Posts Tagged 'sediment'

Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: implications for pH buffering capacities

It has been hypothesized that highly productive coastal ecosystems, such as seagrass meadows, could lead to the establishment of ocean acidification (OA) refugia, or areas of elevated pH and aragonite saturation state (Ωa) compared to source seawater. However, seagrass ecosystems experience extreme variability in carbonate chemistry across short temporal and small spatial scales, which could impact the pH buffering capacity of these potential refugia. Herein, short-term (hourly to diel) and small-scale (across 0.01–0.14 km2) spatiotemporal carbonate chemistry variability was assessed within two seagrass meadows in order to determine their short-term potential to elevate seawater pH relative to source seawater. Two locations at similar latitudes were chosen in order to compare systems dominated by coarse calcium carbonate (Bailey’s Bay, Bermuda) and muddy silicate (Mission Bay, CA, USA) sediments. In both systems, spatial variability of pH across the seagrass meadow at any given time was often greater than diel variability (e.g., the average range over 24 h) at any one site, with greater spatial variability occurring at low tide in Mission Bay. Mission Bay (spatial ΔpH = 0.08 ± 0.08; diel ΔpH = 0.12 ± 0.01; mean ± SD) had a greater average range in both temporal and spatial seawater chemistry than Bailey’s Bay (spatial ΔpH = 0.02 ± 0.01; diel ΔpH = 0.03 ± 0.00; mean ± SD). These differences were most likely due to a combination of slower currents, a larger tidal range, and more favorable weather conditions for photosynthesis (e.g., sunny with no rain) in Mission Bay. In both systems, there was a substantial amount of time (usually at night) when seawater pH within the seagrass beds was lower relative to the source seawater. Future studies aimed at assessing the potential of seagrass ecosystems to act as OA refugia for marine organisms need to account for the small-scale, high-frequency carbonate chemistry variability in both space and time, as this variability will impact where and when OA will be buffered or intensified.

Continue reading ‘Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: implications for pH buffering capacities’

The distribution of benthic foraminifera in Bel Torrente submarine cave (Sardinia, Italy) and their environmental significance

Highlights

• Benthic foraminifera in Mediterranean submarine caves were studied for the first time.
• Ecological zones were recognized in the cave environment.
• Change of environmental parameters influence species diversity and distribution.
• Species in the cave are not common in the Sardinian marine coastal area.
• An effective dispersal mechanism is supposed for cave colonization.

Abstract

The use of benthic foraminifera as ecological indicators in submarine caves of temperate seas have never been studied before and it represents a new approach, verified by this research. The Bel Torrente submarine cave (Gulf of Orosei, Sardinia, Italy) was surveyed by GUE (Global Underwater Explorers) scuba divers in order to georeferencing the cave before positioning the sampling stations, from the entrance to 430 m inside the cave. A total of 15 water samples were collected to investigate abiotic parameters (temperature, salinity, pH) while 15 sediment samples were collected to analyze grain size and benthic foraminifera. Benthic foraminifera, investigated for the first time in a submarine cave of temperate areas, were exclusively found from the entrance to 300 m inside the cave. Species distribution and assemblage diversity have been found to be correlated to the environmental gradient towards the inner cave, mainly due to the decreasing of temperature and salinity and the increasing of the flow energy. Water acidification seems responsible for the transition from a calcareous hyaline-dominated assemblage to an agglutinant-dominated one, occurring between 120 and 150 m from the entrance. Common taxa of the Sardinian coastal marine area are present only close to the entrance of the cave, while species found in the inner part are nearly exclusively epifaunal clinging/attached or infaunal taxa, with tolerance for wide variability of environmental parameters, such as Gavelinopsis praegeri, and opportunist infaunal taxa such as Eggerella advena. The agglutinant taxa found in the cave are conversely very rare in coastal marine assemblages of the area. This suggests a very efficient dispersal mechanism for the colonization of the caves, involving probably juvenile foraminifera at a “propagule” stage.

Continue reading ‘The distribution of benthic foraminifera in Bel Torrente submarine cave (Sardinia, Italy) and their environmental significance’

Elevated toxic effect of sediments on growth of the harmful dinoflagellate Cochlodinium polykrikoides under high CO2

Ocean acidification will likely have significant impacts on phytoplankton growth in marine ecosystems over the course of this century. Coastal waters, which can be strongly influenced by suspended sediments, can also be particularly sensitive to ocean acidification. While the individual effects of trace metal inputs and ocean acidification have each been well documented, the combined effects of high trace metal concentrations due to mobilization from sediments and high dissolved CO2 concentrations (low seawater pH) on the growth of marine phytoplankton are not known. In this study, a batch culture experiment was performed using the model organism Cochlodinium polykrikoides over 35 d under a range of CO2 concentrations (400, 800, and 1200 ppmv) following sediment additions. At high CO2, dissolved iron (Fe) and nickel (Ni) concentrations increased over time. Dissolved Ni concentrations were significantly higher after 35 d at 1200 ppmv CO2 compared to the other treatments and corresponded to significant decreases in C. polykrikoides growth rates. In addition, a toxicity bioassay experiment was performed over 29 d under a range of Ni or cadmium (Cd) concentrations at ambient CO2. The growth responses of C. polykrikoides were dose-dependent and were significantly lower under increasing Ni or Cd concentrations. The findings suggest that a combination of elevated total dissolved Ni supplied from sediments and high CO2 conditions could suppress the growth rates and photosynthesis of C. polykrikoides in coastal marine ecosystems. This is the first study to examine the synergistic, toxic effects of lithogenic trace metals and CO2 on phytoplankton growth.

Continue reading ‘Elevated toxic effect of sediments on growth of the harmful dinoflagellate Cochlodinium polykrikoides under high CO2’

Retrodiction of secular variations in deep-sea CaCO3 burial during the Cenozoic

Deep-sea sediments record changes in oceanic carbonate chemistry and CaCO3sedimentation rate through temporal variations in the total burial of CaCO3 and the position of the carbonate snowline, i.e., the ocean depth at which CaCO3-free sediments are first recorded. This paper links mathematically secular changes in snowline to those in the burial rate through a set of relatively simple equations. When the available Cenozoic deep-sea burial records are employed to predict secular variations in snowline, the process fails at some time in the past, indicating that these records are not consistent with each other. The burial records are more likely the source of this problem, as they involve far more uncertainties than the snowline records. As a consequence, we introduce a method for estimating carbonate burial through the use of a canonical CaCO3-depth profile, which can respond dynamically to secular changes in carbonate sedimentation and the positions of both the snowline and the carbonate saturation horizon. The resulting synthetic CaCO3burial record is consistent with snowline records and indicates that the burial rates offered by Davies and Worsley (1981) are generally too high, with highly questionable maxima at 25 and 47 Ma BP. Our estimates of burial are more consistent with the range advanced by Mackenzie and Morse (1992); nevertheless, our results differ from the latter with respect to timing and magnitude of the variations. Our approach allows simultaneous calculation of the mean carbonate ion concentration of the deep sea. We find that carbonate-ion levels fell through the Cenozoic and are similar to those calculated by Tyrrell and Zeebe (2004), using a different model. Secular variations in CaCO3 burial are found to be primarily driven by changes in the Ca2+–CO32 ion product within the bottom-waters, with an increase in the sedimentation rate of CaCO3 of secondary importance over the Cenozoic.

Continue reading ‘Retrodiction of secular variations in deep-sea CaCO3 burial during the Cenozoic’

Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi

This study aims to ascertain the effects of CO2 induced water acidification and leaks from Carbon Capture and Storage activities on the South American amphipod Hyale youngi. A 10-day acute toxicity test was performed using sediments from two sites located inside the Santos Estuarine System. They were subjected to five pH treatments (8.1, 7.6, 7.0, 6.5, and 6.0). Metals (Cd, Cu, Cr, Pb, Ni and Zn) and the metalloid As were analyzed to determine the influence of their acidification-related mobility on the amphipods mortality. The results showed that mortality becomes significant when compared to control in pH 6.5 in the Canal de Piaçaguerasediment (contaminated) and at pH 6.0 in Ilha das Palmas sediment (reference).

Continue reading ‘Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi’

Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: Results from a flume experiment

Global concern over increasing CO2 emissions, and the resultant CO2 driven temperature rises and changes in seawater chemistry, necessitates the advancement of understanding into how these changes will affect marine life now and in the future. Here we report on an experimental investigation into the effects of increased CO2concentration and elevated temperature on sedimentary meiofaunal communities. Cohesive (muddy) and non-cohesive (sandy) sediments were collected from the Eden Estuary in St. Andrews, Scotland, UK, placed within a flume setup and exposed to 2 levels of CO2 concentration (380 and 750 ppmv, current at the time of the experiment, and predicted CO2 concentration by 2100, respectively) and 2 temperature levels (12 °C and 16 °C, current in-situ and predicted temperature by 2100, respectively). We investigated the metazoan meiofauna and nematode communities before and after 28 days of exposure under these experimental conditions. The most determinative factor for abundance, diversity and community structure of meiofauna and nematodes was sediment type: on all levels, communities were significantly different between sand and mud sediments which agrees with what is generally known about the influence of sediment structure on meiofaunal organisms. Few CO2 and temperature effects were observed, suggesting that meiofauna and nematodes are generally much less responsive than, for instance, microbial communities and macrofauna to these environmental changes in estuarine environments, where organisms are naturally exposed to a fluctuating environment. This was corroborated by the observed effects related to the different seasons in which the samples were taken from the field to run the experiment. After 28 days, meiofauna and nematode communities in muddy sediments showed a greater response to increased CO2 concentration and temperature rise than in sandy sediments. However, further study is needed to investigate the underlying mechanisms and meiofauna species-specific resilience and responses to ocean acidification and warming, and their interactions with other biota, to understand what such changes may mean for meiofauna communities and the ecosystem processes and functions they contribute to.

Continue reading ‘Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: Results from a flume experiment’

Marine microbial gene abundance and community composition in response to ocean acidification and elevated temperature in two contrasting coastal marine sediments

Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2) and elevated temperature (ambient + 4 °C) on the abundance of taxonomic and functional microbial genes. Specific q-PCR primers were used to target archaeal, bacterial and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA) and bacterial nitrite reductase (nirS) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

Continue reading ‘Marine microbial gene abundance and community composition in response to ocean acidification and elevated temperature in two contrasting coastal marine sediments’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,051,359 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book