Posts Tagged 'protists'

A sediment trap evaluation of B/Ca as a carbonate system proxy in asymbiotic and nondinoflagellate hosting planktonic foraminifera

The ratio of boron to calcium (B/Ca) in a subset of foraminifera has been shown to covary with seawater carbonate chemistry, making this geochemical signature a promising proxy for carbon cycle science. Some studies suggest complications with the B/Ca proxy in photosymbiont‐bearing planktonic foraminifera, while relatively few studies have investigated B/Ca in species that lack large dinoflagellate symbionts. For the first time, we use a sediment trap time series to evaluate B/Ca of subtropical and subpolar planktonic foraminifera species that are asymbiotic (Globigerina bulloides and Neogloboquadrina incompta) and a species that hosts small intrashell photosymbionts (Neogloboquadrina dutertrei). We find that B/Ca measurements across size fractions indicate overall little to no size‐dependent uptake of boron that has previously been reported in some symbiont‐bearing foraminifera. Neogloboquadrina incompta and N. dutertrei B/Ca are strongly correlated with calcite saturation, pH, and carbonate ion concentration, which is in good agreement with the limited number of published core top results. While G. bulloides B/Ca trends with seasonal fluctuations in carbonate chemistry, during discrete periods considerable B/Ca offsets occur when a cryptic G. bulloides species is known to be seasonally present within the region. We confirm presence and significant B/Ca offset between cryptic species by individual LA‐ICP‐MS analyses. This finding calls into question the use of traditional morphological classification to lump what might be genetically distinct species for geochemical analyses. Our overall results highlight the utility of G. bulloides, N. incompta, and N. dutertrei B/Ca while bringing to light new considerations regarding divergent geochemistry of cryptic species.

Continue reading ‘A sediment trap evaluation of B/Ca as a carbonate system proxy in asymbiotic and nondinoflagellate hosting planktonic foraminifera’

Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents

Highlights

• Coral microbiomes contribute to host acclimatization to environmental change.

• Natural CO2 gradients are a model of global change-induced ocean acidification.

• Non-symbiotic coral Astroides calycularis survives in a natural acidified site.

• Calycularis mucus microbiome is the most affected by low pH conditions.

• Low pH conditions induce changes in microbiome supporting nitrogen cycling.

Abstract

Coral microbiomes, the complex microbial communities associated with the different anatomic compartments of the coral, provide important functions for the host’s survival, such as nutrient cycling at the host’s surface, prevention of pathogens colonization, and promotion of nutrient uptake. Microbiomes are generally referred to as plastic entities, able to adapt their composition and functionality in response to environmental change, with a possible impact on coral acclimatization to phenomena related to climate change, such as ocean acidification. Ocean sites characterized by natural gradients of pCO2 provide models for investigating the ability of marine organisms to acclimatize to decreasing seawater pH. Here we compared the microbiome of the temperate, shallow water, non-symbiotic solitary coral Astroides calycularis that naturally lives at a volcanic CO2 vent in Ischia Island (Naples, Italy), with that of corals living in non-acidified sites at the same island. Bacterial DNA associated with the different anatomic compartments (mucus, tissue and skeleton) of A. calycularis was differentially extracted and a total of 68 samples were analyzed by 16S rRNA gene sequencing. In terms of phylogenetic composition, the microbiomes associated with the different coral anatomic compartments were different from each other and from the microbial communities of the surrounding seawater. Of all the anatomic compartments, the mucus-associated microbiome differed the most between the control and acidified sites. The differences detected in the microbial communities associated to the three anatomic compartments included a general increase in subdominant bacterial groups, some of which are known to be involved in different stages of the nitrogen cycle, such as potential nitrogen fixing bacteria and bacteria able to degrade organic nitrogen. Our data therefore suggests a potential increase of nitrogen fixation and recycling in A. calycularis living close to the CO2 vent system.

Continue reading ‘Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents’

Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment

Climate change threatens the survival of scleractinian coral from exposure to concurrent ocean warming, acidification and deoxygenation; how corals can potentially adapt to this trio of stressors is currently unknown. This study investigates three coral species (Acropora muricata, Acropora pulchra and Porites lutea) dominant in an extreme mangrove lagoon (Bouraké, New Caledonia) where abiotic conditions exceed those predicted for many reef sites over the next 100 years under climate change and compared them to conspecifics from an environmentally more benign reef habitat. We studied holobiont physiology as well as plasticity in coral-associated microorganisms (Symbiodiniaceae and bacteria) through ITS2 and 16S rRNA sequencing, respectively. We hypothesised that differences in coral-associated microorganisms (Symbiodiniaceae and bacteria) between the lagoonal and adjacent reef habitats may support coral host productivity and ultimately the ability of corals to live in extreme environments. In the lagoon, all coral species exhibited a metabolic adjustment of reduced photosynthesis-to-respiration ratios (P/R), but this was accompanied by highly divergent coral host-specific microbial associations. This was substantiated by the absence of shared ITS2-type profiles (proxies for Symbiodiniaceae genotypes). We observed that ITS2 profiles originating from Durusdinium taxa made up < 3% and a novel Symbiodinium ITS2 profile A1-A1v associated with A. pulchra. Bacterial community profiles were also highly divergent in corals from the lagoonal environment, whereas corals from the reef site were consistently dominated by Hahellaceae, Endozoicomonas. As such, differences in host–microorganism associations aligned with different physiologies and habitats. Our results argue that a multitude of host–microorganism associations are required to fulfill the changing nutritional demands of corals persisting into environments that parallel climate change scenarios.

Continue reading ‘Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment’

Impacts of elevated temperature and pCO2 on the brooded larvae of Pocillopora damicornis from Luhuitou Reef, China: evidence for local acclimatization

In this study, we tested whether larvae brooded by the reef coral Pocillopora damicornis from a naturally extreme and highly variable environment are preadapted to cope with predicted increases in temperature and pCO2. We exposed larvae to two temperatures (29 vs. 30.8 °C) crossed with two pCO2 levels (~ 500 vs. ~ 1000 μatm) in a full-factorial experiment for 5 d. Larval performance was assessed as dark respiration (RD), net and gross photosynthesis (PN and PG, respectively), survival, settlement, and the activity of carbonic anhydrase (CA), the central enzyme involved in photosynthesis. The results showed that RD was unaffected by either elevated temperature or pCO2, while elevated temperature and/or pCO2 stimulated PN and PG and increased the ratios of PN to RD, indicating a relatively higher autotrophic capacity. Consequently, larval survivorship under elevated temperature and/or pCO2 was consistently 14% higher than that under the control treatment. Furthermore, elevated temperature and pCO2 did not affect host CA activity, but synergistically enhanced symbiont CA activity, contributing greatly to the stimulated photosynthetic capacity. These results suggest that brooded larvae of P. damicornis larvae from Luhuitou may be preadapted to cope with projected warming and ocean acidification. More generally, it appears that corals from highly variable environments may have increased resilience to the widespread climate change.

Continue reading ‘Impacts of elevated temperature and pCO2 on the brooded larvae of Pocillopora damicornis from Luhuitou Reef, China: evidence for local acclimatization’

Symbiont community diversity is more variable in corals that respond poorly to stress

Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts—the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10‐day experiment. Specifically, four ‘best performer’ coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2, bacterial exposure, or combined stressors, whereas four ‘worst performer’ genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.

Continue reading ‘Symbiont community diversity is more variable in corals that respond poorly to stress’

Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid (Euprymna scolopes)

Many microorganisms engaged in host-microbe interactions pendulate between a free-living phase and a host-affiliated stage. How adaptation to stress during the free-living phase affects host-microbe associations is unclear and understudied. To explore this topic, the symbiosis between Hawaiian bobtail squid (Euprymna scolopes) and the luminous bacterium Vibrio fischeri was leveraged for a microbial experimental evolution study. V. fischeri experienced adaptation to extreme pH while apart from the squid host. V. fischeri was serially passaged for 2000 generations to the lower and upper pH growth limits for this microorganism, which were pH 6.0 and 10.0, respectively. V. fischeri was also serially passaged for 2000 generations to vacillating pH 6.0 and 10.0. Evolution to pH stress both facilitated and impaired symbiosis. Microbial evolution to acid stress promoted squid colonization and increased bioluminescence for V. fischeri , while symbiont adaptation to alkaline stress diminished these two traits. Oscillatory selection to acid and alkaline stress also improved symbiosis for V. fischeri , but the facilitating effects were less than that provided by microbial adaptation to acid stress. In summary, microbial adaptation to harsh environments amid the free-living phase may impact the evolution of host-microbe interactions in ways that were not formerly considered.

Continue reading ‘Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid (Euprymna scolopes)’

Response of benthic foraminifera to pH changes: community structure and morphological transformation studies from a microcosm experiment

Highlights

• Entire foraminiferal communities were successfully cultured under five pH treatments for four months.

• 2246 living individuals were analyzed to calculate the community parameters and 1919 specimens were measured to compare the morphological transformation.

• Hyaline and porcelaneous foraminifera showed significant positive correlations with pH, while the agglutinated taxa showed significant negative response.

• The test size of calcareous species showed an obvious decline with decreasing pH, which indicated these taxa were sensitive and vulnerable to ocean acidification.

• More deformed tests occurred under low pH conditions (<7.5).

Abstract

Marine calcifying organisms, such as foraminifera, are threatened by the declining pH in the modern ocean. Benthic foraminifera are abundant, widespread and occur in diverse populations in the intertidal environment. However, to date, no studies have been conducted on the response of intertidal foraminiferal community to pH under laboratory culture experiment. In this study, we cultured the entire foraminiferal community with the natural sediments from the intertidal area of the Yellow Sea at five pH (8.5, 8.0, 7.5, 7.0 and 6.5, NBS scale). After four months’ incubation, all living specimens (stained by rose-Bengal) were picked and identified. A total of 2246 living benthic foraminiferal specimens belonging to 15 species were analyzed, among which 1962 individuals were cultured and 284 ones were sampled before culturing. We calculated the community parameters under different pH, which showed both foraminiferal abundance and species richness decreased with the decline in pH. We analyzed the response of three foraminiferal taxa with different test types (hyaline, porcelaneous and agglutinated). The hyaline (e.g., Ammonia aomoriensis) and porcelaneous (e.g., Quinqueloculina seminula) foraminifera showed significant positive correlation with pH. In contrast, the agglutinated taxa (e.g., Ammoglobigerina globigeriniformis) showed significant negative response. For detecting the response of individual species to pH, body size and abnormal morphology of dominant species were measured and analyzed. Morphometric analysis of 1919 specimens showed the maximum length of hyaline and porcelaneous species decreased under low pH treatments (<7.5) while that of agglutinated species increased. There were more deformed foraminiferal tests under low pH treatments. Our results demonstrate that benthic foraminifera are sensitive to pH decline which can cause a decline of community abundance and species richness, a reduction of dominant species of hyaline and porcelaneous types, and increase the chance of deformity. Among which, calcareous types are the first victims under low pH conditions.

Continue reading ‘Response of benthic foraminifera to pH changes: community structure and morphological transformation studies from a microcosm experiment’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,413 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book