Posts Tagged 'biological response'

The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)

The high latitude oceans are key areas of carbon and heat exchange between the atmosphere and the ocean. As such, they are a focus of both modern oceanographic and palaeoclimate research. However, most palaeoclimate proxies that could provide a long-term perspective are based on calcareous organisms, such as foraminifera, that are scarce or entirely absent in deep-sea sediments south of 50° latitude in the Southern Ocean and north of 40° in the North Pacific. As a result, proxies need to be developed for the opal-based organisms (e.g. diatoms) that are found at these high latitudes, and which dominate the biogenic sediments that are recovered from these regions. Here we present a method for the analysis of the boron (B) content and isotopic composition (δ11B) of diatom opal. We also apply it for the first time to evaluate the relationship between seawater pH and δ11B and B concentration ([B]) in the frustules of the diatom Thalassiosira weissflogii, cultured at a range of pCO2/pH. In agreement with existing data, we find that the [B] of the cultured diatom frustules increases with increasing pH (Mejia et al., 2013). δ11B shows a relatively well-defined negative trend with increasing pH; a completely distinct relationship from any other biomineral previously measured. This relationship not only has implications for the magnitude of the isotopic fractionation that occurs during boron incorporation into opal, but also allows us to explore the potential of the boron-based proxies for palaeo-pH and palaeo-CO2 reconstruction in high latitude marine sediments that have, up until now, eluded study due to the lack of suitable carbonate material.

Continue reading ‘The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)’

Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence

The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (εp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate εp within the varying surface water masses in this region. We further utilize these results to investigate future changes in εp with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment.

Continue reading ‘Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence’

Physiological effects of climate change on the American lobster, Homarus americanus

Increases in anthropogenic input of carbon dioxide into the atmosphere have caused widespread patterns of ocean warming and ocean acidification. Both processes will likely have major impacts on commercial fisheries and aquaculture, with acidification posing a particular threat to many marine calcifying invertebrates. In the State of Maine, commercial fisheries landings and a growing aquaculture industry have a combined value in excess of $600 million, 75% of which is sustained by marine calcifiers. Moreover, the American lobster (Homarus americanus) supports the most economically valuable fishery in the Gulf of Maine and Atlantic Canada. Previous research has documented a strong link between lobster biology and ocean temperature, but it is unclear how H. americanuswill respond to a rapidly changing environment. Additionally, previous efforts have focused primarily on the direct effects of a changing climate on lobsters (i.e., changes in growth, survival, and calcification), with little emphasis placed on the potential for sublethal effects to impact the population.

In this dissertation, I explore the effects of increasing ocean temperatures and acidification on H. americanus to understand how environmental changes can alter the health and physiology in multiple life stages of marine calcifying invertebrates. In Chapter 1, I introduce the global patterns and effects of climate change on marine calcifiers and review the current state of knowledge of my study species. In Chapter 2, I discuss how exposure to warming conditions impacts larval development, with a focus on potential trade-offs between enhanced growth and developmental instability. In Chapter 3, I continue to explore the sublethal impacts of warming on larval lobsters by examining changes in gene expression patterns in postlarvae exposed to varying temperatures during development. Chapter 4 explores how short-term exposure to acidified conditions impacts subadult (50 – 65 mm carapace length) lobster thermal physiology, hemolymph chemistry, and stress levels, a relatively understudied yet crucial life history stage. Finally, Chapter 5 summarizes the overarching themes of the dissertation, and concludes by providing suggestions for future research efforts.

Continue reading ‘Physiological effects of climate change on the American lobster, Homarus americanus’

Combined effects of simulated acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae

Hypoxia and acidification frequently co-occur in coastal marine ecosystems, and will likely become more intense and persistent with anthropogenic climate change. Although the separate effects of these stressors have previously been described, their combined effects on marine phytoplankton are currently unknown. In this novel study, multi-stressor incubation experiments using the harmful dinoflagellate, Amphidinium carterae, examined the effects of acidification and hypoxia both individually and in combination. Long-term (7 days) and short-term (6 h) experiments under controlled carbon dioxide (CO2) and oxygen (O2) conditions examined the interactive effects of the stressors and the physiological mechanisms driving their interaction. In the long-term experiment, synergistically negative effects were observed for A. carterae growth, photosynthesis, carbon fixation, nitrate uptake, and photosynthetic efficiency (Fv/Fm) under combined high CO2 (low pH) and low O2 conditions. In the short-term experiment, delayed recovery of photosystem II (PSII) reaction centers was observed following photoinhibition, suggesting that high CO2 and low O2 conditions negatively affect photosynthesis in A. carterae even after relatively short exposures. Although high CO2, low O2 conditions should decrease photorespiration and favor carbon fixation by the key photosynthetic enzyme ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO), these findings demonstrate that the affinity of RuBisCO for CO2 relative to O2 alone does not predict phytoplankton responses to CO2 and O2 conditions in vivo, complicating predictions of phytoplankton community responses to hypoxia and acidification. Results of these experiments suggest that the combination of low pH and O2 concentrations may negatively impact the growth of some harmful dinoflagellates in coastal marine ecosystems.

Continue reading ‘Combined effects of simulated acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae’

Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows

The net ecosystem productivity (NEP) of two contrasting seagrass meadows within one of the largest seagrass ecosystems in the world, Florida Bay, was assessed using direct measurements over consecutive diel cycles. We report significant differences between NEP determined by dissolved inorganic carbon (NEPDIC) and by dissolved oxygen (NEPDO), likely driven by differences in air-water gas exchange and contrasting responses to variations in light intensity. In this first direct determination of NEPDIC in seagrasses, we found that both seagrass ecosystems were net heterotrophic, on average, despite large differences in seagrass net aboveground primary productivity. Net ecosystem calcification (NEC) was also negative, indicating that both sites were net dissolving of carbonate minerals. We suggest that a combination of carbonate dissolution and respiration in sediments exceeded seagrass primary production and calcification, supporting our negative NEP and NEC measurements. Furthermore, a simple budget analysis indicates that these two seagrass meadows have contrasting impacts on pH buffering of adjacent systems, due to variations in the TA : DIC export ratio. The results of this study highlight the need for better temporal resolution, as well as accurate carbonate chemistry accounting in future seagrass metabolism studies.

Continue reading ‘Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows’

Calcification and distribution of extant coccolithophores across the Drake Passage during late austral summer 2016

Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities, however field observations regarding their biogeographic distribution are scarce for the Southern Ocean. This study documents the latitudinal variability in the coccolithophore assemblage composition and the coccolith mass variation of the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April, 2016). A minimum of 200 coccospheres per sample were classified in scanning electron microscope and coccolith mass was estimated with light microscopy, using the C-Calcita software. We find that coccolithophore abundance and diversity decrease southwards marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103cells/L and types B/C, C, O are dominant. (3) The Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succesion from type A to type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographical data is needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.

Continue reading ‘Calcification and distribution of extant coccolithophores across the Drake Passage during late austral summer 2016’

Sub-weekly coral linear extension measurements in a coral reef

Highlights

• 5-day coral skeletal liner extension growth was measured in the field using calcein.

• Linear extension was measured for three consecutive 5-day growth periods spanning a tidal cycle.

• Liner extension measurements were made on petrographically thin-sectionedskeletons with a confocal microscope.

• Skeletal linear extension was consistent through time despite large variation in environmental conditions.

Abstract

Coral growth rates are often used as a metric of coral health and are measured extensively in the laboratory under controlled conditions to better understand the potential impacts of future climate change scenarios. However, in the field, corals live in dynamic environments, which can be subjected to multiple types of stressors that can not be mimicked in the laboratory. Furthermore, the temporal scales over which many environmental conditions can vary in the reef, such as extreme temperature anomalies, tidal fluctuations, and point source pollution events are far shorter than most field estimates of coral growth, which are generally at annual or seasonal scales. To measure the impact to coral growth of environmental variables that vary on time scales of less than a year or a few months requires developing new growth measurement techniques. With the goal of measuring coral growth at sub-weekly scales in the field, we developed a technique to measure 5-day linear extension growth rates. We tested our approach on colonies of Acropora hyacinthus living in a shallow back-reef ecosystem with routine extreme daily fluctuations in temperature, pH, and dissolved oxygen saturation. Using serial skeletal staining and petrographic thin sectioning we measured linear extension in A. hyacinthus during three consecutive 5-day growth periods that had differing amounts of environmental variability. At our field site in American Samoa, the second growth period had the largest tidal swings, resulting in higher variability: within a day temperature ranged up to 5.4 °C (reaching a maximum of 31.9 °C) and pH ranged up to 0.41 units (with a minimum of pH 7.78). We tested whether corals are able to maintain even linear extension rates across these short periods of time or not. After confocal microscopy analysis of stained skeletal samples we found that linear extension rates were similar across the three growth periods. Our fine-scale measurements suggest that during periods with different magnitudes of tidally driven environmental variability, but constant mean conditions, short-term linear extension growth rates remain consistent.

Continue reading ‘Sub-weekly coral linear extension measurements in a coral reef’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,249,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book