Posts Tagged 'multiple factors'

Acclimation history of elevated temperature reduces the tolerance of coralline algae to additional acute thermal stress

Increasing atmospheric CO2 is driving major environmental changes in the ocean, such as an increase in average ocean temperature, a decrease in average ocean pH (ocean acidification or OA), and an increase in the number and severity of extreme climatic events (e.g., anomalous temperature events and heatwaves). Uncertainty exists in the capacity for species to withstand these stressors occurring concomitantly. Here, we tested whether an acclimation history of ocean warming (OW) and OA affects the physiological responses of an abundant, reef-building species of crustose coralline algae (CCA), Porolithon cf. onkodes, to chronic and acute thermal stress. To address this, we exposed algae to varying temperature and pH levels for 6 weeks and this chronic treatment experiment was followed by an acute exposure to an anomalous temperature event (+4–6°C from acclimation temperature). Net photosynthetic rate was negatively affected across all treatments by increasing temperature during the acute temperature event, however, algae acclimated to the control temperature were able to maintain photosynthetic rates for +4°C above their acclimation temperature, whereas algae acclimated to elevated temperature were not. Average relative change in O2 produced resulted in a 100–175% decrease, with the largest decrease found in algae acclimated to the combined treatment of elevated temperature and reduced pH. We conclude that acclimation to chronic global change stressors (i.e., OW and OA) will reduce the tolerance of P. cf. onkodes to anomalous increases in temperature, and this may have implications for reef building processes.

Continue reading ‘Acclimation history of elevated temperature reduces the tolerance of coralline algae to additional acute thermal stress’

Exposure time modulates the effects of climate change-related stressors on fertile sporophytes and early-life stage performance of a habitat-forming kelp species

Highlight

  • Ocean warming (OW) reduced the sorus photosynthetic performance.
  • OW reduced meiospore germination rate.
  • OW and ocean acidification reduced meiospore release (MR).
  • MR is more sensitive to temperature changes than to pCO2 changes.
  • Longer exposure to OW increased the negative effects on germination rate.

Abstract

Understanding the impact of increases in pCO2 (OA) and extreme changes in temperature on marine organisms is critical to predicting how they will cope with climate change. We evaluated the effects of OA as well as warming and cooling trend temperature on early reproductive traits of Lessonia trabeculata, a foundation kelp species. Sori discs were maintained for an exposure time (ET) of 3 (T3) and 7 (T7) days to one of two contrasting pCO2 levels (450 and 1100 μatm). In addition, at each pCO2 level, they were subjected to three temperature treatments: 15 °C (control), 10 °C (cool) and 19 °C (warm). Subsequently, we compared sorus photosynthetic performance (Fv/Fm), the number of meiospores released (MR) and their germination rate (GR) after 48 h of settlement, with values obtained from sori discs not exposed (DNE) to the treatments. The Fv/Fm measured for DNE was lower than at T3 and T7 at 10 and 15 °C but not at 19 °C. Regardless of temperature, we found no significant differences between MR measured at T0 and T3 were found. MR at T7 was significantly lower at 19 °C than at 10 and 15 °C. We found only aA significant reduction in MR in response to elevated pCO2 was only found at T3. The GR of meiospores released by DNE and then maintained for 48 h to 19 °C decreased significantly by ∼33 % when compared with those maintained for the same time at 10 and 15 °C. A similar, but more drastic reduction (∼54 %) in the GR was found in meiospores released by sori discs exposed for T3 and maintained for 48 h to 19 °C. We suggest that OA and warming trend will threaten the early establishment of this species with further consequences for the functioning of the associated ecosystem.

Graphical abstract

Under laboratory conditions were investigated the combined effect of pCO2, temperature and the exposure time on sorus photosynthetic performance (Fv/Fm) and meiospore performance (release and germination rate) of a habitat-forming kelp Lessonia trabeculata. The results suggest that important traits such as sorus photosynthetic performance, meiospores released and germination rate can be affected by those stressors and by the extent to which the sori are exposed. We concluded that ocean warming and ocean acidification might threaten the early establishment of this species with further consequences for the ecosystem functioning, goods and services in coastal environments.

Continue reading ‘Exposure time modulates the effects of climate change-related stressors on fertile sporophytes and early-life stage performance of a habitat-forming kelp species’

Differential responses in anti-predation traits of the native oyster Ostrea edulis and invasive Magallana gigas to ocean acidification and warming

Ocean acidification and warming (OAW) pose a threat to marine organisms, with particular negative effects on molluscs, and can jeopardize the provision of associated ecosystem services. As predation is an important factor shaping populations in the marine environment, the ability of organisms to retain traits valuable in predation resistance under OAW may be decisive for future population maintenance. We examine how exposure to seawater temperature (control: 16.8°C and warm: 20°C) and atmospheric pCO2 (ambient [~400], ~750, and ~1000 ppm) conditions affects traits linked to predation resistance (adductor muscle strength and shell strength) in two ecologically and economically important species of oysters (Magallana gigas and Ostrea edulis) and relate them to changes in morphometry and fitness (condition index, muscle and shell metrics). We show that O. edulis remained unimpacted following exposure to OAW scenarios. In contrast, the adductor muscle of M. gigas was 52% stronger under elevated temperature and ~750 ppm pCO2, and its shell was 44% weaker under combined elevated temperature and ~1000 ppm pCO2. This suggests greater resistance to mechanical predation toward the mid-21st century, but greater susceptibility toward the end of the century. For both species, individuals with more somatic tissue held an ecological advantage against predators; consequently, smaller oysters may be favoured by predators under OAW. By affecting fitness and predation resistance, OAW may be expected to induce shifts in predator-prey interactions and reshape assemblage structure due to species and size selection, which may consequently modify oyster reef functioning. This could in turn have implications for the provision of associated ecosystem services.

Continue reading ‘Differential responses in anti-predation traits of the native oyster Ostrea edulis and invasive Magallana gigas to ocean acidification and warming’

Impact on fertility rate and embryo-larval development due to the association acidification, ocean warming and lead contamination of a sea urchin Echinometra lucunter (echinodermata: echinoidea)

Ocean warming and acidification can cause deleterious effects on marine biota, which may be potentialized when associated with metal pollution. Thus, the aim of this work was to evaluate the effects of pH decrease, temperature increase and lead contamination on fertility rate and embryo-larval development of Echinometra lucunter. Gametes and embryos were exposed at pH 8.2 (control) and 7.5; at 26°C (control) and 28°C; and at lead concentrations of 0 (control), 125, 250 and 500 μg/L. These conditions were tested individually and in combination. The fertilization rate of E. lucunter was only significantly reduced in the treatments where temperature was increased and in the treatment where pH decreased. However, the development rate of the pluteus larvae was significantly affected in the majority of treatments: metal contamination in the higher concentration; decreased pH in all metal concentrations; increased temperature in the highest metal concentration; decreased pH and increased temperature and all variables combined, which is decreased pH, increased temperature and metal contamination in relation to the control group (C). The development test was shown to be more sensitive than the fertilization test in all the studied scenarios. In general, the present study suggests that pH decrease, temperature increase and metal pollution may have a significant impact on E. lucunter reproductive cycle.

Caetano L. S., Pereira T. M., Envangelista J. D., Cabral D. S., Coppo G. C., Alves de Souza L., Anderson A. B., Heringer O. A. & Chippari-Gomes A. R., in press. Impact on fertility rate and embryo-larval development due to the association acidification, ocean warming and lead contamination of a sea urchin Echinometra lucunter (echinodermata: echinoidea). Bulletin of Environmental Contamination and Toxicology. Article (subscription required).

Combined effects of ocean acidification and elevated temperature on feeding, growth, and physiological processes of Antarctic krill Euphausia superba

Antarctic krill Euphausia superba is a key species in the Southern Ocean, where its habitat is projected to undergo continued warming and increases in pCO2. Experiments during 2 summer field seasons at Palmer Station, Antarctica, investigated the independent and interactive effects of elevated temperature and pCO2 (decreased pH) on feeding, growth, acid-base physiology, metabolic rate, and survival of adult Antarctic krill. Ingestion and clearance rates of chlorophyll were depressed under low pH (7.7) compared to ambient pH (8.1) after a 48 h acclimation period, but this difference disappeared after a 21 d acclimation. Growth rates were negligible and frequently negative, but were significantly more negative at high (3°C, -0.03 mm d-1) compared to ambient temperature (0°C, -0.01 mm d-1) with no effect of pH. Modest elevations in tissue total CO2 and tissue pH were apparent at low pH but were short-lived. Metabolic rate increased with temperature but was suppressed at low pH in smaller but not larger krill. Although effects of elevated temperature and/or decreased pH were mostly sublethal, mortality was higher at high temperature/low pH (58%) compared to ambient temperature/pH or ambient temperature/low pH (>90%). This study identified 3 dominant patterns: (1) shorter-term effects were primarily pH-dependent; (2) krill compensated for lower pH relatively quickly; and (3) longer-term effects on krill growth and survival were strongly driven by temperature with little to no pH effect.

Continue reading ‘Combined effects of ocean acidification and elevated temperature on feeding, growth, and physiological processes of Antarctic krill Euphausia superba’

Seasonal photophysiological performance of adult western Baltic Fucus vesiculosus (Phaeophyceae) under ocean warming and acidification

Shallow coastal marine ecosystems are exposed to intensive warming events in the last decade, threatening keystone macroalgal species such as the bladder wrack (Fucus vesiculosus, Phaeophyceae) in the Baltic Sea. Herein, we experimentally tested in four consecutive benthic mesocosm experiments, if the single and combined impact of elevated seawater temperature (Δ + 5°C) and pCO2 (1100 ppm) under natural irradiance conditions seasonally affected the photophysiological performance (i.e., oxygen production, in vivo chlorophyll a fluorescence, energy dissipation pathways and chlorophyll concentration) of Baltic Sea Fucus. Photosynthesis was highest in spring/early summer when water temperature and solar irradiance increases naturally, and was lowest in winter (December to January/February). Temperature had a stronger effect than pCO2 on photosynthetic performance of Fucus in all seasons. In contrast to the expectation that warmer winter conditions might be beneficial, elevated temperature conditions and sub-optimal low winter light conditions decreased photophysiological performance of Fucus. In summer, western Baltic Sea Fucus already lives close to its upper thermal tolerance limit and future warming of the Baltic Sea during summer may probably become deleterious for this species. However, our results indicate that over most of the year a combination of future ocean warming and increased pCO2 will have slightly positive effects for Fucus photophysiological performance.

Continue reading ‘Seasonal photophysiological performance of adult western Baltic Fucus vesiculosus (Phaeophyceae) under ocean warming and acidification’

Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach

Lithogenic elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (232Th and 230Th, given as Th) and protactinium (Pa) are often assumed to be insoluble. In this study, their dissolution from Saharan dust reaching Mediterranean seawater was studied through tank experiments over 3 to 4 d under controlled conditions including controls without dust addition as well as dust seeding under present and future climate conditions (+3 C and −0.3 pH). Unfiltered surface seawater from three oligotrophic regions (Tyrrhenian Sea, Ionian Sea and Algerian Basin) were used. The maximum dissolution was low for all seeding experiments: less than 0.3 % for Fe, 1 % for 232Th and Al, about 2 %–5 % for REEs and less than 6 % for Pa. Different behaviors were observed: dissolved Al increased until the end of the experiments, Fe did not dissolve significantly, and Th and light REEs were scavenged back on particles after a fast initial release. The constant 230Th/232Th ratio during the scavenging phase suggests that there is little or no further dissolution after the initial Th release. Quite unexpectedly, comparison of present and future conditions indicates that changes in temperature and/or pH influence the release of Th and REEs in seawater, leading to lower Th release and a higher light REE release under increased greenhouse conditions.

Continue reading ‘Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach’

Cross‐generational response of a tropical sea urchin to global change and a selection event in a 43‐month mesocosm study

Long‐term experimental investigations of transgenerational plasticity (TGP) and transgenerational acclimatization to global change are sparse in marine invertebrates. Here, we test the effect of ocean warming and acidification over a 25‐month period of Echinometra sp. A sea urchins whose parents were acclimatized at ambient or one of two near‐future (projected mid‐ and end‐ of the 21st century) climate scenarios for 18 months. Several parameters linked to performance exhibited strong effects of future ocean conditions at 9 months of age. The Ambient‐Ambient group (A‐A, both F0 and F1 at ambient conditions) was significantly larger (21%) and faster in righting response (31%) compared to other groups. A second set of contrasts revealed near‐future scenarios caused significant negative parental carryover effects. Respiration at 9 months was depressed by 59% when parents were from near‐future climate conditions, and righting response was slowed by 28%. At ten months, a selective pathogenic mortality event lead to significantly higher survival rates of A‐A urchins. Differences in size and respiration measured prior to the mortality were absent after the event, while a negative parental effect on righting (29% reduction) remained. The capacity to spawn at the end of the experiment was higher in individuals with ambient parents (50%) compared to other groups (21%) suggesting persistent parental effects. Obtaining different results at different points in time illustrates the importance of longer‐term and multi‐generation studies to investigate effects of climate change. Given some animals in all groups survived the pathogenic event and that effects on physiology (but not behavior) among groups were eliminated after the mortality, we suggest that similar events could constitute selective sweeps, allowing genetic adaptation. However, given the observed negative parental effects and reduced potential for population replenishment it remains to be determined if selection would be sufficiently rapid to rescue this species from climate change effects.

Continue reading ‘Cross‐generational response of a tropical sea urchin to global change and a selection event in a 43‐month mesocosm study’

Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification

Highlights

  • The effects of light and elevated pCO2 on Gracilariopsis were examined.
  • Ocean acidification enhanced algal biomass, photosynthesis and total C/N ratios.
  • Increasing light and elevated pCO2 lowered nutritional quality of G. lemaneiformis.

Abstract

The economically important red macroalga Gracilariopsis lemaneiformis has demonstrated positive ecological functions in nutrient bioextraction efficiency and high harvestable biomass, as well as being a food and agar source owing to its richness in proteins and polysaccharides. Carbon dioxide (CO2)-induced ocean acidification has resulted in mixed nutrient compound accumulations in this marine autotroph. G. lemaneiformis also experiences light variations resulting from self-shading and varied cultivation depths. Therefore, a factorial coupling experiment was conducted to examine how growth, photosynthesis performance, soluble cell components and metabolic enzyme-driven activities respond to light availability changes and CO2 enrichment. The ocean acidification enhanced the growth characteristics, total carbon/nitrogen ratios and metabolic nutrient accumulation processes in G. lemaneiformis regardless of the light level. Photosynthetic performances, including relative electron transport rate and maximum photochemical quantum yield, were increased by high pCO2 concentrations, resulting in soluble carbohydrate accumulation. The carbon and nitrogen accumulations might result from variations in carbonic anhydrase and nitrate reductase activities under high pCO2 conditions. The soluble protein and free amino acids contents declined in response to CO2 elevation, and this effect was more pronounced as the light intensity increased. Thus, future climate changes may cause greater algal biomass accumulations, but they may negatively affect the cell composition and nutritional quality of G. lemaneiformis.

Continue reading ‘Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification’

Projected near-future ocean acidification decreases mercury toxicity in marine copepods

Highlights

  • Copepods were subjected to OA and Hg pollution under multigenerational exposure.
  • OA reduced Hg accumulation and its toxicity to the growth/reproduction in copepods.
  • Copepod proteome enabled its physiological resilience to decreasing pH.
  • Proteomics indicated many toxic events, ensuring Hg toxicity to the copepod’s traits.
  • Proteome compensation was accounting for the alleviative effect of OA on Hg toxicity.

Abstract

Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0-F2), followed by single-generation recovery (F3) under clean condition. Several phenotypic traits and Hg accumulation were analyzed for F0-F3. Furthermore, shotgun-based quantitative proteomics was performed for F0 and F2. Our results showed that OA insignificantly influenced the traits. During F0-F2, combined exposure reduced Hg accumulation as compared with the counterpart Hg treatment, supporting the mitigating effect of OA on Hg toxicity in copepods. Proteomics analysis indicated that the copepods probably increased energy production/storage and stress response to ensure physiological resilience against OA. However, Hg induced many toxic events (e.g., energy depletion and degenerated organomorphogenesis/embryogenesis for F0; cell cycle arrest and detrimental stress-defense for F2), which were translated to the population-level adverse outcome, i.e., compromised growth/reproduction. Particularly, compensatory proteome response was identified (e.g., increased immune defense for F0; energetic compensation and enhanced embryogenesis for F2), accounting for a negative interaction between OA and Hg. Together, this study provides the molecular mechanisms behind the effects of OA and Hg pollution in marine copepods.

Continue reading ‘Projected near-future ocean acidification decreases mercury toxicity in marine copepods’

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,450,941 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book