater will change including a decrease in pH, a decrease in carbonate ion concentration and a decrease in the calcium carbonate saturation state of the water (Ω). This has implications for solid marine calcium carbonates including calcifying organisms and carbonate sediments. The dissolution kinetics of marine carbonates are poorly understood, therefore modelling of the future ocean under ocean acidification scenarios is hampered. The goal of this research was to provide an increased understanding of the kinetics of marine carbonate dissolution, including dependence of the dissolution rate of calcium carbonate mineral phases (calcite, calcite-aragonite, low Mg-calcite) on conditions relevant to ocean acidification, and then to apply this to biogenic samples (Pāua, kina and oyster). The effects of saturation state (Ω), surface area, and temperature were studied. Two methods were refined and used to collect and analyze the dissolution data – a pH-stat method and a pH free-drift method, with manipulation of the carbonate chemistry by addition of NaHCO3 and HCl. A LabVIEW® based program was developed for instrument control and automation and for data acquisition. The empirical equation R = k(1-Ω)n, was used to determine the reaction rates (R), the rate constants (k) and the reaction orders (n) for the each of the mineral phases and shellfish species.

Continue reading ‘Dissolution of abiogenic and biogenic calcium carbonate under ocean acidification conditions’

Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata

In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2–42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40).

Continue reading ‘Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata’

Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel

Northwest Eifuku submarine volcano (Mariana Volcanic Arc) emits very high concentrations of CO2 at a vent where the mussel Bathymodiolus septemdierum experiences pH as low as 5.2. We examined how this natural setting of high pCO2 influences shell, body, and reproductive condition. Calcification is highly compromised: at a given shell volume, shells from NW Eifuku weigh about half those from reference sites in the south Pacific, and dissolution of the inner shell is evident. However, the condition indices of some NW Eifuku mussels were equal to or higher than those from Lau back-arc basin and the New Hebrides Island Arc. NW Eifuku mussels in pH 5.2 fluids had the highest symbiont abundances in gill bacteriocytes, probably due to greater dissolved sulphide access. Excess energy demands imposed by high pCO2 conditions appears moderated by adequate food availability through symbiont chemosynthesis. In the sample with the lowest body condition, gametogenesis was lagging, although all mussels in high pCO2 had developing gonads and the complete gametogenic cycle was present in our samples. Gamete development is synchronous between sexes and is possibly periodic. While mussels are functionally dioecious, protogynous hermaphroditism can occur—a first record for the genus—which may be an adaptation to resource availability. B. septemdierum likely makes energy allocation trade-offs among calcification, body mass maintenance, reproduction and other processes to maximize fitness. We suggest that flexibility to divert energy from shell formation, combined with good food supply, can mitigate the manifestation of high CO2 stress on B. septemdierum.

Continue reading ‘Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel’

Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)

The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.

Continue reading ‘Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,030,789 hits


Ocean acidification in the IPCC AR5 WG II

OUP book