Posts Tagged 'multiple factors'

DNA damage and oxidative stress responses of mussels Mytilus galloprovincialis to paralytic shellfish toxins under warming and acidification conditions – elucidation on the organ-specificity

Commonly affected by changes in climate and environmental conditions, coastal areas are very dynamic environments where shellfish play an important ecological role. In this study, the oxidative stress and genotoxic responses of mussels (Mytilus galloprovincialis) exposed to paralytic shellfish toxin (PST) – producing dinoflagellates Gymnodinium catenatum were evaluated under i) current conditions (CC: 19 °C; pH 8.0), ii) warming (W: 24 °C; pH 8.0), iii) acidification (A:19 °C; pH 7.6) and iv) combined effect of warming and acidification (WA: 24 °C; pH 7.6). Mussels were fed with G. catenatum for 5 days, and to a non-toxic diet during the following 10 days. A battery of oxidative stress biomarkers and comet assay was performed at the peak of toxin accumulation and at the end of the post-exposure phase. Under CC, gills and hepatopancreas displayed different responses/vulnerabilities and mechanisms to cope with PST. While gills presented a tendency for lipid peroxidation (LPO) and genetic damage (expressed by the Genetic Damage Indicator – GDI), hepatopancreas seems to better cope with the toxins, as no LPO was observed. However, the mechanisms involved in hepatopancreas protection were not enough to maintain DNA integrity. The absence of LPO, and the antioxidant system low responsiveness, suggests DNA damage was not oxidative. When exposed to toxic algae under W, toxin-modulated antioxidant responses were observed in both gills and hepatopancreas. Simultaneous exposure to the stressors highlighted gills susceptibility with a synergistic interaction increasing DNA damage. Exposure to toxic algae under A led to genotoxicity potentiation in both organs. The combined effect of WA did not cause relevant interactions in gills antioxidant responses, but stressors interactions impacted LPO and GDI. Antioxidant responses and LPO pointed out to be modulated by the environmental conditions in hepatopancreas, while GDI results support the dominance of toxin-triggered process. Overall, these results reveal that simultaneous exposure to warming, acidification and PSTs impairs mussel DNA integrity, compromising the genetic information due to the synergetic effects. Finally, this study highlights the increasing ecological risk of harmful algal blooms to Mytilus galloprovinciallis populations.

Continue reading ‘DNA damage and oxidative stress responses of mussels Mytilus galloprovincialis to paralytic shellfish toxins under warming and acidification conditions – elucidation on the organ-specificity’

Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB

Highlights

  • A simulation model based on DEB theory was parameterized for the Manila clam.
  • The pH forecast in 2100 will limit the growth of Manila clam.
  • The temperature forecast in 2100 enhances the reproductive potential of Manila clam.

Abstract

We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the Manila clam Ruditapes philippinarum under different temperature and pH conditions, based on environmental values forecasted for the end of the 21st c. under climate change scenarios. The parameters of the DEB model were calibrated with the results of seasonal growth experiments under two levels of temperature (ambient and plus 2–3 °C) and three levels of pH (8.1 used as control and 7.7 and 7.3 representing acidification). The results showed that R. philippinarum is expected to have moderate growth in length or individual body mass (ultimate length and body weight would be larger than current values by 2–3%) when taking into account only the effect of temperature increase. However, acidification is likely to have a deleterious effect on growth, with a decrease of 2–5% length or body weight under the pH value of 7.7 forecasted for the end of the 21st c, or 10–15% under a more extreme scenario (pH = 7.3). However, the aggregated reproductive potential, integrated along a lifetime of 10 years, is likely to increase by 30% with temperature increase. Decreasing pH would impact negatively on reproductive potential, but in all simulations under warmer conditions, reproductive potential values were higher than current, suggesting that temperature increase would compensate losses due to acidification. The results are discussed in relation to their possible impact on aquaculture and fisheries of this important commercial bivalve.

Continue reading ‘Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB’

Efeitos neurotóxicos do crack-cocaína combinado a cenários de acidificação oceânica no mexilhão marinho Perna perna (in Portuguese)

The oceans are undergoing physical and biogeochemical changes in response to the increasing atmospheric CO2 load and increased ocean uptake, such as surface warming, reduced oxygen and a reduction in calcium carbonate and pH saturation levels. Changes in the pH and chemical composition of seawater can modify the speciation of contaminants, interfering with their bioavailability and toxicity. The present study aimed to evaluate the sublethal effect of the illicit drug crack-cocaine at different concentrations (0.5; 5; 50 µg / L) combined with ocean acidification by CO2 at pH values of 8.1; 7.5; 7.0; 6.5 and 6.0. For this purpose, an analysis of the biomarker of neurotoxic effect acetylcholinesterase (AChe) was performed on mussels Perna perna. The inhibition of AChe after exposure to crack at pH 7.5, 7.0 and 6.5 was preliminarily observed, demonstrating a combined effect of crack-cocaine and pH reduction, which can be observed in future scenarios of acidification in coastal zones contaminated by illicit drugs.

Continue reading ‘Efeitos neurotóxicos do crack-cocaína combinado a cenários de acidificação oceânica no mexilhão marinho Perna perna (in Portuguese)’

The power struggle: assessing interacting global change stressors via experimental studies on sharks

Ocean warming and acidification act concurrently on marine ectotherms with the potential for detrimental, synergistic effects; yet, effects of these stressors remain understudied in large predatory fishes, including sharks. We tested for behavioural and physiological responses of blacktip reef shark (Carcharhinus melanopterus) neonates to climate change relevant changes in temperature (28 and 31 °C) and carbon dioxide partial pressures (pCO2; 650 and 1050 µatm) using a fully factorial design. Behavioural assays (lateralisation, activity level) were conducted upon 7–13 days of acclimation, and physiological assays (hypoxia tolerance, oxygen uptake rates, acid–base and haematological status) were conducted upon 14–17 days of acclimation. Haematocrit was higher in sharks acclimated to 31 °C than to 28 °C. Significant treatment effects were also detected for blood lactate and minimum oxygen uptake rate; although, these observations were not supported by adequate statistical power. Inter-individual variability was considerable for all measured traits, except for haematocrit. Moving forward, studies on similarly ‘hard-to-study’ species may account for large inter-individual variability by increasing replication, testing larger, yet ecologically relevant, differences in temperature and pCO2, and reducing measurement error. Robust experimental studies on elasmobranchs are critical to meaningfully assess the threat of global change stressors in these data-deficient species.

Continue reading ‘The power struggle: assessing interacting global change stressors via experimental studies on sharks’

Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels

The Baltic Sea has a salinity gradient decreasing from fully marine (> 25) in the West to below 7 in the Central Baltic Proper. Reef forming mytilid mussels exhibit decreasing growth when salinity < 11, however the mechanisms underlying reduced calcification rates in dilute seawater are not fully understood. In fact, both [HCO3] and [Ca2+] also decrease with salinity, challenging calcifying organisms through CaCO3 undersaturation (Ω ≤ 1) and unfavourable ratios of calcification substrate (Ca2+ and HCO3) to inhibitor (H+). In this study we assessed the impact of isolated individual factors (salinity, [Ca2+], [HCO3] and pH) on calcification and growth of mytilid mussel populations along the Baltic salinity gradient. Laboratory experiments rearing juvenile Baltic Mytilus at a range of salinities (6, 11 and 16), HCO3 concentrations (300–2100 µmol kg−1) and Ca2+ concentrations (0.5–4 mmol kg−1) were coupled with field monitoring in three Baltic mussel reefs. Results reveal that as individual factors, low [HCO3], pH and salinity cannot explain low calcification rates in the Baltic Sea. Calcification rates are impeded when Ωaragonite ≤ 1 or the substrate inhibitor ratio ≤ 0.7, primarily due to [Ca2+] limitation which corresponds to a salinity of ca. 11. Increased food availability may be able to mask these negative impacts, but not when seawater conditions are permanently adverse, as observed in two Baltic reefs at salinities < 11. Future climatic models predict rapid desalination of the southwest and Central Baltic and potentially a reduction in [Ca2+] which may lead to a westward distribution shift of marine calcifiers. It is therefore vital to understand the mechanisms by which the ionic composition of seawater impacts bivalve calcification for better predicting the future of benthic Baltic ecosystems.

Continue reading ‘Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels’

Eat, breathe, repeat: physiological responses of the mussel Mytilus galloprovincialis to Diclofenac and ocean acidification

Combined effects of the nonsteroidal anti-inflammatory drug diclofenac and lowered seawater pH were assessed on the physiological responses of the mussel Mytilus galloprovincialis. Bivalves were exposed for 1 week to natural pH (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units), as predicted under a climate change scenario. After the first week, exposure continued for additional 2 weeks, both in the absence and in the presence of environmentally relevant concentrations of diclofenac (0.05 and 0.5 µg/L). Clearance rate, respiration rate, and excretion rate were measured after 7 days of exposure to pH only and after 14 (T1) and 21 (T2) days of exposure to the various pH*diclofenac combinations. At all sampling times, pH significantly affected all the biological parameters considered, whereas diclofenac generally exhibited a significant influence only at T2. Overall, results demonstrated that the physiological performance of M. galloprovincialis was strongly influenced by the experimental conditions tested, in particular by the interaction between the two stressors after 21 days of exposure. Further studies are needed to assess the combined effects of climate changes and emerging contaminants on bivalve physiology during different life stages, especially reproduction.

Continue reading ‘Eat, breathe, repeat: physiological responses of the mussel Mytilus galloprovincialis to Diclofenac and ocean acidification’

Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae

Highlights

  • Most species from high-light environments are not able to calcifying under OA at night
  • Low-light species may be more susceptible to OA compared to high-light
  • Some species exhibit light-triggered calcification independent of photosystem II
  • Photosystem II independent calcification not sustained under OA

Abstract


Calcifying tropical macroalgae produce sediment, build three-dimensional habitats, and provide substrate for invertebrate larvae on reefs. Thus, lower calcification rates under declining pH and increasing ocean pCO2, or ocean acidification, is a concern. In the present study, calcification rates were examined experimentally under predicted end-of-the-century seawater pCO2 (1116 μatm) and pH (7.67) compared to ambient controls (pCO2 409 μatm; pH 8.04). Nine reef macroalgae with diverse calcification locations, calcium carbonate structure, photophysiology, and site-specific irradiance were examined under light and dark conditions. Species included five from a high light patch reef on the Florida Keys Reef Tract (FKRT) and four species from low light reef walls on Little Cayman Island (LCI). Experiments on FKRT and LCI species were conducted at 500 and 50 μmol photons m−2 s−1 in situ irradiance, respectively. Calcification rates independent of photosystem-II (PSII) were also investigated for FKRT species. The most consistent negative effect of elevated pCO2 on calcification rates in the tropical macroalgae examined occurred in the dark. Most species (89%) had net calcification rates of zero or net dissolution in the dark at low pH. Species from the FKRT that sustained positive net calcification rates in the light at low pH also maintained ~30% of their net calcification rates without PSII at ambient pH. However, calcification rates in the light independent of PSII were not sustained at low pH. Regardless of these low pH effects, most FKRT species daily net calcification rates, integrating light/dark rates over a 24h period, were not significantly different between low and ambient pH. This was due to a 10-fold lower dark, compared to light, calcification rate, and a strong correspondence between calcification and photosynthetic rates. Interestingly, low-light species sustained calcification rates on par with high-light species without high rates of photosynthesis. Low-light species’ morphology and physiology that promote high calcification rates at ambient pH, may increase their vulnerability to low pH. Our data indicate that the negative effect of elevated pCO2 and low pH on tropical macroalgae at the organismal level is their impact on dark net calcification, probably enhanced dissolution. However, elevated pCO2 and low pH effects on macroalgae daily calcification rates are greatest in species with lower net calcification rates in the light. Thus, macroalgae able to maintain high calcification rates in the light (high and low irradiance) at low pH, and/or sustain strong biotic control with high [H+] in the bulk seawater, are expected to dominate under global change.

Continue reading ‘Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae’

Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth

Chemical changes in the diffusive boundary layer (DBL) generated by photosynthesising macroalgae are expected to play an important role in modulating the effects of ocean acidification (OA), but little is known about the effects on early life stages of marine invertebrates in modified DBLs. Larvae that settle to macroalgal surfaces and remain within the DBL will experience pH conditions markedly different from the bulk seawater. We investigated the interactive effects of seawater pH and DBL thickness on settlement and early post-settlement growth of the sea urchin Pseudechinus huttoni, testing whether coralline-algal DBLs act as an environmental buffer to OA. DBL thickness and pH levels (estimated from well-established relationships with oxygen concentration) above the crustose coralline algal surfaces varied with light availability (with photosynthesis increasing pH to as high as pH 9.0 and respiration reducing pH to as low as pH 7.4 under light and dark conditions, respectively), independent of bulk seawater pH (7.5, 7.7, and 8.1). Settlement success of P. huttoni increased over time for all treatments, irrespective of estimated pH in the DBL. Juvenile test growth was similar in all DBL manipulations, showing resilience to variable and low seawater pH. Spine development, however, displayed greater variance with spine growth being negatively affected by reduced seawater pH in the DBL only in the dark treatments. Scanning electron microscopy revealed no observable differences in structural integrity or morphology of the sea urchin spines among pH treatments. Our results suggest that early juvenile stages of P. huttoni are well adapted to variable pH regimes in the DBL of macroalgae across a range of bulk seawater pH treatments.

Continue reading ‘Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth’

DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis

Highlights

  • Low pH stress resulted in hyper- and hypo-methylated genes in the pediveliger larvae of the Hong Kong oyster
  • Differentially methylated loci were concentrated in the exon region within the gene bodies
  • High capability of oyster larvae to acclimate and adapt to low pH condition within single generation despite poor habitat selection for attachment
  • Differential methylation is associated to higher metamorphosis success rate and poor larval substratum selection under low pH stress.

Abstract

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Continue reading ‘DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis’

Effects of ocean acidification and microplastics on microflora community composition in the digestive tract of the thick shell mussel Mytilus coruscus through 16s RNA gene sequencing

Ocean acidification and microplastic pollution is a global environmental threat, this research evaluated the effects of ocean acidification and microplastics on mussel digestive tract microbial community. The 16S rRNA gene was sequenced to characterize the flora. Species diversity in the samples was assessed by clustering valid tags on 97% similarity. Bacteroidetes, Firmicutes and Proteobacteria were the three most abundant genera in the four groups, with Bacteroidetes showing the highest diversity. However, no differences in flora structure were evident under various treatments. Phylogenetic relationship analysis revealed Bacteroidetes and Firmicutes had the highest OTU diversity. The weighted UniFrac distance, principal coordinate analysis (PCoA), unweighted pair group method with arithmetic mean (UPGMA) cluster tree and analysis of molecular variance (AMOVA) evaluation results for all samples also showed that changes in pH and microplastics concentration did not significantly affect the microbial community structure in the mussel digestive tract. The results presented the no significant effects of ocean acidification and microplastics intake on mussel intestinal diversity.

Continue reading ‘Effects of ocean acidification and microplastics on microflora community composition in the digestive tract of the thick shell mussel Mytilus coruscus through 16s RNA gene sequencing’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,300 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives