Posts Tagged 'protists'

Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification

Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events—the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1–2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.

Continue reading ‘Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification’

Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence

We present new “size-normalized weight” (SNW)-Δ[CO32−] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32−], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32−] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32−] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32−] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the “coral reef hypothesis” that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32−] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the “deglacial ventilation hypothesis”). During MIS 4, a transient decline in SNW-based [CO32−], along with other reported [CO32−] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.

Continue reading ‘Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence’

Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)

In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethyl sulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice or subsurface chlorophyll maxima (low light; low PAR and no UVB) and ice-free (high light; high PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 and 19 nmol L−1, respectively. The sharp increase in DMSPT and DMS concentrations coincided with the exhaustion of NO3− in most microcosms, suggesting that nutrient stress stimulated DMS(P) synthesis by the diatom community. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH levels tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nano-phytoplankton (2–20 µm), pico-phytoplankton ( ≤  2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance and taxonomy, and DMSP and DMS net concentrations. These results show that ocean acidification could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.

Continue reading ‘Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)’

Low planktic foraminiferal diversity and abundance observed in a spring 2013 west–east Mediterranean Sea plankton tow transect (update)

Planktic foraminifera were collected with 150 µm BONGO nets from the upper 200 m water depth at 20 stations across the Mediterranean Sea between 2 May and 2 June 2013. The main aim is to characterize the species distribution and test the covariance between foraminiferal area density (ρA) and seawater carbonate chemistry in a biogeochemical gradient including ultraoligotrophic conditions. Average foraminifera abundances are 1.42 ± 1.43 ind. 10 m−3 (ranging from 0.11 to 5.20 ind. 10 m−3), including 12 morphospecies. Large differences in species assemblages and total abundances are observed between the different Mediterranean sub-basins, with an overall dominance of spinose, symbiont-bearing species indicating oligotrophic conditions. The highest values in absolute abundance are found in the Strait of Gibraltar and the Alboran Sea. The western basin is dominated by Globorotalia inflata and Globigerina bulloides at slightly lower standing stocks than in the eastern basin. In contrast, the planktic foraminiferal assemblage in the warmer, saltier, and more nutrient-limited eastern basin is dominated by Globigerinoides ruber (white). These new results, when combined with previous findings, suggest that temperature-induced surface water stratification and food availability are the main factors controlling foraminiferal distribution. In the oligotrophic and highly alkaline and supersaturated with respect to calcite and aragonite Mediterranean surface water, standing stocks and ρA of G. ruber (white) and G. bulloides are affected by both food availability and seawater carbonate chemistry. Rapid warming increased surface ocean stratification impacting food availability and changes in trophic conditions could be the causes of reduced foraminiferal abundance, diversity, and species-specific changes in planktic foraminiferal calcification.

Continue reading ‘Low planktic foraminiferal diversity and abundance observed in a spring 2013 west–east Mediterranean Sea plankton tow transect (update)’

The future for microplankton in the Baltic Sea – Effects of SWS and climate change

The Baltic Sea is located between 53°N to 66°N and from 10°E to 30°E and is the second largest brackish water body in the world. It consists of several basins where the Baltic Proper is the major water mass. Around 85 million people live in the catchment area of the Baltic Sea, which subjects it to a range of environmental pressures, such as increased nutrient inputs from human activities (eutrophication), shipping, over-fishing, acid rain and trace metals released from anti-fouling paint. All these stressors, combined with low alkalinity, variable salinity and limited water exchange, makes the Baltic Sea a very sensitive area that may be less resilient to future stressors such as climate change or increased shipping activities. Microplankton communities consist of small heterotrophic bacteria, picoplankton, phytoplankton, cyanobacteria and smaller grazers, such as ciliates and zooplankton. In the Baltic Proper, there is a succession of blooms, within the microplankton community, from diatoms and dinoflagellates in the early spring to cyanobacteria during summer and ending with a second diatom and dinoflagellate bloom in the autumn. The cyanobacteria of the Baltic Proper bloom every summer and are dominated by Aphanizomenon sp. and Nodularia spumigena. Dolichospermum spp. is present but is less abundant. The effects of climate change were tested on a natural microplankton community, as well as on isolated cyanobacteria species from the Baltic Sea. To simulate effects of climate change, the temperature was increased from 12°C to 16°C, salinity decreased from 6-7 to 3-4 and atmospheric pCO2-levels was increased from 380 ppm to 960 ppm. The biovolume of Aphanizomenon sp. and N. spumigena increased when temperature was increased by 4°C. When salinity was decreased by three units, both the growth and photosynthetic activity of N. spumigena were reduced while Aphanizomenon sp. was unaffected, and the growth of Dolichospermum sp. was increased. Furthermore, present-day salinities were beneficial, in terms of increased biovolumes, of diatoms, dinoflagellates and ciliates, compared to reduced future salinity. Increased atmospheric pCO2 had no effect on any of the species in the microplankton community. These results show that the future microplankton community may be positive, in terms of increased biovolume, for the cyanobacteria species Aphanizomenon sp. and Dolichospermum spp. An increase of cyanobacteria blooms may open up to the possibility to grow and/or harvest these species as a source of biofuel or fatty acids (FA). Dolichospermum sp. yielded higher total FA content per biovolume, compared to the other two cyanobacteria species in phosphorus-depleted medium and Aphanizomenon sp. in nitrogen-depleted medium. Natural nutrient levels in the Baltic Proper are low both in nitrogen and phosphorus, which indicates a possible future market for biofuel and FA technologies. Additionally, the effects of seawater scrubbing (SWS) were tested on a natural summer-bloom microplankton community. Three different concentrations of scrubber water were added; 1%, 3% and 10%. To elucidate effects of decreased pH alone, water acidified with H2SO4 was added in equal concentrations. The six treatments were compared to a control without acidifying substances. SWS or the corresponding pH treatments, did not have a direct effect on microplankton species composition and biovolume. However, the increased amount of Cu and Zn in the scrubber water, combined with significant decrease in pH and alkalinity already at the 1% scrubber water treatment calls for precaution when implementing scrubber units on the shipping fleet of the Baltic Sea. The accumulated effects of long-term repeated addition constantly throughout the year, i.e. in a shipping lane, are yet to be elucidated.

Continue reading ‘The future for microplankton in the Baltic Sea – Effects of SWS and climate change’

Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian

Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2, and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for non-calcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O2 (~2.09mgL−1) and pH (~pH 7.63) scenarios in a full factorial experiment. Host fitness was characterised as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterised by maximum photochemical efficiency, chla content, and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO2-stimulated Symbiodinium photosynthetic activity. Indeed, greater CO2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesise that this mitigation occurred because of reduced photorespiration under elevated CO2 conditions where increased net O2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other non-calcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, non-calcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification.

Continue reading ‘Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian’

Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy

Alterations in seagrass epiphytic communities are expected under future ocean acidification conditions, yet this hypothesis has been little tested in situ. A Free Ocean Carbon Dioxide Enrichment system was used to lower pH by a ~0.3 unit offset within a partially enclosed portion (1.7 m3) of a Posidonia oceanica meadow (11 m depth) between June 21 and November 3, 2014. Leaf epiphytic community composition (% cover) and bulk epiphytic mineralogy were compared every 4 weeks within three treatments, located in the same meadow: a pH-manipulated (experimental enclosure) and a control enclosure, as well as a nearby ambient area. Percent coverage of invertebrate calcifiers and crustose coralline algae (CCA) did not appear to be affected by the lowered pH. Furthermore, fleshy algae did not proliferate at lowered pH. Only Foraminifera, which covered less than 3% of leaf surfaces, declined in manner consistent with ocean acidification predictions. Bulk epiphytic magnesium carbonate composition was similar between treatments and percentage of magnesium appeared to increase from summer to autumn. CCA did not exhibit any visible skeleton dissolution or mineral alteration at lowered pH and carbonate saturation state. Negative impacts from ocean acidification on P. oceanica epiphytic communities were smaller than expected. Epiphytic calcifiers were possibly protected from the pH treatment due to host plant photosynthesis inside the enclosure where water flow is slowed. The more positive outcome than expected suggests that calcareous members of epiphytic communities may find refuge in some conditions and be resilient to environmentally relevant changes in carbonate chemistry.

Continue reading ‘Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book