Posts Tagged 'multiple factors'



Subtle bacterioplankton community responses to elevated CO2 and warming in the oligotrophic South Pacific gyre

Bacterioplankton play a critical role in primary production, carbon cycling, and nutrient cycling in the oligotrophic ocean. To investigate the effect of elevated CO2 and warming on the composition and function of bacterioplankton communities in oligotrophic waters, we performed two trace‐metal clean deck board incubation experiments during the New Zealand GEOTRACES transect of the South Pacific gyre (SPG). High‐throughput amplicon sequencing of the 16S rRNA gene revealed that bacterioplankton community composition was distinct between the fringe and ultra‐oligotrophic centre of the SPG and changed consistently in response to elevated CO2 at the ultra‐oligotrophic centre but not at the mesotrophic fringe of the SPG. The combined effects of elevated CO2 and warming resulted in a high degree of heterogeneity between replicate communities. Community‐level protein synthesis rates (3H‐Leucine incorporation) and bacterioplankton abundance were not affected by elevated CO2 alone or in combination with warming at the fringe or ultra‐oligotrophic centre of the SPG. These data suggest bacterioplankton community responses to elevated CO2 may be modulated by nutrient regimes in open ocean ecosystems and highlight the need for further investigation in expanding oligotrophic subtropical gyres.

Continue reading ‘Subtle bacterioplankton community responses to elevated CO2 and warming in the oligotrophic South Pacific gyre’

Exposure to pet-made microplastics: Particle size and pH effects on biomolecular responses in mussels

Highlights

•PET-MPs are able to induce biochemical stress in mussels.

•LPO and GPx were more effective in detecting the PET-MPs induced stress.

•Biomarkers expression was influenced by the size of PET-MPs.

•L-PET-MPs (0.5–3.0 mm) induced grater effect than other sizes.

•Interaction was recorded among PET-MPs sizes and initial pH (8.0–7.5 units).

Abstract

This study aims to evaluate the expression of biomarkers of oxidative stress (LPO, GPx, AtCh, SOD) in mussels (Mytilus galloprovincialis) following the exposure to suspensions of microparticles irregular shaped fibres of Polyethylene terephthalate of different sizes (small 5–60 μm, S-PET; medium 61–499 μm, M-PET; large 500–3000 μm, L-PET) at a single dose of 0.1 g/L. Mussels were tested under two different starting pH conditions of marine water: standard (8.0) and acidified (7.5). The results obtained from this study show that: i) PET microplastics are able to induce biochemical stress in mussels; ii) among the biomarkers tested, LPO and GPx were more effective in detecting the stress induced by microplastic in both initial pH conditions; iii) the expression of biomarkers was influenced by the size of the microparticle. In particular, greater effects were associated with the largest PET particle tested (0.5–3.0 mm); iv) regarding the effect of pH, in experiments starting from 7.5 pH the animals showed a lower biomarker expression than those starting from 8.0 pH.

Continue reading ‘Exposure to pet-made microplastics: Particle size and pH effects on biomolecular responses in mussels’

Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis

Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.

Continue reading ‘Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis’

Beneficial effects of diel CO2 cycles on reef fish metabolic performance are diminished under elevated temperature

Highlights

•Coastal habitats and coral reefs often exhibit a diel cycle of pCO2.

•It is unknown how diel-cycling CO2 and temp affect metabolic traits in reef fishes.

•Traits measured were maximal/resting O2 uptake and factorial/absolute aerobic scope.

•Beneficial effect of diel-cycling CO2 on O2Rest and FAS diminished at high temp.

•Studies should use habitat-relevant CO2 cycles/temp to predict biological effects.

Abstract

Elevated CO2 levels have been shown to affect metabolic performance in some coral reef fishes. However, all studies to date have employed stable elevated CO2 levels, whereas reef habitats can experience substantial diel fluctuations in pCO2 ranging from ±50 to 600 μatm around the mean, fluctuations that are predicted to increase in magnitude by the end of the century. Additionally, past studies have often investigated the effect of elevated CO2 in isolation, despite the fact that ocean temperatures will increase in tandem with CO2 levels. Here, we tested the effects of stable (1000 μatm) versus diel-cycling (1000 ± 500 μatm) elevated CO2 conditions and elevated temperature (+2 °C) on metabolic traits of juvenile spiny damselfish, Acanthochromis polyacanthus. Resting oxygen uptake rates (O2) were higher in fish exposed to stable elevated CO2 conditions when compared to fish from stable control conditions, but were restored to control levels under diel CO2 fluctuations. However, the benefits of diel CO2 fluctuations were diminished at elevated temperature. Factorial aerobic scope showed a similar pattern, but neither maximal O2 nor absolute aerobic scope was affected by CO2 or temperature. Our results suggest that diel CO2 cycles can ameliorate the increased metabolic cost associated with elevated CO2, but elevated temperature diminishes the benefits of diel CO2 cycles. Thus, previous studies may have misestimated the effect of ocean acidification on the metabolic performance of reef fishes by not accounting for environmental CO2 fluctuations. Our findings provide novel insights into the interacting effects of diel CO2 fluctuations and temperature on the metabolic performance of reef fishes.

Continue reading ‘Beneficial effects of diel CO2 cycles on reef fish metabolic performance are diminished under elevated temperature’

Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation

Marine photosynthesis contributes approximately half of the global primary productivity. Ocean climate changes, such as increasing dissolved CO2 in seawater and consequently declining pH (known as ocean acidification, OA), may alter marine photosynthetic performance. There are numerous studies on the effects of OA on photosynthetic organisms, but controversial findings indicate positive, neutral, and negative influences. Most of the studies so far have been conducted under controlled conditions that ignored the presence of solar UV radiation. Increased CO2 availability may play a fertilizing role, while the concurrent pH drop may exert pressure on microalgal cells, especially during the night period. It is known that elevated CO2 concentrations downregulate CO2-concentrating mechanisms (CCMs), and intracellular concentrations of dissolved inorganic carbon in diatoms grown under elevated CO2 levels can be much lower than that in low CO2-grown ones. Such a reduced CO2 availability within cells in response to increased CO2 in the water can lead to enhanced photorespiration due to an increased O2 to CO2 ratio around the carboxylating and oxygenating enzyme, RuBisCO. Therefore, negative and positive effects of OA may depend on light levels, since the saved energy due to downregulation of CCMs can benefit growth under light-limited conditions but enhance photoinhibition under light-excessive conditions. OA affects metabolic pathways in phytoplankton. It augments ß-oxidation and the citric acid cycle, which accumulates toxic phenolic compounds. In the upper mixed layer, phytoplankton are exposed to excessive PAR and UV radiation (UVR). The calcareous incrustations of calcified microalgae, known to shield the organisms from UVR, are thinned due to OA, exposing the cells to increased solar UV and further inhibiting their calcification and photosynthesis, reflecting a compounded impact. Such UV and OA interactive effects are expected to reduce primary productivity in oligotrophic pelagic surface waters. In this chapter, we review and analyze recent results on effects of OA and UV and their combined effects on marine photosynthesis of microalgae, which falls in the context of marine photosynthesis under changing ocean environments and multiple stressors.

Continue reading ‘Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation’

High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community

Aquatic ecosystems face a multitude of environmental stressors, including warming and acidification. While warming is expected to have a pronounced effect on plankton communities, many components of the plankton seem fairly robust towards realistic end-of-century acidification conditions. However, interactions of the two stressors and the inclusion of further factors such as nutrient concentration and trophic interactions are expected to change this outcome. We investigated the effects of warming and high CO2 on a nutrient-deplete late summer plankton community from the Kiel Fjord, Baltic Sea, using a mesocosm setup crossing two temperatures with a gradient of CO2. Phytoplankton and microzooplankton (MZP) growth rates as well as biomass, taxonomic composition, and grazing rates of MZP were analysed. We observed effects of high CO2, warming, and their interactions on all measured parameters. The occurrence and direction of the effects were dependent on the phytoplankton or MZP community composition. In addition, the abundance of small-sized phytoplankton was identified as one of the most important factors in shaping the MZP community composition. Overall, our results indicate that an estuarine MZP community used to strong natural fluctuations in CO2 can still be affected by a moderate increase in CO2 if it occurs in combination with warming and during a nutrient-deplete post-bloom situation. This highlights the importance of including trophic interactions and seasonality aspects when assessing climate change effects on marine zooplankton communities.

Continue reading ‘High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community’

Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.

Continue reading ‘Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,349,188 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book