Posts Tagged 'protists'

Incorporation of Mg, Sr, Ba, U and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2

Measurement of elemental ratios (E/Ca) have been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing pre-industrial, modern and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U and B incorporation could be controlled by Rayleigh fractionation. However, more data is needed to validate and quantify the relative importance this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multi-elemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca and B/Ca is sensitive to bottom water pCO2 or pH in these species.

Continue reading ‘Incorporation of Mg, Sr, Ba, U and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2’

Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment (update)

The Southern Ocean provides a vital service by absorbing about one-sixth of humankind’s annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC) on particles filtered from surface seawater into two size fractions: 50–1000 µm to capture foraminifera (the most important biogenic carbonate-forming zooplankton) and 1–50 µm to capture coccolithophores (the most important biogenic carbonate-forming phytoplankton). Ancillary measurements of biogenic silica (BSi) and particulate organic carbon (POC) provided context, as estimates of the biomass of diatoms (the highest biomass phytoplankton in polar waters) and total microbial biomass, respectively. Results for nine transects from Australia to Antarctica in 2008–2015 showed low levels of PIC compared to Northern Hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in subantarctic waters. NASA satellite ocean-colour-based PIC estimates were in reasonable agreement with the shipboard results in subantarctic waters but greatly overestimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM) shows coccolithophores as overly restricted to subtropical and northern subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. The poleward decrease in pH is small, and while calcite saturation decreases strongly southward, it remains well above saturation ( > 2). Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

Continue reading ‘Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment (update)’

The distribution of benthic foraminifera in Bel Torrente submarine cave (Sardinia, Italy) and their environmental significance


• Benthic foraminifera in Mediterranean submarine caves were studied for the first time.
• Ecological zones were recognized in the cave environment.
• Change of environmental parameters influence species diversity and distribution.
• Species in the cave are not common in the Sardinian marine coastal area.
• An effective dispersal mechanism is supposed for cave colonization.


The use of benthic foraminifera as ecological indicators in submarine caves of temperate seas have never been studied before and it represents a new approach, verified by this research. The Bel Torrente submarine cave (Gulf of Orosei, Sardinia, Italy) was surveyed by GUE (Global Underwater Explorers) scuba divers in order to georeferencing the cave before positioning the sampling stations, from the entrance to 430 m inside the cave. A total of 15 water samples were collected to investigate abiotic parameters (temperature, salinity, pH) while 15 sediment samples were collected to analyze grain size and benthic foraminifera. Benthic foraminifera, investigated for the first time in a submarine cave of temperate areas, were exclusively found from the entrance to 300 m inside the cave. Species distribution and assemblage diversity have been found to be correlated to the environmental gradient towards the inner cave, mainly due to the decreasing of temperature and salinity and the increasing of the flow energy. Water acidification seems responsible for the transition from a calcareous hyaline-dominated assemblage to an agglutinant-dominated one, occurring between 120 and 150 m from the entrance. Common taxa of the Sardinian coastal marine area are present only close to the entrance of the cave, while species found in the inner part are nearly exclusively epifaunal clinging/attached or infaunal taxa, with tolerance for wide variability of environmental parameters, such as Gavelinopsis praegeri, and opportunist infaunal taxa such as Eggerella advena. The agglutinant taxa found in the cave are conversely very rare in coastal marine assemblages of the area. This suggests a very efficient dispersal mechanism for the colonization of the caves, involving probably juvenile foraminifera at a “propagule” stage.

Continue reading ‘The distribution of benthic foraminifera in Bel Torrente submarine cave (Sardinia, Italy) and their environmental significance’

Transcriptomic resilience of the Montipora digitata holobiont to low pH

Ocean acidification is considered as one of the major threats for coral reefs at a global scale. Marine calcifying organisms, including stony corals, are expected to be the most affected by the predicted decrease of the surface water pH at the end of the century. The severity of the impacts on coral reefs remains as a matter of controversy. Although previous studies have explored the physiological response of stony corals to changes in pH, the response of the holobiont (i.e., the coral itself plus its symbionts) remains largely unexplored. In the present study, we assessed the changes in overall gene expression of the coral Montipora digitata and its microalgal symbionts after a short (3 days) and a longer (42 days) exposure to low pH (7.6). The short-term exposure to low pH caused small differences in the expression level of the host, impacting mostly genes associated with stress response in other scleractinians. Longer exposure to low pH resulted in no significant changes in gene expression of treated vs. control coral hosts. Gene expression in the eukaryotic symbionts remained unaltered at both exposure times. Our findings suggest resilience, in terms of gene expression, of the M. digitata holobiont to pH decrease, as well as capability to acclimatize to extended periods of exposure to low pH.

Continue reading ‘Transcriptomic resilience of the Montipora digitata holobiont to low pH’

Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the “missing” Earth-System feedback mechanism

Changes in the atmospheric partial pressure of CO2 (pCO2) leads to predictable impacts on the surface ocean carbonate system. Here, the importance of atmospheric pCO2 <260 ppmv is established for the optimum performance (and stability) of the algal endosymbiosis employed by a key suite of tropical reef-building coral species. Violation of this symbiotic threshold is revealed as a prerequisite for major historical reef extinction events, glacial–interglacial feedback climate cycles, and the modern decline of coral reef ecosystems. Indeed, it is concluded that this symbiotic threshold enacts a fundamental feedback mechanism needed to explain the characteristic dynamics (and drivers) of the coupled land–ocean–atmosphere carbon cycle of the Earth System since the mid-Miocene, some 25 million yr ago.

Continue reading ‘Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the “missing” Earth-System feedback mechanism’

DISCO – Drivers and impacts of coastal ocean acidification

Ocean acidification, mainly attributed to the increasing anthropogenic CO2 in the atmosphere, is characterised by a lowering pH together with a shift in the sea water carbonate chemistry toward lower concentration of carbonate ions. On the coasts, where the environmental variability is high due to natural and human impacts, ocean acidification mainly affects the frequency, magnitude, and duration of lower pH and lower calcium carbonate saturation events. Coastal ecosystems are adapted to environmental variability such as frequent changes in salinity, temperature, pH, oxygen levels and organic matter content. However, the effects of an increase of the range of this variability on coastal species, and especially on calcifiers, are still not clear. In this context, this thesis explores the impacts of coastal ocean acidification combined with other environmental stressors on benthic foraminifera.

In the Skagerrak-Baltic Sea region, foraminifera faunas varied along a strong gradient in terms of salinity, pH, and dissolved oxygen concentration, and species were adapted to local environmental stressors. However, the specimens of Ammonia spp. and Elphidium spp. observed in the south Baltic Sea were partially to completely dissolved, probably due to a combination of different stressors affecting the required energy for biomineralisation.

In a culture study, the coastal species Ammonia spp. and E. crispum were found to be resistant to dissolution under varying salinity and pH, which reflects the environmental variations in their natural habitats. However, their resistance to lower pH is decreased when cultured in brackish water conditions, and living decalcified specimens were also observed under a salinity of 5. This underlines the importance of a high salinity in the calcification process of foraminifera.

At the entrance of the Baltic Sea, environmental changes during the last 200 years were reconstructed using foraminiferal faunas. Four periods were identified with varying oxygen levels, salinity, organic matter content, and pollution with lower pH. This highlights that foraminiferal faunas were able to adapt to multiple environmental stressors.

This thesis concludes that, even if coastal species of foraminifera can tolerate extremely varying conditions in their environment on the short term, it is likely that tolerance thresholds will be passed for benthic ecosystems under the future increase in anthropogenic impacts such as coastal ocean acidification.

Further studies of micro-organisms such as foraminifera will be necessary to improve our understanding of past environmental changes and to put present and future changes into a larger context.

Continue reading ‘DISCO – Drivers and impacts of coastal ocean acidification’

The effects of multiple stressors on the distribution of coastal benthic foraminifera: a case study from the Skagerrak-Baltic Sea region


Foraminifera in the Skagerrak-Baltic region are adapted to the large environmental conditions.
• Living dissolved Ammonia spp. and Elphidium spp. were found in the south Baltic Sea.
• The combination of multiple factors influences the energy available for biogenic calcification.
• Benthic ecosystems will be affected by an increase in the environmental variability.


Coastal ecosystems are subjected to both large natural variability and increasing anthropogenic impact on environmental parameters such as changes in salinity, temperature, and pH. This study documents the distribution of living benthic foraminifera under the influence of multiple environmental stressors in the Skagerrak-Baltic Sea region. Sediment core tops were studied at five sites along a transect from the Skagerrak to the Baltic Sea, with strong environmental gradients, especially in terms of salinity, pH, calcium carbonate saturation and dissolved oxygen concentration in the bottom water and pore water. We found that living foraminiferal densities and species richness were higher at the Skagerrak station, where the general living conditions were relatively beneficial for Foraminifera, with higher salinity and Ωcalc in the water column and higher pH and oxygen concentration in the bottom and pore water. The most common species reported at each station reflect the differences in the environmental conditions between the stations. The dominant species were Cassidulina laevigata and Hyalinea balthica in the Skagerrak, Stainforthia fusiformis, Nonionella aff. stella and Nonionoides turgida in the Kattegat and N. aff. stella and Nonionellina labradorica in the Öresund. The most adverse conditions, such as low salinity, low Ωcalc, low dissolved oxygen concentrations and low pH, were noted at the Baltic Sea stations, where the calcareous tests of the dominant living taxa Ammonia spp. and Elphidium spp. were partially to completely dissolved, probably due to a combination of different stressors affecting the required energy for biomineralization. Even though Foraminifera are able to live in extremely varying environmental conditions, the present results suggest that the benthic coastal ecosystems in the studied region, which are apparently affected by an increase in the range of environmental variability, will probably be even more influenced by a future increase in anthropogenic impacts, including coastal ocean acidification and deoxygenation.

Continue reading ‘The effects of multiple stressors on the distribution of coastal benthic foraminifera: a case study from the Skagerrak-Baltic Sea region’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,051,359 hits


Ocean acidification in the IPCC AR5 WG II

OUP book