Posts Tagged 'protists'

The influence of paleo-seawater chemistry on foraminifera trace element proxies and their application to deep-time paleo-reconstructions

The fossilized remains of the calcite shells of foraminifera comprise one of the most continuous and reliable records of the geologic evolution of climate and ocean chemistry. The trace elemental composition of foraminiferal shells has been shown to systematically respond to seawater properties, providing a way to reconstruct oceanic conditions throughout the last 170 million years. In particular, the boron/calcium ratio of foraminiferal calcite (B/Ca) is an emerging proxy for the seawater carbonate system, which plays a major role in regulating atmospheric CO2 and thus Earth’s climate. In planktic foraminifera, previous culture studies have shown that shell B/Ca increases with seawater pH, which is hypothesized to result from increased incorporation of borate ion (B(OH)4 -) at high pH; increasing pH increases the [B(OH)4 -] of seawater. However, further experiments showed that B/Ca responds to both pH and seawater dissolved inorganic carbon concentration (DIC), leading to the hypothesis that B/Ca is driven by the [B(OH)4 -/DIC] ratio of seawater. Because pH (and thus B(OH)4 -) can be determined via the δ11B composition of foraminiferal calcite, B/Ca therefore may provide an opportunity to determine seawater DIC in the geologic past.

Continue reading ‘The influence of paleo-seawater chemistry on foraminifera trace element proxies and their application to deep-time paleo-reconstructions’

Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions

Global degradation of coral reefs has increased the urgency of identifying stress-tolerant coral populations, to enhance understanding of the biology driving stress tolerance, as well as identifying stocks of stress-hardened populations to aid reef rehabilitation. Surprisingly, scientists are continually discovering that naturally extreme environments house established coral populations adapted to grow within extreme abiotic conditions comparable to seawater conditions predicted over the coming century. Such environments include inshore mangrove lagoons that carry previously unrecognised ecosystem service value for corals, spanning from refuge to stress preconditioning. However, the existence of such hot-spots of resilience on the Great Barrier Reef (GBR) remains entirely unknown. Here we describe, for the first time, 2 extreme GBR mangrove lagoons (Woody Isles and Howick Island), exposing taxonomically diverse coral communities (34 species, 7 growth morphologies) to regular extreme low pH (<7.6), low oxygen (7°C) conditions. Coral cover was typically low (0.5 m diameter), with net photosynthesis and calcification rates of 2 dominant coral species (Acropora millepora, Porites lutea) reduced (20-30%), and respiration enhanced (11-35%), in the mangrove lagoon relative to adjacent reefs. Further analysis revealed that physiological plasticity (photosynthetic ‘strategy’) and flexibility of Symbiodiniaceae taxa associations appear crucial in supporting coral capacity to thrive from reef to lagoon. Prevalence of corals within these extreme conditions on the GBR (and elsewhere) increasingly challenge our understanding of coral resilience to stressors, and highlight the need to study unfavourable coral environments to better resolve mechanisms of stress tolerance.

Continue reading ‘Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions’

Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification

Foraminifera are expected to be particularly susceptible to future changes in ocean carbonate chemistry as a function of increased atmospheric CO2. Studies in an experimental recirculating seawater system were performed with a dominant benthic foraminiferal species collected from intertidal mudflats. We investigated the experimental impacts of ocean acidification on survival, growth/calcification, morphology and the biometric features of a calcareous species Elphidium williamsoni. Foraminifera were exposed for 6 weeks to four different pH treatments that replicated future scenarios of a high CO2 atmosphere resulting in lower seawater pH. Results revealed that declining seawater pH caused a decline in foraminiferal survival rate and growth/calcification (mainly through test weight reduction). Scanning electron microscopy image analysis of live specimens at the end of the experimental period show changes in foraminiferal morphology with clear signs of corrosion and cracking on the test surface, septal bridges, sutures and feeding structures of specimens exposed to the lowest pH conditions. These findings suggest that the morphological changes observed in shell feeding structures may serve to alter: (1) foraminiferal feeding efficiency and their long-term ecological competitiveness, (2) the energy transferred within the benthic food web with a subsequent shift in benthic community structures and (3) carbon cycling and total CaCO3 production, both highly significant processes in coastal waters. These experimental results open-up the possibility of modelling future impacts of ocean acidification on both calcification and dissolution in benthic foraminifera within mid-latitude intertidal environments, with potential implications for understanding the changing marine carbon cycle.

Continue reading ‘Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification’

Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis

Dinoflagellates from the Symbiodiniaceae family and corals have an ecologically important endosymbiotic relationship. Scleractinian corals cannot survive for long periods without their symbionts. These algae, also known as zooxanthellae, on the other hand, thrives outside the coral cells. The free-living populations of zooxanthellae are essential for the resilience of the coral to environmental stressors such as temperature anomalies and ocean acidification. Yet, little is known about how ocean acidification may affect the free-living zooxanthellae. In this study we aimed to test morphological, physiological and biochemical responses of zooxanthellae from the Symbiodinium genus isolated from the coral Mussismilia braziliensis, endemic to the Brazilian coast, to acidification led by increased atmospheric CO2. We tested whether photosynthetic yield, cell ultrastructure, cell density and lipid profile would change after up to 16 days of exposure to pH 7.5 in an atmospheric pCO2 of 1633 μatm. Photosynthetic yield and cell density were negatively affected and chloroplasts showed vesiculated thylakoids, indicating morphological damage. Moreover, Symbiodinium fatty acid profile drastically changed in acidified condition, showing lower polyunsaturated fatty acids and higher saturated fatty acids contents, when compared to the control, non-acidified condition. These results show that seawater acidification as an only stressor causes significant changes in the physiology, biochemistry and ultrastructure of free-living Symbiodinium.

Continue reading ‘Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis’

Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients

Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of their calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for several taxa. Thus, to expand the potential scope of application of this proxy, we report data for 7 different species of planktonic foraminifera from sediment core-tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or w/o sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii and Globorotalia tumida, including for unstudied coretops and species. The sensitivity of δ11Bcarbonate to δ11Bborate (eg. Δδ11Bcarbonate/Δδ11Bborate) in core-tops is close to unity. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments, likely caused by light limitation for symbiont-bearing foraminifera. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air-sea equilibrium and others that are out of equilibrium with the atmosphere. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pump.

Continue reading ‘Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients’

Sensitivity of planktic foraminiferal test bulk density to ocean acidification

The anthropogenic CO2 accumulating in the ocean is lowering seawater carbonate ion concentration and may reduce calcification rates of marine calcareous organisms. Several proxies based on test weights of planktic foraminifera have been used to evaluate the impact of ocean acidification on these organisms. Unfortunately, because of the absence of a method to evaluate the bulk density of a test, the impact of seawater carbonate chemistry on test calcification is still not fully understood. In this study, we measured bulk densities of living Globigerina bulloides (planktic foraminifera) tests with an X-ray micro-computed tomography (XMCT) scanner and compared them with ambient seawater characteristics. Results demonstrated that test bulk densities were controlled by ambient seawater carbonate ion concentrations and that changes of test bulk densities were accompanied by changes in micron to submicron scale porosity of internal ultrastructure. These results suggest that alteration of the bulk density of foraminiferal tests due to acidification of ambient seawater can be directly observed by XMCT scanning. A useful metric of calcification intensity would therefore be physical measurements of test densities with XMCT.

Continue reading ‘Sensitivity of planktic foraminiferal test bulk density to ocean acidification’

Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates

High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNF), nano- and picophytoplankton, and prokaryotes in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥ 634 μatm, HNF abundance was reduced, coinciding with significantly increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNF. Nanophytoplankton abundance was significantly elevated in the 634 and 953 μatm treatments, suggesting that moderate increases in CO2 may stimulate growth. Changes in predator-prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean. Based on these results, it is likely that the phytoplankton community composition in these waters will shift to communities dominated by prokaryotes, nano- and picophytoplankton. This may intensify organic matter recycling in surface waters, leading to a decline in carbon flux, as well as a reducing the quality and quantity of food available to higher trophic organisms.

Continue reading ‘Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,645 hits


Ocean acidification in the IPCC AR5 WG II

OUP book