Posts Tagged 'protists'

Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera

Agglutinated foraminifera create a shell by assembling particles from the sediment and comprise a significant part of the foraminiferal fauna. Despite their high abundance and diversity, their response to environmental perturbations and climate change is relatively poorly studied. Here we present results from a culture experiment with four different species of agglutinating foraminifera incubated in artificial substrate and exposed to different pCO2 conditions, in either dysoxic or oxic settings. We observed species-specific reactions (i.e., reduced or increased chamber formation rates) to dysoxia and/or acidification. While chamber addition and/or survival rates of Miliammina fusca and Trochammina inflata were negatively impacted by either dysoxia or acidification, respectively, Textularia tenuissima and Spiroplectammina biformis had the highest survivorship and chamber addition rates with combined high pCO2 (2000 ppm) and low O2 (0.7 ml/l) conditions. The differential response of these species indicates that not all agglutinating foraminifera are well-adapted to conditions induced by predicted climate change, which may result in a shift in foraminiferal community composition.

Continue reading ‘Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera’

Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)

The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.

Continue reading ‘Size-dependent response of foraminiferal calcification to seawater carbonate chemistry (update)’

Extinction, dissolution, and possible ocean acidification prior to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific

Biotic perturbations and changes in ocean circulation during the Maastrichtian stage of the latest Cretaceous raise questions about whether the biosphere was preconditioned for the end-Cretaceous mass extinction of calcareous plankton. A brief acme of inoceramid clams at ~ 71 Ma on Shatsky Rise in the tropical North Pacific was followed by their extinction during the “mid-Maastrichtian event” at 70.1 Ma associated with an abrupt warming of deep waters. This was later followed by an interval of intense dissolution beginning ~ 67.8 Ma at ODP Site 1209 (2387 m). The late Maastrichtian dissolution interval was initially gradual, and is characterized by a low planktic/benthic (P/B) ratio, highly fragmented planktic foraminifera, mostly an absence of larger taxa, low abundances of smaller taxa, extremely low planktic foraminiferal numbers, and low planktic foraminiferal and nannofossil species richness. A partial recovery in carbonate preservation and calcareous plankton simple diversity began ~ 250 kyr prior to the K/Pg boundary associated with the incursion of a younger (more enriched δ13C) deep water mass, although total abundances of planktic foraminifera in the sediment remained a tiny fraction of their earlier Maastrichtian values. A second, brief dissolution event occurred ~ 200 kyr before the boundary evidenced by renewed increase in planktic fragmentation, but without a decrease in P/B ratio. Our data show that changing deep water masses, coupled with reduced productivity and associated decrease in pelagic carbonate flux was responsible for the first ~ 1.6-Myr dissolution interval, while Deccan Traps volcanism (?) may have caused surface ocean acidification ~ 200 kyr prior to the K/Pg mass extinction event.

Continue reading ‘Extinction, dissolution, and possible ocean acidification prior to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific’

Sulfur in foraminiferal calcite as a potential proxy for seawater carbonate ion concentration

Sulfur (S) incorporation in foraminiferal shells is hypothesized to change with carbonate ion concentration [ ], due to substitution of sulfate for carbonate ions in the calcite crystal lattice. Hence S/Ca values of foraminiferal carbonate shells are expected to reflect sea water carbonate chemistry. To generate a proxy calibration linking the incorporation of S into foraminiferal calcite to carbonate chemistry, we cultured juvenile clones of the larger benthic species Amphistegina gibbosa and Sorites marginalis over a 350–1200 ppm range of pCO2 values, corresponding to a range in [ ] of 93 to 211 μmol/kg. We also investigated the potential effect of salinity on S incorporation by culturing juvenile Amphistegina lessonii over a large salinity gradient (25–45). Results show S/CaCALCITE is not impacted by salinity, but increases with increasing pCO2 (and thus decreasing [ ] and pH), indicating S incorporation may be used as a proxy for [ ]. Higher S incorporation in high-Mg species S. marginalis suggests a superimposed biomineralization effect on the incorporation of S. Microprobe imaging reveals co-occurring banding of Mg and S in Amphistegina lessonii, which is in line with a strong biological control and might explain higher S incorporation in high Mg species. Provided a species-specific calibration is available, foraminiferal S/Ca values might add a valuable new tool for reconstructing past ocean carbonate chemistry.

Continue reading ‘Sulfur in foraminiferal calcite as a potential proxy for seawater carbonate ion concentration’

Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa

Coral reefs are threatened by global and local stressors such as ocean acidification and trace metal contamination. Reliable early warning monitoring tools are needed to assess and monitor coral reef health. Symbiont-bearing foraminifers (Amphistegina gibbosa) were kept under ambient conditions (no sea water acidification and no copper addition) or exposed to combinations of different levels of sea water pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved copper (measured: 1.0, 1.6, 2.3 and 3.2 µg L−1) in a mesocosm system. After 10- and 25-d exposure, foraminifers were analyzed for holobiont Ca2+-ATPase activity, bleaching, growth and mortality. Enzyme activity was inhibited in foraminifers exposed to pH 7.2 and 3.2 µg L−1 Cu for 25 d. Bleaching frequency was also higher at pH 7.2 combined with copper addition. There was no significant effect of sea water acidification and copper addition on mortality. However, test size was smaller in foraminifers exposed to copper, with a positive interactive effect of sea water acidification. These findings can be explained by the higher availability of free copper ions at lower water pH. This condition would increase Cu competition with Ca2+ for the binding sites on the organism, thus inhibiting Ca2+-ATPase activity and affecting the organism’s overall fitness. Findings reported here suggest that key processes in A. gibbosa, such as calcification and photosynthesis, are affected by the combined effect of global (sea water acidification) and local (copper contamination) stressors. Considering the experimental conditions employed (mesocosm system, possible ocean acidification scenarios, low copper concentrations, biomarkers of ecological relevance and chronic exposure), our findings support the use of foraminifera and biomarkers analyzed in the present study as reliable tools to detect and monitor the ecological impacts of multiple stressors in coral reef environments.

Continue reading ‘Combined effects of sea water acidification and copper exposure on the symbiont-bearing foraminifer Amphistegina gibbosa’

Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

The Southern Ocean provides a vital service by absorbing about one sixth of humankind’s annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC) on particles filtered from surface seawater into two size fractions: 50–1000 μm to capture foraminifera (the most important biogenic carbonate forming zooplankton) and 1–50 μm to capture coccolithophores (the most important biogenic carbonate forming phytoplankton). Ancillary measurements of biogenic silica (BSi) and particulate organic carbon (POC) provided context, as estimates of the abundance of diatoms (the most abundant phytoplankton in polar waters), and total microbial biomass, respectively. Results for 9 transects from Australia to Antarctica in 2008–2015 showed low levels of PIC compared to northern hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in Subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in Subantarctic waters. NASA satellite ocean colour based PIC estimates were in reasonable agreement with (though somewhat higher than) the shipboard results in Subantarctic waters, but greatly over-estimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM) shows coccolithophores as overly restricted to Subtropical and northern Subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. Poleward decrease in pH is small and while calcite saturation decreases strongly southward it remains well above saturation (> 2). Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

Continue reading ‘Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment’

Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions

The B/Ca ratio of planktic foraminiferal calcite, a proxy for the surface ocean carbonate system, displays large negative excursions during the Paleocene-Eocene Thermal Maximum (PETM, 55.9 Ma), consistent with rapid ocean acidification at that time. However, the B/Ca excursion measured at the PETM exceeds a magnitude that modern pH-calibrations can explain. Numerous other controls on the proxy have been suggested, including foraminiferal growth rate and the total concentration of Dissolved Inorganic Carbon (DIC). Here we present new calibrations for B/Ca vs. the combined effects of pH and DIC in the symbiont-bearing planktic foraminifer Orbulina universa, grown in culture solutions with simulated Paleocene seawater elemental composition (high [Ca], low [Mg], and low [B]T). We also investigate the isolated effects of low seawater total boron concentration ([B]T), high [Ca], reduced symbiont photosynthetic activity, and average shell growth rate on O. universa B/Ca in order to further understand the proxy systematics and to determine other possible influences on the PETM records. We find that average shell growth rate does not appear to determine B/Ca in high calcite saturation experiments. In addition, our “Paleocene” calibration shows higher sensitivity than the modern calibration at low [B(OH)4-]/DIC. Given a large DIC pulse at the PETM, this amplification of the B/Ca response can more fully explain the PETM B/Ca excursion. However, further calibrations with other foraminifer species are needed to determine the range of foraminifer species-specific proxy sensitivities under these conditions for quantitative reconstruction of large carbon cycle perturbations.

Continue reading ‘Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,013,357 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book