Posts Tagged 'multiple factors'

Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi

Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 μatm CO2) and its modulation by light intensity (50 vs. 300 μmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi´s biomass composition.

Continue reading ‘Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi’

Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress

To understand how Ulva species might respond to salinity stress during future ocean acidification we cultured a green tide alga Ulva linza at various salinities (control salinity, 30 PSU; medium salinity, 20 PSU; low salinity, 10 PSU) and CO2 concentrations (400 and 1000 ppmv) for over 30 days. The results showed that, under the low salinity conditions, the thalli could not complete its whole life cycle. The specific growth rate (SGR) of juvenile thalli decreased significantly with reduced salinity but increased with a rise in CO2. Compared to the control, medium salinity also decreased the SGR of adult thalli at low CO2 but did not affect it at high CO2. Similar patterns were also found in relative electron transport rate (rETR), non-photochemical quenching, saturating irradiance, and Chl b content. Although medium salinity reduced net photosynthetic rate and maximum rETR at each CO2 level, these negative effects were significantly alleviated at high CO2 levels. In addition, nitrate reductase activity was reduced by medium salinity but enhanced by high CO2. These findings indicate that future ocean acidification would enhance U. linza’s tolerance to low salinity stress and may thus facilitate the occurrence of green tides dominated by U. linza.

Continue reading ‘Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress’

Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species

Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e. metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation and rocky reef substrates. Primary producers and detritus – key food sources for meiofauna – increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.

Continue reading ‘Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species’

A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals

• Mangrove habitats are more resilient to climate change than other habitats.

• Climate change might have positive effects on mangrove-root species communities.

• Using mesocosms we show that an increase of 1.2 °C leads to community homogenisation.

• Warming also led to diversity loss and flattening of mangrove root epibiont communities.

• Juvenile fish altered their use of mangrove habitats under warming and acidification.

Global climate stressors, like ocean warming and acidification, contribute to the erosion of structural complexity in marine foundation habitats by promoting the growth of low-relief turf, increasing grazing pressure on structurally complex marine vegetation, and by directly affecting the growth and survival of foundation species. Because mangrove roots are woody and their epibionts are used to ever-changing conditions in highly variable environments, mangrove habitats may be more resilient to global change stressors than other marine foundation species. Using a large-scale mesocosm experiment, we examined how ocean warming and acidification, under a reduced carbon emission scenario, affect the composition and structural complexity of mangrove epibiont communities and the use of mangrove habitat by juvenile fishes. We demonstrate that even a modest increase in seawater temperature of 1.2 °C leads to the homogenisation and flattening of mangrove root epibiont communities. Warming led to a 24% increase in the overall cover of algal epibionts on roots but the diversity of the epibiont species decreased by 33%. Epibiont structural complexity decreased owing to the shorter stature of weedy algal turfs which prospered under elevated temperature. Juvenile fishes showed alterations in mangrove habitat use with ocean warming and acidification, but these were independent of changes to the root epibiont community. We reveal that the quality of apparently resilient mangrove habitats and their perceived value as habitat for associated fauna are still vulnerable under a globally reduced carbon emission scenario.

Continue reading ‘A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals’

An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors

Environmental biomarkers, also known as early warning signals, have increasingly
become a subject of interest in environmental studies. The common sea star, Archaster typicus, found in shallow sandy habitats associated with coral reefs in Singapore, was utilised to study the effects of varying treatment conditions of salinity, temperature and pH. Treatment conditions were derived from predicted future scenarios of thermal and ocean acidification conditions. Experiments were conducted to determine physiological responses of sea stars that were subjected to treatments over 24h (acute) and 120h (chronic) exposures. The biomarker responses examined included righting behaviour (time taken to right after being overturned), burrowing time and feeding responses (time
taken to close stomach/mouth plate) in experimental sea stars. To validate results of physiological biomarkers, two other biomarker responses were measured from coelomic fluid extracted from the experimental sea stars. These were the cellular lysosome integrity response (Neutral Red Retention time, NRRT) and the biochemical Ferric Reducing Antioxidant Power (FRAP) assay. In acute exposure experiments, results indicated that sea stars exhibited significant differences in physiological responses under various salinity, temperature and pH treatments. At chronic exposure regimes, lethal effects were more evident, with higher mortality rates observed in all salinity and temperature treatment regimes. Results from salinity treatments showed that physiological responses in sea stars were significantly impaired at treatments of 15‰ and 50‰ salinities. Significant results were observed in NRRT and burrowing behavioural assays in temperature treatments. Treatments with pH of 7.4 and 7.2 at the acute exposure duration resulted in a significant impairment of righting ability. The acute and chronic effects of salinity fluctuations, ocean warming and acidification on A
2 typicus were most consistently observed in the righting and burrowing behaviour assays. This indication of reduced fitness together with reduced cellular responses show a reduction in survival ability in the sea star under low salinity, high temperature and low pH conditions. Further studies could thus help us understand the effects of global warming on the physiology of organisms in various shallow water habitats.

Continue reading ‘An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors’

Continuous photoperiod of the Arctic summer stimulates the photosynthetic response of some marine macrophytes


• Long photoperiods increase the photosynthetic activity of certain subarctic macrophytes.

• Increased CO2 had no effect on tested macrophytes.

• Highest increases of photosynthetic activity of A. nodosum and Z. marina at long day lengths; smaller increase for F. vesiculosus.

• Subarctic macrophytes, expanding as sea ice retreats, will benefit from long summer days.


Subarctic macrophytes are predicted to expand in the Arctic as a result of on-going global climate change. This will expose them to 24 h of light during the Arctic summer while pCO2 levels are predicted to rise globally. Here, we tested the photosynthetic activity of two brown macroalgae (Ascophyllum nodosum, Fucus vesiculosus) and one seagrass (Zostera marina) from subarctic Greenland, measuring their relative maximum electron transport rate (rETRmax), photosynthetic efficiency (α) and saturating irradiance (Ik) after 3 days of incubation at different photoperiods (12:12 h, 15:09 h, 18:06 h, 21:03 h and 24:00 h, light:dark) with ambient values of pCO2 (200 ppm, characteristic of current subarctic surface waters) and increased pCO2 (400 and 1000 ppm). The photosynthetic parameters rETRmax and Ik increased significantly with longer photoperiods and increased, however insignificantly, with increased pCO2. Responses differed between species. A. nodosum and Z. marina showed the highest increase of rETRmax and Ik from 12 h to 24 h while the increase of F. vesiculosus was smaller. Our results suggest that as subarctic macrophytes expand in the Arctic in response to retracting sea ice, the long summer days will stimulate the productivity of the species tested here, while the effect of high-CO2 environment needs further research.

Continue reading ‘Continuous photoperiod of the Arctic summer stimulates the photosynthetic response of some marine macrophytes’

Harmful effects of cocaine byproduct in the reproduction of sea urchin in different ocean acidification scenarios


• Impact of different acidification scenarios by enrichment of CO2 on contaminants of emerging concern.

• Toxicity of a cocaine byproduct in different scenarios of ocean acidification.

• Combined effects of crack cocaine and low pH on reproduction of sea urchin.

• Hazards and risks of illicit drugs pose to public health and the environment.


This study has as main objective assessing the toxicity of crack-cocaine combined with different scenarios of ocean acidification on fertilization rate and embryo-larval development of Echinometra lucunter sea urchin. Effects on early life stages were assessed at five different concentrations (6,25 mg.L-1; 12,5 mg.L-1; 25 mg.L-1; 50 mg.L-1 and 100 mg.L-1) of crack-cocaine at four different pH values (8.5; 8.0; 7.5; 7.0). The pH values were achieved using two different methodologies: adding hydrochloric acid (HCl) and injecting carbon dioxide (CO2). The fertilization test did not show significant differences (p≤0.05) compared with control sample at pH values 8.5; 8.0 and 7.5. Results of embryo-larval assays showed a half maximal effective concentration (EC50) of crack-cocaine at pH values tested (8.5, 8.0, 7.5) as 58.83, 10.67 and 11.58 mg/L-1 for HCl acidification and 58.83, 23.28 and 12.57 mg/L-1 for CO2 enrichment. At pH 7.0 the effects observed in fertilization rate and embryo development were associated with the acidification. This study is the first ecotoxicological assessment of illicit drug toxicity in aquatic ecosystems at different ocean acidification scenarios.

Continue reading ‘Harmful effects of cocaine byproduct in the reproduction of sea urchin in different ocean acidification scenarios’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,255 hits


Ocean acidification in the IPCC AR5 WG II

OUP book