Posts Tagged 'dissolution'

Geographical variation in phenotypic plasticity of intertidal sister limpet’s species under ocean acidification scenarios

Ocean Acidification (OA) can have pervasive effects in calcifying marine organisms, and a better understanding of how different populations respond at the physiological and evolutionary level could help to model the impacts of global change in marine ecosystems. Due to its natural geography and oceanographic processes, the Chilean coast provides a natural laboratory where benthic organisms are frequently exposed to diverse projected OA scenarios. The goal of this study was to assess whether a population of mollusks thriving in a more variable environment (Talcaruca) would present higher phenotypic plasticity in physiological and morphological traits in response to different pCO2 when compared to a population of the same species from a more stable environment (Los Molles). To achieve this, two benthic limpets (Scurria zebrina and Scurria viridula) inhabiting these two contrasting localities were exposed to ocean acidification experimental conditions representing the current pCO2 in the Chilean coast (500 μatm) and the levels predicted for the year 2100 in upwelling zones (1500 (μatm). Our results show that the responses to OA are species-specific, even in this related species. Interestingly, S. viridula showed better performance under OA than S. zebrina (i.e., similar sizes and carbonate content in individuals from both populations; lower effects of acidification on the growth rate combined with a reduction of metabolism at higher pCO2). Remarkably, these characteristics could explain this species’ success in overstepping the biogeographical break in the area of Talcaruca, which S. zebrina cannot achieve. Besides, the results show that the habitat factor has a strong influence on some traits. For instance, individuals from Talcaruca presented a higher growth rate plasticity index and lower shell dissolution rates in acidified conditions than those from Los Molles. These results show that limpets from the variable environment tend to display higher plasticity, buffering the physiological effects of OA compared with limpets from the more stable environment. Taken together, these findings highlight the key role of geographic variation in phenotypic plasticity to determine the vulnerability of calcifying organisms to future scenarios of OA.

Continue reading ‘Geographical variation in phenotypic plasticity of intertidal sister limpet’s species under ocean acidification scenarios’

Unexpected role of communities colonizing dead coral substrate in the calcification of coral reefs

Global and local anthropogenic stressors such as climate change, acidification, overfishing, and pollution are expected to shift the benthic community composition of coral reefs from dominance by calcifying organisms to dominance by non‐calcifying algae. These changes could reduce the ability of coral reef ecosystems to maintain positive net calcium carbonate accretion. However, relationships between community composition and calcification rates remain unclear. We performed field experiments to quantify the metabolic rates of the two most dominant coral reef substrate types, live coral and dead coral substrate colonized by a mixed algal assemblage, using a novel underwater respirometer. Our results revealed that calcification rates in the daytime were similar for the live coral and dead coral substrate communities. However, in the dark, while live corals continued to calcify at slower rates, the dead coral substrate communities exhibited carbonate dissolution. Daytime net photosynthesis of the dead coral substrate communities was up to five times as much as for live corals, which we hypothesize may have created favorable conditions for the precipitation of carbonate minerals. We conclude that: (1) calcification from dead coral substrate communities can contribute to coral reef community calcification during the day, and (2) dead coral substrate communities can also contribute to carbonate mineral dissolution at night, decreasing ecosystem calcification over a diel cycle. This provides evidence that reefs could shift from slow, long‐term accretion of calcium carbonate to a state where large daily cycling of calcium carbonate occurs, but with little or no long‐term accumulation of the carbonate minerals needed to sustain the reef against erosional forces.

Continue reading ‘Unexpected role of communities colonizing dead coral substrate in the calcification of coral reefs’

Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea

Highlights

• Spatial and temporal variation in estuarine acidification cause severe biological responses.

• Extreme low saturation state and duration of exposure cause pteropod shell dissolution.

• Changing estuarine conditions cause cumulative stress that was used to generate stress index.

• Compensatory mechanisms allow pelagic calcifiers to persist in extreme OA estuarine habitats.

Abstract

Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking. By combining physical, biogeochemical, and biological time-series observations over relevant seasonal-to-interannual time scales, this study is the first to describe both the spatial and temporal variation of biological response in the pteropod Limacina helicina to estuarine acidification in association with other stressors. Using clustering and principal component analyses, sampling sites were grouped according to their distribution of physical and biogeochemical variables over space and time. This identified the most exposed habitats and time intervals corresponding to the most severe negative biological impacts across three seasons and three years. We developed a cumulative stress index as a means of integrating spatial-temporal OA variation over the organismal life history. Our findings show that over the 2014–2016 study period, the severity of low aragonite saturation state combined with the duration of exposure contributed to overall cumulative stress and resulted in severe shell dissolution. Seasonally-variable estuaries such as the Salish Sea (Washington, U.S.A.) predispose sensitive organisms to more severe acidified conditions than those of coastal and open-ocean habitats, yet the sensitive organisms persist. We suggest potential environmental factors and compensatory mechanisms that allow pelagic calcifiers to inhabit less favorable habitats and partially offset associated stressors, for instance through food supply, increased temperature, and adaptation of their life history. The novel metric of cumulative stress developed here can be applied to other estuarine environments with similar physical and chemical dynamics, providing a new tool for monitoring biological response in estuaries under pressure from accelerating global change.

Continue reading ‘Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea’

Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach

In the present study, we depict the structural modification of test minerals, physiological response and ovarian damage in the tropical sea urchin Salmacis virgulata using microcosm CO2 (Carbon dioxide) perturbation experiment. S. virgulata were exposed to hypercapnic conditions with four different pH levels using CO2 gas bubbling method that reflects ambient level (pH 8.2) and elevated pCO2 scenarios (pH 8.0, 7.8 and 7.6). The variations in physical strength and mechanical properties of S. virgulata test were evaluated by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanned electron microscopy analysis. Biomarker enzymes such as glutathione-S-transferase, catalase, acetylcholine esterase, lipid peroxidase and reduced glutathione showed physiological stress and highly significant (p < 0.01) towards pH 7.6 and 7.8 treatments. Ovarian cells were highly damaged at pH 7.6 and 7.8 treatments. This study proved that the pH level 7.6 and 7.8 drastically affect calcification, physiological response and ovarian cells in S. virgulata.

Continue reading ‘Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach’

Biological impact of ocean acidification in the Canadian Arctic: widespread severe pteropod shell dissolution in Amundsen Gulf

Increasing atmospheric CO2, cold water temperatures, respiration, and freshwater inputs all contribute to enhanced acidification in Arctic waters. However, ecosystem effects of ocean acidification (derived from anthropogenic and/or natural sources) in the Arctic Ocean are highly uncertain. Zooplankton samples and oceanographic data were collected in August 2012–2014 and again in August 2017 to investigate the pelagic sea snail, Limacina helicina, a biological indicator of the presence and potential impact of acidified waters in the Canadian Beaufort Sea. Between 2012 and 2014 L. helicina abundance ranged from <1 to 1942 Ind. m–2, with highest abundances occurring at stations on the Canadian Beaufort Shelf in 2012. The majority of individuals (66%) were located between 25 and 100 m depth, corresponding to upper halocline water of Pacific origin. In both 2014 and 2017, >85% of L. helicina assessed (n = 134) from the Amundsen Gulf region displayed shell dissolution and advanced levels of dissolution occurred at all stations. The severity of dissolution was not significantly different between 2014 and 2017 despite the presence of larger individuals that are less prone to dissolution, and higher food availability that can provide some physiological benefits in 2014. Corrosive water conditions were not widespread in the Amundsen Gulf at the time of sampling in 2017, and aragonite undersaturation (Ωar < 1) occurred primarily at depths >150 m. The majority of dissolution was observed on the first whorl of the shells strongly indicating that damage was initiated during the larval stage of growth in May or early June when sea ice is still present. Evidence of shell modification was present in 2014, likely supported by abundant food availability in 2014 relative to 2017. The proportion of damaged L. helicina collected from coastal embayments and offshore stations is higher than in other Arctic and temperate locations indicating that exposure to corrosive waters is spatially widespread in the Amundsen Gulf region, and periods of exposure are extreme enough to impact the majority of the population.

Continue reading ‘Biological impact of ocean acidification in the Canadian Arctic: widespread severe pteropod shell dissolution in Amundsen Gulf’

Response of large benthic foraminifera to climate and local changes: implications for future carbonate production

Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under‐represented in favour of macro reef‐builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef‐scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low‐lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well‐understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well‐studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host‐symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.

Continue reading ‘Response of large benthic foraminifera to climate and local changes: implications for future carbonate production’

Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa

Ocean acidification is expected to impact the high latitude oceans first, as CO2 dissolves more easily in colder waters. At the current rate of anthropogenic CO2 emissions, the sub-Antarctic Zone will start to experience undersaturated conditions with respect to aragonite within the next few decades, which will affect marine calcifying organisms. Shelled pteropods, a group of calcifying zooplankton, are considered to be especially sensitive to changes in carbonate chemistry because of their thin aragonite shells. Limacina retroversa is the most abundant pteropod in sub-Antarctic waters, and plays an important role in the carbonate pump. However, not much is known about its response to ocean acidification. In this study, we investigated differences in calcification between L. retroversa individuals exposed to ocean carbonate chemistry conditions of the past (pH 8.19; mid-1880s), present (pH 8.06), and near-future (pH 7.93; predicted for 2050) in the sub-Antarctic. After 3 days of exposure, calcification responses were quantified by calcein staining, shell weighing, and Micro-CT scanning. In pteropods exposed to past conditions, calcification occurred over the entire shell and the leading edge of the last whorl, whilst individuals incubated under present and near-future conditions mostly invested in extending their shells, rather than calcifying over their entire shell. Moreover, individuals exposed to past conditions formed larger shell volumes compared to present and future conditions, suggesting that calcification is already decreased in today’s sub-Antarctic waters. Shells of individuals incubated under near-future conditions did not increase in shell weight during the incubation, and had a lower density compared to past and present conditions, suggesting that calcification will be further compromised in the future. This demonstrates the high sensitivity of L. retroversa to relatively small and short-term changes in carbonate chemistry. A reduction in calcification of L. retroversa in the rapidly acidifying waters of the sub-Antarctic will have a major impact on aragonite-CaCO3 export from oceanic surface waters to the deep sea.

Continue reading ‘Effects of ocean acidification on calcification of the sub-Antarctic pteropod Limacina retroversa’

Ocean acidification reduces skeletal density of hardground‐forming high‐latitude crustose coralline algae

Crustose coralline algae (CCA) function as foundation species by creating marine carbonate hardground habitats. High‐latitude species may be vulnerable to regional warming and acidification. Here, we report the results of an experiment investigating the impacts of CO2‐induced acidification (pCO2 ∼350, 490, 890, 3200 µatm) and temperature (∼6.5, 8.5, 12.5°C) on the skeletal density of two species of high‐latitude CCA: Clathromorphum compactum (CC) and C. nereostratum (CN). Skeletal density of both species significantly declined with pCO2. In CN, the density of previously deposited skeleton declined in the highest pCO2 treatment. This species was also unable to precipitate new skeleton at 12.5°C, suggesting that CN will be particularly sensitive to future warming and acidification. The decline in skeletal density exhibited by both species under future pCO2 conditions could reduce their skeletal strength, potentially rendering them more vulnerable to disturbance, and impairing their production of critical habitat in high‐latitude systems.

Continue reading ‘Ocean acidification reduces skeletal density of hardground‐forming high‐latitude crustose coralline algae’

Calcification does not necessarily protect articulated coralline algae from urchin grazing

Calcification is widely thought to be an adaptation that reduces the impact of herbivory. Recent work has shown that ocean acidification may negatively impact calcification of marine organisms, including coralline red algae, which could theoretically increase the susceptibility of corallines to benthic grazers. By manipulating calcium carbonate content of three articulated coralline algal species, we demonstrated that calcification has a variable and species-specific effect on urchin grazing. For two species, Corallina vancouveriensis and Corallina officinalis var. chilensis, reductions in calcium carbonate content did not cause a significant increase in urchin grazing, raising questions about the benefit of calcification in these species. For Calliarthron tuberculosum, reduced calcium carbonate content caused an increase in urchin grazing rates but only after calcium carbonate had been reduced by more than 15%, suggesting that only dramatic shifts in calcification would make C. tuberculosum more susceptible to urchin grazing. We hypothesize that the herbivory-reducing benefits of calcification likely depend upon coralline thallus morphology. Negative impacts of ocean acidification on calcification in coralline algae may not necessarily increase herbivory rates.

Continue reading ‘Calcification does not necessarily protect articulated coralline algae from urchin grazing’

Coccolithophore calcification studied by single-cell impedance cytometry: towards single-cell PIC:POC measurements

Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The coccolithophore Emiliania huxleyi is considered to be globally the most dominant calcifying algal species, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle.

In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a noninvasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified).

We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.

Continue reading ‘Coccolithophore calcification studied by single-cell impedance cytometry: towards single-cell PIC:POC measurements’

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,451,106 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book