Posts Tagged 'protists'

Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics

Highlights

  • In the northern Barents Sea there is a seasonal pattern of production and size distribution of planktonic foraminifers and pteropods, increasing from winter (March) to summer (July–August) and late autumn (December).
  • In general, pteropods dominate over planktonic foraminifera in the Arctic influenced stations.
  • In the study area, pteropods contribute the most (>80%) to carbon standing stocks and export production.
  • The highest values of carbon standing stocks and export production were found in the seasonal ice zone during all seasons.

Abstract

The Barents Sea is presently undergoing rapid warming and the sea-ice edge and the productive zones are retreating northward at accelerating rates. Planktonic foraminifers and shelled pteropods are ubiquitous marine calcifiers that play an important role in the carbon budget and being particularly sensitive to ocean biogeochemical changes and ocean acidification. Their distribution at high latitudes have rarely been studied, and usually only for the summer season. Here we present results of their distribution patterns in the upper 300 m in the water column (individuals m−3), protein content and size distribution on a seasonal basis to estimate their inorganic and organic carbon standing stocks (µg m−3) and export production (mg m−2 d−1). The study area constitutes a latitudinal transect in the northern Barents Sea from 76˚ N to 82˚ N including seven stations through both Atlantic, Arctic, and Polar surface water regimes and the marginal and seasonal sea-ice zones. The transect was sampled in 2019 (August and December) and 2021 (March, May, and July). The highest carbon standing stocks and export production were found at the Polar seasonally sea-ice covered shelf stations with the contribution from shelled pteropods being significantly higher than planktonic foraminifers during all seasons. We recorded the highest production of foraminifers and pteropods in summer (August 2019 and July 2021) and autumn (December 2019) followed by spring (May 2021), and the lowest in winter (March 2021).

Continue reading ‘Seasonality of marine calcifiers in the northern Barents Sea: spatiotemporal distribution of planktonic foraminifers and shelled pteropods and their contribution to carbon dynamics’

The combined effect of pH and dissolved inorganic carbon concentrations on the physiology of plastidic ciliate Mesodinium rubrum and its cryptophyte prey

Ocean acidification is caused by rising atmospheric partial pressure of CO2 (pCO2) and involves a lowering of pH combined with increased concentrations of CO2 and dissolved in organic carbon in ocean waters. Many studies investigated the consequences of these combined changes on marine phytoplankton, yet only few attempted to separate the effects of decreased pH and increased pCO2. Moreover, studies typically target photoautotrophic phytoplankton, while little is known of plastidic protists that depend on the ingestion of plastids from their prey. Therefore, we studied the separate and interactive effects of pH and DIC levels on the plastidic ciliate Mesodinium rubrum, which is known to form red tides in coastal waters worldwide. Also, we tested the effects on their prey, which typically are cryptophytes belonging to the Teleaulax/Plagioslemis/Geminigera species complex. These cryptophytes not only serve as food for the ciliate, but also as a supplier of chloroplasts and prey nuclei. We exposed M. rubrum and the two cryptophyte species, T. acuta, T. amphioxeia to different pH (6.8 – 8) and DIC levels (∼ 6.5 – 26 mg C L-1) and assessed their growth and photosynthetic rates, and cellular chlorophyll a and elemental contents. Our findings did not show consistent significant effects across the ranges in pH and/or DIC, except for M. rubrum, for which growth was negatively affected only by the lowest pH of 6.8 combined with lower DIC concentrations. It thus seems that M. rubrum is largely resilient to changes in pH and DIC, and its blooms may not be strongly impacted by the changes in ocean carbonate chemistry projected for the end of the 21th century.

Continue reading ‘The combined effect of pH and dissolved inorganic carbon concentrations on the physiology of plastidic ciliate Mesodinium rubrum and its cryptophyte prey’

Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach

Ocean acidification, warmer temperatures, and the expansion of hypoxic zones in coastal areas are direct consequences of the increase in anthropogenic activities. However, so far, the combined effects of these stressors on calcium carbonate-secreting marine microorganisms – foraminifera are complex and poorly understood. This study reports the foraminiferal survival behavior, and geochemical trace elements incorporation measured from the shells of living cultured benthic foraminifera from the Gullmar fjord (Sweden) after exposure to warming, acidification, and hypoxic conditions. An experimental set-up was designed with two different temperatures (fjord’s in-situ 9 ˚C and 14 ˚C), two different oxygen concentrations (oxic versus hypoxic), and three different pH (control, medium, and low pH based on the IPCC scenario for the year 2100). Duplicate aquariums, meaning aquariums displaying the same conditions and same number of species, were employed for the controls and the two lower pH conditions at both temperatures. The stability of the aquariums was ensured by regular measurement of the water parameters and confirmed by statistical analysis. The species Ammonia confertitesta’s (T6) survival (CTB-labeled), shell calcification (calcein-labeled), and geochemical analyses (laser-ablation ICP-MS) were investigated at the end of the experimental period (48 days). Investigated trace elements (TE) ratios were Mg/Ca, Mn/Ca, Ba/Ca, and Sr/ Ca. Results show that A. confertitesta (T6) calcified chambers in all the experimental conditions except for the most severe combination of stressors (i.e., warm, hypoxic, low pH). Survival rates varied by up to a factor of two between duplicates for all conditions suggesting that foraminiferal response may not solely be driven by environmental conditions but also by internal or confounding factors (e.g., physiological stress). A large variability of all the TE/Ca values of foraminifera growing at low pH is observed suggesting that A. confertitesta (T6) may struggle to calcify in these conditions. Thus, this study demonstrates the vulnerability of a resilient species to the triple-stressor scenario in terms of survival, calcification, and trace element incorporation. Overall, the experimental set-up yielded coherent results compared to previous studies in terms of ontogeny, trace elements ratios, and partition coefficient making it advantageous for environmental reconstructions. 

Continue reading ‘Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach’

Anthropogenic acidification of surface waters drives decreased biogenic calcification in the Mediterranean Sea

Anthropogenic carbon dioxide emissions directly or indirectly drive ocean acidification, warming and enhanced stratification. The combined effects of these processes on marine planktic calcifiers at decadal to centennial timescales are poorly understood. Here, we analyze size normalized planktic foraminiferal shell weight, shell geochemistry, and supporting proxies from 3 sediment cores in the Mediterranean Sea spanning several centuries. Our results allow us to investigate the response of surface-dwelling planktic foraminifera to increases in atmospheric carbon dioxide. We find that increased anthropogenic carbon dioxide levels led to basin wide reductions in size normalized weights by modulating foraminiferal calcification. Carbon (δ13C) and boron (δ11B) isotopic compositions also indicate the increasing influence of fossil fuel derived carbon dioxide and decreasing pH, respectively. Alkenone concentrations and test accumulation rates indicate that warming and changes in biological productivity are insufficient to offset acidification effects. We suggest that further increases in atmospheric carbon dioxide will drive ongoing reductions in marine biogenic calcification in the Mediterranean Sea.

Continue reading ‘Anthropogenic acidification of surface waters drives decreased biogenic calcification in the Mediterranean Sea’

Impact of dissolved CO2 on calcification in two large, benthic foraminiferal species

Rising atmospheric CO2 shifts the marine inorganic carbonate system and decreases seawater pH, a process often abbreviated to ‘ocean acidification’. Since acidification decreases the saturation state for crystalline calcium carbonate (e.g., calcite and aragonite), rising dissolved CO2 levels will either increase the energy demand for calcification or reduce the total amount of CaCO3 precipitated. Here we report growth of two large benthic photosymbiont-bearing foraminifera, Heterostegina depressa and Amphistegina lessonii, cultured at four different ocean acidification scenarios (400, 700, 1000 and 2200 ppm atmospheric pCO2). Using the alkalinity anomaly technique, we calculated the amount of calcium carbonate precipitated during the incubation and found that both species produced the most carbonate at intermediate CO2 levels. The chamber addition rates for each of the conditions were also determined and matched the changes in alkalinity. These results were complemented by micro-CT scanning of selected specimens to visualize the effect of CO2 on growth. The increased chamber addition rates at elevated CO2 concentrations suggest that both foraminifera species can take advantage of the increased availability of the inorganic carbon, despite a lower saturation state. This adds to the growing number of reports showing the variable response of foraminifera to elevated CO2 concentrations, which is likely a consequence of differences in calcification mechanisms.

Continue reading ‘Impact of dissolved CO2 on calcification in two large, benthic foraminiferal species’

Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions

The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions.Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma’s offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction.

Continue reading ‘Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions’

Constraining oceanic carbonate chemistry evolution during the Cretaceous-Paleogene transition: combined benthic and planktonic calcium isotope records from the equatorial Pacific Ocean

The Mesozoic-Cenozoic transition is a period of biogeochemical cycle perturbations. The strongest of them is the Cretaceous-Paleogene boundary (K-Pg) crisis, characterized by one of the most important extinctions of planktonic marine calcifiers in Earth’s history. One of the primary drivers of this biocalcification crisis is thought to be the increase in atmospheric CO2 concentration and ocean acidification triggered by the Chicxulub Impact, and/or Deccan volcanism. Because it reflects changes of the calcium cycle and/or depends on parameters of the carbonate system, the Ca isotope composition of carbonate minerals precipitated from seawater (44/40Ca) offers the potential to reconstruct some of the environmental changes that occurred. Here we present new high-resolution planktonic and benthic foraminiferal 44/40Ca, 18O, 13C, and Sr/Ca records across the K-Pg transition from Shatsky rise (Leg 198; ODP Site 1209, Hole C). The 44/40Ca record displays a succession of rapid shifts of ca. ‰−0.4‰ across the K-Pg transition. They are similar though not identical between the planktonic and benthic records. These shifts took place on a timescale significantly shorter than the residence time of Ca in the oceans and are therefore unlikely to result from global disequilibrium in the oceanic Ca budget. Instead, changes in the fractionation factor between carbonate minerals and seawater in response to changes in precipitation rates may explain the observed 44/40Ca and Sr/Ca record. The benthic and planktonic 44/40Ca records show a late Maastrichtian and an early Danian negative excursions best explained by a succession of episodes of ocean alkalinity increase related to increased continental weathering caused by CO2 emissions from Deccan volcanism and the aftermath of the K-Pg biocalcification crisis. Carbonate compensation via carbonate sediment dissolution, biological carbonate compensation via reduction of biocalcification, and/or an increase in continental weathering must have occurred to offset the excess CO2, ultimately resulting in rapid changes in ocean carbonate chemistry, in combination with reduced surface alkalinity export in response to the early Paleogene planktonic biomineralization crisis.

Continue reading ‘Constraining oceanic carbonate chemistry evolution during the Cretaceous-Paleogene transition: combined benthic and planktonic calcium isotope records from the equatorial Pacific Ocean’

Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification

Plankton phototrophy consumes CO2, increasing seawater pH, while heterotrophy does the converse. Elevation of pH (>8.5) during coastal blooms becomes increasingly deleterious for plankton. Mixoplankton, which can be important bloom-formers, engage in both photoautotrophy and phagoheterotrophy; in theory, this activity could create a relatively stable pH environment for plankton growth. Using a systems biology modelling approach, we explored whether different mixoplankton functional groups could modulate the environmental pH compared to the extreme activities of phototrophic phytoplankton and heterotrophic zooplankton. Activities by most mixoplankton groups do not stabilize seawater pH. Through access to additional nutrient streams from internal recycling with phagotrophy, mixoplankton phototrophy is enhanced, elevating pH; this is especially so for constitutive and plastidic specialist non-constitutive mixoplankton. Mixoplankton blooms can exceed the size of phytoplankton blooms; the synergisms of mixoplankton physiology, accessing nutrition via phagotrophy as well as from inorganic sources, enhance or augment primary production rather than depressing it. Ocean acidification will thus enable larger coastal mixoplankton blooms to form before basification becomes detrimental. The dynamics of such bloom developments will depend on whether the mixoplankton are consuming heterotrophs and/or phototrophs and how the plankton community succession evolves.

Continue reading ‘Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification’

Benthic foraminiferal response to the Aptian−Albian carbon cycle perturbation in the Atlantic Ocean

A planktic foraminiferal mass extinction, coeval with the major carbon cycle perturbation of Oceanic Anoxic Event (OAE) 1b, occurred at the Aptian−Albian boundary interval (AABI). However, the scarcity of high-resolution records across the AABI hampers an assessment of the impacts of OAE 1b on deep-water benthic foraminiferal assemblages. Here we present high-resolution benthic foraminiferal census counts at Deep Sea Drilling Project (DSDP) Site 511 (southern South Atlantic Ocean) and Ocean Drilling Program (ODP) Site 1049 (western subtropical North Atlantic Ocean) over the AABI. Our records at these bathyal sites provide conclusive evidence that there was no benthic foraminiferal extinction at the Aptian−Albian boundary, although marked reorganizations of relative abundances occurred. During the latest Aptian, cyclic increases in the abundance of infaunal species at both sites point to repeated pulses of reduced bottom water oxygenation and increased organic carbon flux to the ocean floor. Additionally, agglutinated and weakly calcified benthic foraminiferal species were relatively abundant during the latest Aptian, suggesting deep-water carbonate ion depletion in the Atlantic Ocean, although we did not identify signs of carbonate dissolution at these relatively shallow sites. At Site 511, abundances of infaunal foraminifera increased in tandem with the negative carbonate carbon isotope (δ13Ccarb) excursion of the Kilian sub-event within OAE 1b, suggesting decreased bottom water ventilation and increased organic carbon flux to the ocean floor during the sub-event. Bottom water ventilation and carbonate ion saturation improved during the earliest Albian in the Atlantic Ocean, followed by high-amplitude oscillations, as suggested by abundance trends of heavily calcified epifaunal foraminifera at Sites 511 and 1049.

Continue reading ‘Benthic foraminiferal response to the Aptian−Albian carbon cycle perturbation in the Atlantic Ocean’

Planktic foraminiferal resilience to environmental change associated with the PETM

Carbonate-forming organisms play an integral role in the marine inorganic carbon cycle, yet the links 21 between carbonate production and the environment are insufficiently understood. Carbonate production is driven by the abundance of calcifiers, and the amount of calcite produced by each individual (their size and weight). Here we investigate how foraminiferal carbonate production changes in the Atlantic, Pacific and Southern Ocean in response to a 4-5°C warming and a 0.3 surface ocean pH reduction during the Palaeocene-Eocene Thermal Maximum (PETM). To put these local data into a global context, we apply a trait-based plankton model (ForamEcoGEnIE) to the geologic record for the first time. Our data illustrates negligible change in the assemblage test size and abundance of foraminifers. ForamEcoGEnIE resolves small reductions in size and biomass, but these are short-lived. The response of foraminifersshowsspatial variability linked to a warming-induced poleward migration and suggested differences in nutrient availability between open-ocean and shelf locations. Despite low calcite saturation at high latitudes, we reconstruct stable foraminiferal size-normalised weight. Based on these findings, we postulate that sea surface warming had a greater impact on foraminiferal carbonate production during the PETM than ocean acidification. Changes in the composition of bulk carbonate suggest a higher sensitivity of coccolithophores to environmental change during the PETM than foraminifers.

Continue reading ‘Planktic foraminiferal resilience to environmental change associated with the PETM’

500 million years of foraminiferal calcification

Ongoing ocean acidification affects marine calcification, although the scope and magnitude of this impact is essentially unknown. Here, we investigate the evolutionary origin of shell building in foraminifera to understand the long-term interplay between ocean carbon chemistry and calcification. Our analysis of shell chemical composition reveals multiple, independent origins for foraminiferal calcification throughout the Phanerozoic. Differences between orders reflect the different physiological controls employed by foraminifera to take up Ca2+ and inorganic carbon from seawater for CaCO3 precipitation. With the long timespan involved, variability in seawater chemistry provided contrasting environments for calcification to arise, resulting in the diverse calcification strategies that exist today. This, in turn, explains the opposite responses of shell building to carbon perturbations. Our results call for adopting an evolutionary perspective when predicting the impact of perturbations on marine calcification and thereby, on the global carbon cycle.

Continue reading ‘500 million years of foraminiferal calcification’

Characteristics of meiofaunal community in the subtidal zone near Hupo, anticipating ocean acidification in the East Sea of Korea

This study aimed to investigate the meiofauna community characteristics in coastal waters highly affected by ocean acidification. Therefore, the meiofauna communities in the coastal waters of Hupo in Uljin-gun, a county bordering the East Sea of Korea, were monitored over five years. During the study period, the mean abundance of total meiofauna communities expressed in population density was 614.4 individuals (Inds.)/10 cm2, similar to the reported meiofauna abundance in the subtidal zone in the Yellow Sea of Korea, an area with sandy sedimentary facies. The most dominant taxa were nematodes (65–70%) and harpacticoids (7–20%); these two taxa accounted for approximately 80% of the total meiofauna abundance. Among the stations studied, station (St.) 10 showed the lowest seawater pH value, and in 2011, when the measured pH was the lowest at 7.82, St. 10 showed the lowest abundance values for total meiofauna and harpacticoids in the 5-year period. To examine the effect of ocean acidification on meiofauna communities at the species level, species of nematodes, the most dominant taxon, were analyzed. The results indicated that the number of nematode species at St. 10 in 2009, when the pH value was low, was 8, which was very low compared to that in the other years of the study period. According to the feeding type, epistrate feeders (2A) accounted for a remarkably high proportion at St. 10, which showed a low pH. This study provides various data on meiobenthic community characteristics to understand the effects of ocean acidification on coastal ecosystems.

Continue reading ‘Characteristics of meiofaunal community in the subtidal zone near Hupo, anticipating ocean acidification in the East Sea of Korea’

Explosive volcanism periodicity past cycles record within the last 0.8 Mya evidenced by tephra and benthic foraminifera of IODP Hole U1485AA (Exp. 363 WPWP)

Volcanic eruptions with increase in the amount of carbon dioxide (CO2) and other gases are responsible for the extinction of many species because of decreased pH and carbonate availability which creates ocean acidification. Here we show how benthic foraminifera have evolved, by studying sediments from U1485A (1145 m water depth) core in the Papua New Guinea (PNG) collected during IODP Expedition 363 in the Western Pacific Warm Pool (WPWP), one of the warmest marine waters of the world. High-stressed environments dominated by low diversity of opportunistic species after volcanic activity was detected by the presence of tephra and volcanic ashes within the last 0.8 Mya. The decrease in the diversity patterns show an inverse correlation to the presence of tephra and ash right after Pleistocene volcanic eruptions in the past. Deep-water fauna is dominated by Cibicidoides pachiderma, from the early Oligocene through the Pleistocene, Uvigerina hispida from early Miocene through Pleistocene, U. prosbocidae from late Oligocene through Pleistocene, and an outer neritic upper bathyal Uvigerina mediterranea from high salinities, warm waters, low dissolved oxygen, and high organic matter. Bolivinita quadrilatera characteristic of 200-500m depth, Bolivina robusta from 3 to 900m, and the Rotalinoides compressiusculus, a shallow warm water species, from 2-37m depth show higher diversity peaks in interglacial cycles. High-stress conditions with mass extinction after volcanic eruptions leads to enhanced weathering, global warming and cooling afterwards, and ocean acidification, resulting in a crisis in the marine environment in terms of carbonate. Diversity gradients suggested that foraminiferal species responded to the cyclic pulses of volcanic eruptions, and its unstable ecological conditions created by the increase in the temperature and CO2. Here we show that tephra layers and ash record a periodicity of explosive volcanism within the last 0.8 Myr maintaining a strong 100 kyr periodicity, and that earth’s orbital cycles might trigger peaks of volcanic eruptions 41,000-year cycle.

Continue reading ‘Explosive volcanism periodicity past cycles record within the last 0.8 Mya evidenced by tephra and benthic foraminifera of IODP Hole U1485AA (Exp. 363 WPWP)’

The Paleocene-Eocene transition in the Gulf of Guinea: evidence of the Petm in the Douala Basin, Cameroon

The Paleocene-Eocene Thermal Maximum (PETM) was identified for the first time in two sections (Bongue and Dibamba) from the Douala sub-basin located in the Gulf of Guinea, Cameroon. This discovery was based on a multi-disciplinary approach including benthic and planktic foraminifera, ostracods, major and trace elements, mercury, carbon stable isotope (δ13C values), total organic carbon (TOC), whole-rock and clay mineralogy. A combination of lithology, microfossil assemblage, and carbon isotope data indicate zone P5 and the top of the Paleocene enabling the definition of the Paleocene-Eocene boundary (PEB). A negative carbon-isotope excursion (CIE) spanning from the uppermost Paleocene deposits to the earliest Eocene sediments (PETM interval) shows a shift in δ13Corg values of 1.5 ‰ in Bongue and 3.0 ‰ in Dibamba. In both sections, this interval is affected by widespread acidification, as revealed by carbonate dissolution and microfossil preservation (i.e., species are dwarfed, broken, thin shelled, and with holes). The very low carbonate content and the scarcity of microfauna indicate the severity of acidification during the PETM, especially in the early Eocene where only one species was identified (Igorina broedermanni). Mercury anomalies, TOC contents, and trace element concentration ratios, point to volcanic activity linked to the Cameroon Volcanic Line (CVL) intrusive magma, and a decrease in productivity prior to the PETM. In addition to climate change, our geochemical and mineralogical data support the hypothesis that other environmental perturbations such as an increase in productivity and detrital input, as well as a decrease in bottom water oxygenation occurred during the PETM in the Douala sub-basin.

Continue reading ‘The Paleocene-Eocene transition in the Gulf of Guinea: evidence of the Petm in the Douala Basin, Cameroon’

Foraminiferal assemblages and test characteristics associated with natural low pH waters at Puerto Morelos reef lagoon springs, QR Mexico

Ocean acidification is expected to negatively affect many ecologically important organisms. Here we explored the response of Caribbean benthic foraminiferal assemblages to naturally discharging low-pH waters similar to expected future projections for the end of the 21st century. At low pH (~7.7 pH units) and low calcite saturation, agglutinated and symbiont-bearing species were relatively more abundant, indicating higher resistance to potential carbonate chemistry changes. Diversity and other taxonomical metrics declined steeply with decreasing pH, despite exposure of this ecosystem for millennia to low pH conditions, suggesting that tropical foraminifera communities will be negatively impacted under acidification scenarios SSP3-7.0 and SSP5-8.5. The species Archaias angulatus, a major contributor to sediment production in the Caribbean, was able to calcify at conditions more extreme than those projected for the late 21st century (7.1 pH units), but the calcified tests were of lower density than those exposed to higher-pH ambient conditions (7.96 pH units), indicating that reef foraminiferal carbonate budget might decrease. Smaller foraminifera were highly sensitive to decreasing pH and our results demonstrate their potential as indicators to monitor increasing OA conditions.

Continue reading ‘Foraminiferal assemblages and test characteristics associated with natural low pH waters at Puerto Morelos reef lagoon springs, QR Mexico’

Sr/Ca in foraminiferal calcite as a proxy for calcifying fluid composition

Foraminifera are unicellular organisms that inhabit the oceans. They play an important role in the global carbon cycle and record valuable paleoclimate information through the uptake of trace elements such as strontium (Sr) into their calcitic (CaCO3) shells. Understanding how foraminifera control their internal fluid composition to make CaCO3 is important for predicting their response to ocean acidification and for reliably interpreting the chemical and isotopic compositions of their shells. Here, we model foraminiferal calcification and strontium partitioning in the benthic foraminifera Cibicides wuellerstorfi and Cibicidoides mundulus based on insights from inorganic calcite experiments. The model reconciles inter-ocean and taxonomic differences in benthic foraminifer Sr/Ca partitioning relationships and enables us to reconstruct the composition of the calcifying fluid. We find that Sr partitioning and mineral growth rates of foraminiferal calcite are not significantly affected by changes in external seawater pH (within 7.8–8.1) and [DIC] (within 2100–2300 µmol/kg) due to a regulated calcite saturation state at the site of shell formation. Such homeostasis of the calcifying fluid could explain why foraminifera have been resilient to changes in ocean carbonate chemistry for more than 500 million years. Nevertheless, our model indicates that past foraminiferal DSr values were lower than its modern value due to overall lower ocean pH and higher seawater temperature during the early and middle Cenozoic.

Continue reading ‘Sr/Ca in foraminiferal calcite as a proxy for calcifying fluid composition’

Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era (update)

The Mediterranean Sea sustains a rich and fragile ecosystem currently threatened by multiple anthropogenic impacts that include, among others, warming, pollution, and changes in seawater carbonate speciation associated to increasing uptake of atmospheric CO2. This environmental change represents a major risk for marine calcifiers such as planktonic foraminifera, key components of pelagic Mediterranean ecosystems and major exporters of calcium carbonate to the sea floor, thereby playing a major role in the marine carbon cycle. In this study, we investigate the response of planktic foraminifera calcification in the northwestern Mediterranean Sea on different timescales across the industrial era. This study is based on data from a 12-year-long sediment trap record retrieved in the in the Gulf of Lions and seabed sediment samples from the Gulf of Lions and the promontory of Menorca. Three different planktic foraminifera species were selected based on their different ecology and abundance: Globigerina bulloidesNeogloboquadrina incompta, and Globorotalia truncatulinoides. A total of 273 samples were weighted in both sediment trap and seabed samples.

The results of our study suggest substantial different seasonal calcification patterns across species: G. bulloides shows a slight calcification increase during the high productivity period, while both N. incompta and G. truncatulinoides display a higher calcification during the low productivity period. The comparison of these patterns with environmental parameters indicate that controls on seasonal calcification are species-specific. Interannual analysis suggests that both G. bulloides and N. incompta did not significantly reduce their calcification between 1994 and 2005, while G. truncatulinoides exhibited a constant and pronounced increase in its calcification that translated in an increase of 20 % of its shell weight. The comparison of these patterns with environmental data reveals that optimum growth conditions affect positively and negatively G. bulloides and G. truncatulinoides calcification, respectively. Sea surface temperatures (SSTs) have a positive influence on N. incompta and G. truncatulinoides calcification, while carbonate system parameters appear to affect positively the calcification of three species in the Gulf of Lions throughout the 12-year time series.

Finally, comparison between sediment trap data and seabed sediments allowed us to assess the changes of planktic foraminifera calcification during the late Holocene, including the pre-industrial era. Several lines of evidence indicate that selective dissolution did not bias the results in any of our data sets. Our results showed a weight reduction between pre-industrial and post-industrial Holocene and recent data, with G. truncatulinoides experiencing the largest weight loss (32 %–40 %) followed by G. bulloides (18 %–24 %) and N. incompta (9 %–18 %). Overall, our results provide evidence of a decrease in planktic foraminifera calcification in the western Mediterranean, most likely associated with ongoing ocean acidification and regional SST trends, a feature consistent with previous observations in other settings of the world’s oceans.

Continue reading ‘Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era (update)’

Biocalcification crisis in the continental shelf under ocean acidification

Highlights:

  • An eight months’ ocean acidification (OA) simulation experiment was conducted.
  • The ecological and biological responses of benthic foraminifera to OA was studied.
  • Benthic foraminifera in nearshore area had more resistance to OA than offshore one.
  • Thinner and smaller shells in calcareous foraminifera were produced under OA.
  • There will be a biocalcification crisis in continental shelf under future OA.

Abstract

Ocean acidification (OA) is a persistent challenge for humans and is predicted to have deleterious effects on marine organisms, especially marine calcifiers such as coral and foraminifera. Benthic foraminifera is an important component of sediment in the continental shelf, while little is known about the impact of ocean acidification on benthic foraminifera both at the community and individual level and associated calcium carbonate deposition. We conducted eight months continued culture experiment under the scenario of 400, 800, 1200 and 1600 ppm pCO2 gradients on living benthic foraminifera from four stations in the continental shelf of the West Pacific Ocean. Statistic results showed OA had a negative effect on the abundance of benthic foraminifera. In contrast, the diversity increased roughly under OA conditions implying OA might stimulate the emergence of rare species and promote community diversity to some extent. In addition, we confirmed that the offshore area wasn’t the refuge for benthic foraminifera while the nearshore one had more resistance to moderate acidification. Calcareous species Protelphidium tuberculatum was the dominant species occupying on average 75% in all treatments and its shell diameter, weight and thickness showed a decrease, indicating the decrease of calcification of benthic foraminifera. A relationship between the weight of P. tuberculatum and pCO2 (R2 = 0.96) was established. Based on the present work, calcareous benthic foraminifera deposited 8.57×104 t calcium carbonate per year and this might reduce by nearly half and 90% under 800 and 1200 ppm scenarios, which indicates a biocalcification crisis under ongoing OA. This work shows an analogy for palaeoceanic OA and also provides new insights into the sediment of calcium carbonate in the future.

Continue reading ‘Biocalcification crisis in the continental shelf under ocean acidification’

Ocean acidification has a strong effect on communities living on plastic in mesocosms

We conducted a mesocosm experiment to examine how ocean acidification (OA) affects communities of prokaryotes and eukaryotes growing on single-use drinking bottles in subtropical eutrophic waters of the East China Sea. Based on 16S rDNA gene sequencing, simulated high CO2 significantly altered the prokaryotic community, with the relative abundance of the phylum Planctomycetota increasing by 49%. Under high CO2, prokaryotes in the plastisphere had enhanced nitrogen dissimilation and ureolysis, raising the possibility that OA may modify nutrient cycling in subtropical eutrophic waters. The relative abundance of pathogenic and animal parasite bacteria also increased under simulated high CO2. Our results show that elevated CO2 levels significantly affected several animal taxa based on 18S rDNA gene sequencing. For example, Mayorella amoebae were highly resistant, whereas Labyrinthula were sensitive to OA. Thus, OA may alter plastisphere food chains in subtropical eutrophic waters.

Scientific Significance Statement

Plastic waste in the ocean is an urgent environmental concern and has given rise to a novel habitat, known as the “plastisphere.” Under ocean acidification (OA), changes in plastisphere community composition may alter plastic degradation, deposition, and passage through food webs, but these have not been studied yet. This is the first study about the effects of simulated high CO2 on the plastisphere using a mesocosm. We discovered that after 1 month the beta diversity of prokaryotic communities living on single-use plastic drinking bottles was significantly different under different carbon dioxide concentrations, with more pathogens at high CO2. Based on function prediction analysis, the relative abundance of bacterial taxa involved in nitrogen and nitrate respiration and ureolysis was significantly higher under simulated high CO2. We conclude that OA has significant effects on the plastisphere and its predicted functions.

Continue reading ‘Ocean acidification has a strong effect on communities living on plastic in mesocosms’

Benthic foraminiferal turnover and trait changes across the Palaeocene–Eocene Thermal Maximum (PETM) at ODP site 1265A, Walvis Ridge, SE Atlantic Ocean

Benthic foraminiferal turnover during the Palaeocene–Eocene Thermal Maximum (PETM) has been extensively studied but numerous questions remained unresolved, question such as why some foraminiferal species went into extinction at a particular location but survive in another or why some species survive in extremely low oxygen environment. Because foraminiferal community interaction with the environment is driven by biological traits instead of taxonomic composition, this study has adopted trait-based approach to provide insight into the life strategies of foraminifera that enables them to survive in extreme environmental conditions. The result from this study shows that traits such as test composition, perforation, ornamentation and living habits play an important role in the ecological functioning and adaptability of foraminifera in the environment. The faunal assemblage in the studied site is dominantly cosmopolitan taxa suggesting the environment was perturbed during the PETM. Foraminiferal composition is characterised by faunal turnover indicated in extensive mortalities and extinction of both planktonic and benthic fauna. The ordination (non-metric dimensional scaling) of faunal composition also indicated ecological disturbance. The planktonic community was relatively stable before and after PETM but experienced a high level of ecological perturbation during the carbon isotopic excursion (CIE). The benthic community showed higher evidence of perturbation as the fauna assemblage ordination indicated that ecological stress started before the PETM with the disarray of samples in the ordination diagram. Only the recovery interval experienced some level of ecological stability. The environmental disturbance noticed in the fauna composition reflected on the trait. Benthic foraminiferal traits indicated instability throughout the studied section. The evidence of environmental disturbance in the benthic community suggests that the source of the light carbon that caused the PETM may have originated beneath sea floor in the Atlantic Ocean.

Continue reading ‘Benthic foraminiferal turnover and trait changes across the Palaeocene–Eocene Thermal Maximum (PETM) at ODP site 1265A, Walvis Ridge, SE Atlantic Ocean’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: