Posts Tagged 'multiple factors'

A new mesocosm system to study the effects of environmental variability on marine species and communities

Climate change will shift mean environmental conditions and also increase the frequency and intensity of extreme events, exerting additional stress on ecosystems. While field observations on extremes are emerging, experimental evidence of their biological consequences is rare. Here, we introduce a mesocosm system that was developed to study the effects of environmental variability of multiple drivers (temperature, salinity, pH, light) on single species and communities at various temporal scales (diurnal ‐ seasonal): the Kiel Indoor Benthocosms (KIBs). Both, real‐time offsets from field measurements or various dynamic regimes of environmental scenarios, can be implemented, including sinusoidal curve functions at any chosen amplitude or frequency, stochastic regimes matching in situ dynamics of previous years and modeled extreme events. With temperature as the driver in focus, we highlight the strengths and discuss limitations of the system. In addition, we examined the effects of different sinusoidal temperature fluctuation frequencies on mytilid mussel performance. High‐frequency fluctuations around a warming mean (+2°C warming, ± 2°C fluctuations, wavelength = 1.5 d) increased mussel growth as did a constant warming of 2°C. Fluctuations at a lower frequency (+2 and ± 2°C, wavelength = 4.5 d), however, reduced the mussels’ growth. This shows that environmental fluctuations, and importantly their associated characteristics (such as frequency), can mediate the strength of global change impacts on a key marine species. The here presented mesocosm system can help to overcome a major short‐coming of marine experimental ecology and will provide more robust data for the prediction of shifts in ecosystem structure and services in a changing and fluctuating world.

Continue reading ‘A new mesocosm system to study the effects of environmental variability on marine species and communities’

Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification does not

The world’s oceans are acidifying and warming due to increasing amounts of atmospheric CO2. Thermal tolerance of fish much depends on the cardiovascular ability to supply the tissues with oxygen. The heart itself is highly dependent on oxygen and heart mitochondria thus might play a key role in shaping an organism’s tolerance to temperature. The present study aimed to investigate the effects of acute and chronic warming on respiratory capacities of European sea bass (Dicentrarchus labrax L.) heart mitochondria. We hypothesized that acute warming would impair mitochondrial respiratory capacities, but be compensated after long-term. Increasing PCO2 may cause intracellular changes, likely further constricting cellular energy metabolism. We found increased leak respiration rates in acutely warmed heart mitochondria of cold-conditioned fish in comparison to measurements at their rearing temperature, suggesting a lower aerobic capacity to synthesize ATP. However, thermal acclimation led to increased mitochondrial functionality, e.g. higher RCRo in heart mitochondria of warm-conditioned compared to cold-conditioned fish. Exposure to high PCO2 synergistically amplified the effects of acute and long-term warming, but did not result in changes by itself. We explained the high ability to maintain mitochondrial function under OA with the fact that seabass are moving between various environmental conditions. Improved mitochondrial capacities after warm conditioning could be due to the origin of this species in the warm waters of the Mediterranean. Our results also indicate that seabass are not yet fully adapted to the colder temperatures in their northern distribution range and might benefit from warmer temperatures.

Continue reading ‘Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification does not’

Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel Mytilus edulis


• Effects of ocean acidification and hypoxia on the early development of the mussel M. edulis were investigated.

• Positive carry-over effects of adult mussels exposed to low pH and hypoxia were observed on larvae performance.

• Low pH showed key negative effects on the early development of the mussel M. edulis.


Transgenerational effects of multiple stressors on marine organisms are emerging environmental themes. We thus experimentally tested for transgenerational effects of seawater acidification and hypoxia on the early development traits of the mussel Mytilus edulis. Fertilization rate, embryo deformity rate, and larval shell length were negatively impacted by acidification, while hypoxia had little effect except for increasing deformity rates under control pH conditions. Offspring from low pH/O2 parents were less negatively affected by low pH/O2 conditions than offspring from control parents; however, low pH/O2 conditions still negatively affected developmental traits in offspring from acclimated parents compared to control seawater conditions. Our results demonstrate that experimental seawater acidification and hypoxia can adversely affect early developmental traits of M. edulis and that parental exposure can only partially alleviate these impacts. If experimental observations hold true in nature, it is unlikely that parental exposure will confer larval tolerance to ocean acidification for M. edulis.

Continue reading ‘Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel Mytilus edulis’

Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula

The Western Antarctic Peninsula (WAP), one of the most productive regions of the Southern Ocean, is currently undergoing rapid environmental changes such as ocean acidification (OA) and increased daily irradiances from enhanced surface‐water stratification. To assess the potential for future biological CO2 sequestration of this region, we incubated a natural phytoplankton assemblage from Ryder Bay, WAP, under a range of pCO2 levels (180 μatm, 450 μatm, and 1000 μatm) combined with either moderate or high natural solar radiation (MSR: 124 μmol photons m−2 s−1 and HSR: 435 μmol photons m−2 s−1, respectively). The initial and final phytoplankton communities were numerically dominated by the prymnesiophyte Phaeocystis antarctica, with the single cells initially being predominant and solitary and colonial cells reaching similar high abundances by the end. Only when communities were grown under ambient pCO2 in conjunction with HSR did the small diatom Fragilariopsis pseudonana outcompete P. antarctica at the end of the experiment. Such positive light‐dependent growth response of the diatom was, however, dampened by OA. These changes in community composition were caused by an enhanced photosensitivity of diatoms, especially F. pseudonana, under OA and HSR, reducing thereby their competitiveness toward P. antarctica. Moreover, community primary production (PP) of all treatments yielded similar high rates at the start and the end of the experiment, but with the main contributors shifting from initially large to small cells toward the end. Even though community PP of Ryder Bay phytoplankton was insensitive to the changes in light and CO2 availability, the observed size‐dependent shift in productivity could, however, weaken the biological CO2 sequestration potential of this region in the future.

Continue reading ‘Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula’

A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton

Coccolithophores are unicellular marine phytoplankton and important contributors to global carbon cycling. Most work on coccolithophore sensitivity to climate change has been on the small, abundant bloom-forming species Emiliania huxleyi and Gephyrocapsa oceanica. However, large coccolithophore species can be major contributors to coccolithophore community production even in low abundances. Here we fit an analytical equation, accounting for simultaneous changes in CO2 and light intensity, to rates of photosynthesis, calcification and growth in Scyphosphaera apsteinii. Comparison of responses to G. oceanica and E. huxleyi revealed S. apsteinii is a low-light adapted species and, in contrast, becomes more sensitive to changing environmental conditions when exposed to unfavourable CO2 or light. Additionally, all three species decreased their light requirement for optimal growth as CO2 levels increased. Our analysis suggests that this is driven by a drop in maximum rates and, in G. oceanica, increased substrate uptake efficiency. Increasing light intensity resulted in a higher proportion of muroliths (plate-shaped) to lopadoliths (vase shaped) and liths became richer in calcium carbonate as calcification rates increased. Light and CO2 driven changes in response sensitivity and maximum rates are likely to considerably alter coccolithophore community structure and productivity under future climate conditions.

Continue reading ‘A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton’

Impact of climate change and contamination in the oxidative stress response of marine organisms

Atmospheric carbon dioxide (CO2) levels are increasing at an unprecedented rate, changing the carbonate chemistry (in a process known as ocean acidification) and temperature of the worlds ocean. Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as mercury, will play a key role in further shaping the ecophysiology of marine organisms. Thus, the main goal of the present dissertation was to undertake the first comprehensive and comparative analysis of the biochemical strategies, namely antioxidant defense (both enzymatic and non-enzymatic antioxidants) and protein repair and removal mechanisms, of several marine organisms – from invertebrate (Veretillum cynomorium and Gammarus locusta) to vertebrate species (Argyrosomus regius, Chiloscyllium plagiosum and Scyliorhinus canicula) – encompassing different life-stages and life-strategies to the predicted climate-mediated changes. The findings provided in the present dissertation proved that organisms’ responses were mostly underpinned by temperature (increasing lipid, protein and nucleic acid damage), that also culminated into increased mercury bioaccumulation and toxicity, while ocean acidification as a sole stressor usually played a minor role in defining species vulnerability (i.e. responsible for increased oxidative damage in the marine calcifying organisms G. locusta). Nonetheless when co-occurring with warming and contamination scenarios, acidification was usually responsible for the reduction of heavy metal accumulation and toxicity, as well as decreased warming and contamination-elicited oxidative stress. Additionally, organisms’ responses were species-specific, and organisms that usually occupy more variable environments (e.g. daily changes in abiotic conditions) usually displayed greater responses towards environmental change than organisms inhabiting more stable environments. Furthermore, and assuming the relevance of transgenerational effects, it seems that the negative effects of OA are potentially being inherited by the offspring’s, compromising the efficiency of future generations to endure the upcoming conditions.

Continue reading ‘Impact of climate change and contamination in the oxidative stress response of marine organisms’

Nano-ZnO impairs anti-predation capacity of marine mussels under seawater acidification


• The anti-predation behavior of mussels is induced by predator.

• Low pH and nano-ZnO synergistically reduced the anti-predation behavior of mussels.

• Nano-ZnO and seawater acidification may change the predator-prey dynamics in the environment.


Artificial nanoparticles and ocean acidification (OA) caused by the rapid increase of CO2 absorbed by the ocean are both ecologically hazardous to marine organisms. The combined effects of the two environmental stressors on the anti-predation ability of marine mussels were studied. Mytilus coruscus was exposed to three different gradient concentrations of nano-ZnO (0, 2.5, 10 mg/L) in combination of two pH levels (7.7 and 8.1). The crab Charybdis japonica was used as its predator. During the experiment, anti-predator indexes, including number of byssus threads (NBT), shell-closing strength (SCS), diameter of byssus thread (BTD), length of byssus thread (BTL), cumulative length of byssus thread (CBTL) and cumulative volume of byssus thread (CBTV) were studied. The results showed that predator induced the anti-predation responses in M. coruscus, and NBT, SCS, BTL, CBTL and CBTV were significantly increased. Under the conditions of pH 7.7 and 10 mg/L nano-ZnO, NBT, SCS, BTD, BTL, CBTL, and CBTV were significantly reduced. What’s more, significant interactions among pH, nano-ZnO and predator were observed in CBTL and CBTV. Therefore, the joint treatment of nano-ZnO and low pH reduces the adhesion strength of byssus thread and may increase the probability of mussels being preyed.

Continue reading ‘Nano-ZnO impairs anti-predation capacity of marine mussels under seawater acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,182,888 hits


Ocean acidification in the IPCC AR5 WG II

OUP book