Posts Tagged 'sediment'

Multiple ecological parameters affect living benthic foraminifera in the river-influenced west-central Bay of Bengal

The huge riverine influx and associated processes decrease the ambient salinity, stratify the water column, modulate the oxygen-deficient zone, and are also responsible for the recent acidification in the Bay of Bengal. Here, we have studied the effect of these riverine influx-dominated ecological parameters on living benthic foraminifera in the west-central Bay of Bengal. We report that the pH below 7.6 in front of the Krishna river, reduces the diversity and the richness of living benthic foraminifera on the adjacent shelf and the slope. A similar decreased diversity and richness is also observed in front of the Godavari River. We delineate three prominent assemblages, representing different depth zones with associated distinct physico-chemical conditions. The shallow water assemblage (∼27–100 m) is represented by Nonionella labradoricaHanzawaia nipponicaBrizalina dilatataAmmonia tepida, and Nonionella limbato-striata. These species are adapted to relatively warmer temperatures and more oxygenated waters. The deepwater assemblage (∼1,940–2,494 m) includes Bulimina cf. delreyensis, Bulimina marginataHormosinella guttiferaCassidulina laevigata, and Gyroidinoides subzelandica and can tolerate a relatively colder temperature. The intermediate-depth assemblage (∼145–1,500 m) dominated by Eubuliminella exilis, Bolivinellina earlandiFursenkoina spinosaBolivinellina lucidopunctataGlobobulimina globosa, Fursenkoina spinosa, Eubuliminella cassandrae, Uvigerina peregrina, Rotaliatinopsis semiinvoluta, and Cassidulina laevigata, represents oxygen-deficient and organic carbon-rich environment. Besides the pH, temperature, dissolved oxygen and organic matter, we also report a strong influence of bathymetry, coarse fraction (CF) and the type of organic matter on a few living benthic foraminifera. The ecological preferences of 40 such dominant living benthic foraminifera, each representing a specific environment, have also been reported for site-specific proxy. We conclude that although the huge riverine influx affects living benthic foraminifera on the shelf, the dissolved oxygen and organic carbon mostly control benthic foraminiferal distribution in the deeper west-central Bay of Bengal.

Continue reading ‘Multiple ecological parameters affect living benthic foraminifera in the river-influenced west-central Bay of Bengal’

Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment

Ecosystem feedbacks in response to ocean acidification can amplify or diminish the diel pH oscillations that characterize productive coastal waters. We report that benthic microalgae generate such oscillations in the porewater of cohesive sediment and ask how carbonation (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. To do so, we placed a 1-mm layer of ground oyster shells (Treatment) or sand (Control) onto intact sediment cores free of large dwelling fauna, and then gradually increased the pCO2 in the seawater above half of the Treatment and Control cores from 472 to 1216 μatm (pH 8.0 to 7.6, CO2:HCO3 from 4.8 to 9.6 x 10-4). Vertical porewater [O2] and [H+] microprofiles measured 16 d later showed that this carbonation had decreased O2 penetration in all cores, indicating a metabolic response. In carbonated seawater: (1) sediment biogeochemical processes added and removed more H+ to and from the porewater in darkness and light, respectively, than in ambient seawater increasing the amplitude of the dark–light porewater [H+] oscillations, and (2) the dissolution of calcite decreased the porewater [H+] below that in overlying seawater, reversing the dark sediment–seawater H+ flux and decreasing the amplitude of diel [H+] oscillations. This dissolution did not, however, counter the negative effect of carbonation on sediment O2 penetration. We hypothesise that the latter effect and the observed enhanced acidification of the sediment porewater were caused by an ecosystem feedback: a CO2-induced increase in the microbial reoxidation of reduced solutes with O2.

Continue reading ‘Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment’

Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming

Ocean chemistry is changing as a result of human activities. Atmospheric carbon dioxide (CO2) concentrations are increasing, causing an increase in oceanic pCO2 that drives a decrease in oceanic pH, a process called ocean acidification (OA). Higher CO2 concentrations are also linked to rising global temperatures that can result in more stratified surface waters, reducing the exchange between surface and deep waters; this stronger stratification, along with nutrient pollution, contributes to an expansion of oxygen-depleted zones (so called hypoxia or deoxygenation). Determining the response of marine organisms to environmental changes is important for assessments of future ecosystem functioning. While many studies have assessed the impact of individual or paired stressors, fewer studies have assessed the combined impact of pCO2, O2, and temperature. A long-term experiment (∼10 months) with different treatments of these three stressors was conducted to determine their sole or combined impact on the abundance and survival of a benthic foraminiferal community collected from a continental-shelf site. Foraminifera are well suited to such study because of their small size, relatively rapid growth, varied mineralogies and physiologies. Inoculation materials were collected from a ∼77-m deep site south of Woods Hole, MA. Very fine sediments (<53 μm) were used as inoculum, to allow the entire community to respond. Thirty-eight morphologically identified taxa grew during the experiment. Multivariate statistical analysis indicates that hypoxia was the major driving factor distinguishing the yields, while warming was secondary. Species responses were not consistent, with different species being most abundant in different treatments. Some taxa grew in all of the triple-stressor samples. Results from the experiment suggest that foraminiferal species’ responses will vary considerably, with some being negatively impacted by predicted environmental changes, while other taxa will tolerate, and perhaps even benefit, from deoxygenation, warming and OA.

Continue reading ‘Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming’

Ocean acidification induces changes in virus–host relationships in Mediterranean benthic ecosystems

Acidified marine systems represent “natural laboratories”, which provide opportunities to investigate the impacts of ocean acidification on different living components, including microbes. Here, we compared the benthic microbial response in four naturally acidified sites within the Southern Tyrrhenian Sea characterized by different acidification sources (i.e., CO2 emissions at Ischia, mixed gases at Panarea and Basiluzzo and acidified freshwater from karst rocks at Presidiana) and pH values. We investigated prokaryotic abundance, activity and biodiversity, viral abundance and prokaryotic infections, along with the biochemical composition of the sediment organic matter. We found that, despite differences in local environmental dynamics, viral life strategies change in acidified conditions from mainly lytic to temperate lifestyles (e.g., chronic infection), also resulting in a lowered impact on prokaryotic communities, which shift towards (chemo)autotrophic assemblages, with lower organic matter consumption. Taken together, these results suggest that ocean acidification exerts a deep control on microbial benthic assemblages, with important feedbacks on ecosystem functioning.

Continue reading ‘Ocean acidification induces changes in virus–host relationships in Mediterranean benthic ecosystems’

Experimental assessment of the impacts of ocean acidification and urchin grazing on benthic kelp forest assemblages

Ocean acidification (OA) is likely to differentially affect the biology and physiology of calcifying and non-calcifying taxa, thereby potentially altering key ecological interactions (e.g., facilitation, competition, predation) in ways that are difficult to predict from single-species experiments. We used a two-factor experimental design to investigate how multispecies benthic assemblages in southern California kelp forests respond to OA and grazing by the purple sea urchinStrongylocentrotus purpuratus. Settlement tiles accrued natural mixed assemblages of algae and invertebrates in a kelp forest off San Diego, CA for one year before being exposed to OA and grazing in a laboratory experiment for two months. Space occupying organisms were identified and pooled into six functional groups: calcified invertebrates, non-calcified invertebrates, calcified algae, fleshy algae, sediment, and bare space for subsequent analyses of community structure. Interestingly, communities that developed on separate tile racks were unique, despite being deployed close in space, and further changes in community structure in response to OA and grazing depended on this initial community state. On Rack 1, we found significant effects of both pCO2 and grazing with elevated pCO2 increasing cover of fleshy algae, but sea urchin grazers decreasing cover of fleshy algae. On Rack 2, we found a ~ 35% higher percent cover of sediment on tiles reared in ambient pCO2 but observed ~27% higher cover of bare space in the high pCO2 conditions. On Rack 3, we found an average of 45% lower percent cover of calcified sessile invertebrates at ambient pCO2 than in high pCO2 treatments on Rack 3. Net community calcification was 137% lower in elevated pCO2 treatments. Kelp sporophyte densities on tiles without urchins were 74% higher than on tiles with urchins and kelp densities were highest in the elevated pCO2 treatment. Urchin growth and grazing rates were 49% and 126% higher under ambient than high pCO2 conditions. This study highlights consistent negative impacts of OA on community processes such as calcification and grazing rates, even though impacts on community structure were highly context-dependent.

Continue reading ‘Experimental assessment of the impacts of ocean acidification and urchin grazing on benthic kelp forest assemblages’

Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean (update)

Relative to their surface area, estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of temperature change (from Δ−3 to Δ+5 C compared to ambient mean temperatures) and ocean acidification (OA, ∼ 2× current CO2 partial pressure, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake; sediments became net sinks of DOC (3.5 to 8.8 mmol C m−2 d−1) at warmer temperatures (Δ+3 and Δ+5 C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (up to 4× greater than under current pCO2 conditions). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, we find that the future climate of warming (Δ+3 C) and OA may decrease estuarine export of DOC by ∼ 80 % (∼ 150 Tg C yr−1) and have a disproportionately large impact on the global DOC budget.

Continue reading ‘Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean (update)’

The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea

Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea – one of the most oligotrophic marine regions in the world. Since the 1970s, this region has been experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity and bacterial biomass accumulation, and triggered a shift towards heterotrophic biodegrading bacterial communities, whereas autotrophic picophytoplankton abundance was moderately affected or reduced. This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, acidification, nutrient enrichment, and microbial community shifts at the sediment-water interface may have a detrimental impact on macrobenthic communities. Based on these findings, we suggest that jelly-falls and their decay may facilitate an additional decline in ecosystem functions and services.

Continue reading ‘The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea’

Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline

Global climate change will drive declines in coral reefs over coming decades. Yet, the relative role of temperature versus acidification, and the ability of resultant ecosystems to retain core services such as coastal protection, are less clear. Here, we investigate changes to the net chemical balances of calcium carbonate within complex experimental coral reefs over 18 months under conditions projected for 2100 if CO2 emissions continue unmitigated. We reveal a decoupling of calcifier biomass and calcification under the synergistic impact of warming and acidification, that combined with increased night-time dissolution, leads to an accelerated loss of carbonate frameworks. Climate change induced degradation will limit the ability of coral reefs to keep-up with sea level rise, possibly for thousands of years. We conclude that instead of simply transitioning to alternate states that are capable of buffering coastlines, reefs are at risk of drowning leading to critical losses in ecosystem functions.

Continue reading ‘Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline’

Ocean acidification and short‐term organic matter enrichment alter coral reef sediment metabolism through different pathways

Ocean acidification (OA) and organic matter (OM) enrichment (due to coastal eutrophication) could act in concert to shift coral reef carbonate sediments from a present state of net calcification to a future state of net dissolution, but no studies have examined the combined effect of these stressors on sediment metabolism and dissolution. This study used 22‐hour incubations in flume aquaria with captive sediment communities to measure the combined effect of elevated pCO2 (representing Ocean Acidification) and particulate organic carbon (representing coastal eutrophication) on coral reef sediment gross primary productivity (GPP), respiration (R), and net calcification (Gnet). Relative to control sediment communities, both OA (pCO2 ~ 1000 μatm) and OM enrichment (~ + 40 μmol C L‐1) significantly decreased rates of sediment Gnet by 1.16 and 0.18 mmol CaCO3 m‐2 h‐1, respectively, but the mechanism behind this decrease differed. The OA‐mediated transition to net dissolution was physiochemical, as rates of GPP and R remained unaffected and dissolution was solely enhanced by a decline in the aragonite saturation state (Ωarg) of the overlying water column and the physical factors governing the porewater exchange rate with this overlying water column. In contrast, the OM‐mediated decline in Gnet was due to a decline in the overlying seawater Ωarg due to the increased respiratory addition of CO2. The decrease in Gnet in response to a combination of both stressors was additive (‐ 0.09 mmol CaCO3 m‐2 h‐1 relative to OA alone) but this decrease did not significantly differ from the individual effect of either stressor. In this study OA was the primary driver of future carbonate sediment dissolution, but longer‐term experiments with chronic organic matter enrichment are required.

Continue reading ‘Ocean acidification and short‐term organic matter enrichment alter coral reef sediment metabolism through different pathways’

Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment

We investigated the effects of seawater warming and CO2 enrichment on the microbial community metabolism (using O2 consumption as a proxy) in subtidal silt sediment. Intact sediment cores, without large dwelling infauna, were incubated for 24 days at 12 (in situ) and 18 °C to confirm the expected temperature response. We then enriched the seawater overlying a subset of cold and warm-incubated cores with CO2 (+ ΔpCO2: 253–396 µatm) for 16 days and measured the metabolic response. Warming increased the depth-integrated volume-specific O2 consumption (Rvol), the maximum in the volume-specific O2 consumption at the bottom of the oxic zone (Rvol,bmax) and the volume-specific net O2 production (Pn,vol), and decreased the O2 penetration depth (O2-pd) and the depth of Rvol,bmax (depthbmax). Benthic photosynthesis oscillated the pH in the upper 2 mm of the sediment. CO2 enrichment of the warm seawater did not alter this oscillation but shifted the pH profile towards acidity; the effect was greatest at the surface and decreased to a depth of 12 mm. Confoundment rendered the CO2 treatment of the cold seawater inconclusive. In warm seawater, we found no statistically clear effect of CO2 enrichment on RvolRvol,bmaxPn,vol, O2-pd, or depthbmax and therefore suspect that this perturbation did not alter the microbial community metabolism. This confirms the conclusion from experiments with other, contrasting types of sediment.

Continue reading ‘Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment’

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,451,115 hits


Ocean acidification in the IPCC AR5 WG II

OUP book