Posts Tagged 'multiple factors'

Threats to Australia’s oceans and coasts: a systematic review

Graphical abstract.


  • Threats to Australia’s oceans and coasts described in the academic literature from 2010 to 2020 were systematically reviewed.
  • 307 threats were identified across three categories, with most threats in the group “environmental and human-induced threats”.
  • Threats were described as impacting environmental (68%), economic (14%), socio-cultural (12%), and Indigenous (6%) values.
  • Only 45 of the 226 papers (20%) discussed multiple threats.
  • Findings highlight the cumulative and multi-faceted threats facing Australian oceans and coasts that must be addressed.


Oceans and coasts provide important ecosystem, livelihood, and cultural values to humans and the planet but face current and future compounding threats from anthropogenic activities associated with expanding populations and their use of and reliance on these environments. To respond to and mitigate these threats, there is a need to first systematically understand and categorise them. This paper reviewed 226 articles from the period 2010–2020 on threats to Australia’s oceans and coasts, resulting in the identification of a total of 307 threats. Threats were grouped into three broad categories — threats from use and extraction; environmental and human-induced threats; and policy and socio-political threats —then ranked by frequency. The most common ‘threats from use and extraction’ were recreational activities, non-point source pollution, and urban development; the most common ‘environmental and human-induced threat’ was increased temperatures; and the most common ‘policy and socio-political threat’ was policy gaps and failures (e.g., a lack of coastal climate adaptation policies). The identification of threats across all three categories increased over time; however, the identification of ‘threats from use and extraction’ increased most rapidly over the last four years (2017–2020). Threats were most often described for their impacts on environmental values (68%), followed by economic (14%), socio-cultural (12%), and Indigenous (6%) values. Only 45 of the 226 papers (20%) discussed multiple threats. The threats facing Australia’s oceans and coasts are rising, cumulative, and multi-faceted, and the inherent tensions between varied uses, along with intensification of uses that derive short-term anthropogenic benefit, will continue to degrade the ecological sustainability of ocean and coastal systems if actions are not taken.

Continue reading ‘Threats to Australia’s oceans and coasts: a systematic review’

Gastropods underwent a major taxonomic turnover during the end-Triassic marine mass extinction event

Based on an exhaustive database of gastropod genera and subgenera during the Triassic–Jurassic transition, origination and extinction percentages and resulting diversity changes are calculated, with a particular focus on the end-Triassic mass extinction event. We show that gastropods suffered a loss of 56% of genera and subgenera during this event, which was higher than the average of marine life (46.8%). Among molluscs, gastropods were more strongly affected than bivalves (43.4%) but less than ammonoids, which were nearly annihilated. However, there were also pronounced differences among gastropod subclasses. The most strongly affected subclass was the Neritimorphia, which lost 72.7% of their Rhaetian genera; on the other extreme, the Heterobranchia remained nearly unaffected (11% loss). We analysed this extinction pattern with respect to larval development, palaeobiogeography, shell size, and anatomy and found that putative feeding of the pelagic larval stage, adaptation to tropical-temperate water temperatures, and flexibility of the mantle attachment were among the factors that might explain extinction resilience of heterobranchs during the end-Triassic crisis. Among molluscs, extinction magnitude roughly correlates with locomotion activity and thus metabolic rates. We suggest three potential kill mechanisms that could account for these observations: global warming, ocean acidification, and extinction of marine plankton. The end-Triassic extinction of gastropods therefore fits to proposed extinction scenarios for this event, which invoke the magmatic activity of the Central Atlantic Magmatic Province as the ultimate cause of death. With respect to gastropods, the effect of the end-Triassic mass extinction was comparable to that of the end-Permian mass extinction. Notably, Heterobranchia was relatively little affected by both events; the extinction resilience of this subclass during times of global environmental changes was therefore possibly a key aspect of their subsequent evolutionary success.

Continue reading ‘Gastropods underwent a major taxonomic turnover during the end-Triassic marine mass extinction event’

Impact of climate change on Arctic macroalgal communities

The Arctic region faces a warming rate that is more than twice the global average. Seaice loss, increase in precipitation and freshwater discharge, changes in underwater light, and amplification of ocean acidification modify benthic habitats and the communities they host. Here we synthesize existing information on the impacts of climate change on the macroalgal communities of Arctic coasts. We review the shortand long-term changes in environmental characteristics of shallow hard-bottomed Arctic coasts, the floristics of Arctic macroalgae (description, distribution, life-cycle, adaptations), the responses of their biological and ecological processes to climate change, the resulting winning and losing species, and the effects on ecosystem functioning. The focus of this review is on fucoid species, kelps, and coralline algae which are key ecosystem engineers in hard-bottom shallow areas of the Arctic, providing food, substrate, shelter, and nursery ground for many species. Changes in seasonality, benthic functional diversity, food-web structure, and carbon cycle are already occurring and are reshaping Arctic benthic ecosystems. Shallow communities are projected to shift from invertebrate-to algal-dominated communities. Fucoid and several kelp species are expected to largely spread and dominate the area with possible extinctions of native species. A considerable amount of functional diversity could be lost impacting the processing of land-derived nutrients and organic matter and significantly altering trophic structure and energy flow up to the apex consumers. However, many factors are not well understood yet, making it difficult to appreciate the current situation and predict the future coastal Arctic ecosystem. Efforts must be made to improve knowledge in key regions with proper seasonal coverage, taking into account interactions between stressors and across species.

Continue reading ‘Impact of climate change on Arctic macroalgal communities’

Crustacean ecology in a changing climate

Whilst crustaceans occupy a diversity of ecological niches and have adapted to many environmental challenges, relatively little is known on how the predicted changes associated with climate change will impact individuals, communities, species and ecosystems globally. Direct oceanic change to seawater temperature, pH, alkalinity, oxygen level and salinity and indirect impacts on weather, seasonality, food availability and changes in ecological networks will put pressure upon crustaceans to acclimate. There is now emerging evidence that behaviour, physiology, fitness and ultimately reproduction and survival of coastal crustaceans is altered under experimental climate change conditions, with most studies showing negative impacts. Nevertheless measurable endpoints, multigenerational and ecosystem studies are to date extremely rare and the full impact of climate change stress upon crustaceans is nowhere near fully understood.

Continue reading ‘Crustacean ecology in a changing climate’

Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach


  • Spisula solida accumulated Gd after just one day.
  • Climate change did not impact Gd accumulation and elimination.
  • Gd was not proficiently eliminated in 7 days.
  • Lipid peroxidation was greater in clams exposed to warming and Gd.
  • Gd showed enhanced ecotoxicity in climate change conditions.


Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = − 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L−1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam’s biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.

Continue reading ‘Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach’

Climate change and species facilitation affect the recruitment of macroalgal marine forests

Marine forests are shrinking globally due to several anthropogenic impacts including climate change. Forest-forming macroalgae, such as Cystoseira s.l. species, can be particularly sensitive to environmental conditions (e.g. temperature increase, pollution or sedimentation), especially during early life stages. However, not much is known about their response to the interactive effects of ocean warming (OW) and acidification (OA). These drivers can also affect the performance and survival of crustose coralline algae, which are associated understory species likely playing a role in the recruitment of later successional species such as forest-forming macroalgae. We tested the interactive effects of elevated temperature, low pH and species facilitation on the recruitment of Cystoseira compressa. We demonstrate that the interactive effects of OW and OA negatively affect the recruitment of C. compressa and its associated coralline algae Neogoniolithon brassica-florida. The density of recruits was lower under the combinations OW and OA, while the size was negatively affected by the temperature increase but positively affected by the low pH. The results from this study show that the interactive effects of climate change and the presence of crustose coralline algae can have a negative impact on the recruitment of Cystoseira s.l. species. While new restoration techniques recently opened the door to marine forest restoration, our results show that the interactions of multiple drivers and species interactions have to be considered to achieve long-term population sustainability.

Continue reading ‘Climate change and species facilitation affect the recruitment of macroalgal marine forests’

Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change

Crustose coralline algae (CCA) are one of the most important benthic substrate consolidators on coral reefs through their ability to deposit calcium carbonate on an organic matrix in their cell walls. Discrete polysaccharides have been recognized for their role in biomineralization, yet little is known about the carbohydrate composition of organic matrices across CCA taxa and whether they have the capacity to modulate their organic matrix constituents amidst environmental change, particularly the threats of ocean acidification (OA) and warming. We simulated elevated pCO2 and temperature (IPCC RCP 8.5) and subjected four mid-shelf Great Barrier Reef species of CCA to two months of experimentation. To assess the variability in surficial monosaccharide composition and biomineralization across species and treatments, we determined the monosaccharide composition of the polysaccharides present in the cell walls of surficial algal tissue and quantified calcification. Our results revealed dissimilarity among species’ monosaccharide constituents, which suggests that organic matrices are composed of different polysaccharides across CCA taxa. We also found that species differentially modulate composition in response to ocean acidification and warming. Our findings suggest that both variability in composition and ability to modulate monosaccharide abundance may play a crucial role in surficial biomineralization dynamics under the stress of OA and global warming.

Continue reading ‘Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change’

Crustacean decapods are models to describe the general trends of biodiversity according to ocean acidification

A remarkable lack of punctual and comparable data on the availability of trophic resources characterizes most studies relating biodiversity and food webs, but decapod crustaceans will help, in this study, finding some peculiar common trends of ecosystems. Structural properties of networks, as statistically investigated, affect their stability and food webs are ultimately considered as complex networks of biotic interactions. Fixed mathematical limits constrain the number of species naturally assembled in a community, even if species composition was progressively modified by climate changes: the biodiversity has space constraints. Consequently, since there is less space at higher latitudes than at lower ones, less species may be predicted to globally co-exist, as the planet warms up and the oceans acidify. Here, according to some key mathematical relationships of networks, we forecast an inverse relationship between connectance (a specific feature of food webs) and species diversity. In this chapter, we will apply these relationships to test a general model of biodiversity trends based on the responses of crustacean decapods to the abundance of feeding sources, in a range of environments variably impacted by O.A. The conclusions reached within this chapter will demonstrate consistent properties characterizing the assemblages of aquatic creatures, and extensible to various structural levels, from single cells to the largest ecosystems.

Continue reading ‘Crustacean decapods are models to describe the general trends of biodiversity according to ocean acidification’

Impacts of global environmental change on fish and fisheries of the Northeastern Pacific Ocean

Marine fishes’ intolerance to global change conditions can affect the abundance and distribution of ecologically and economically important species, reshape the structure of trophic webs, and profoundly impact the human communities that rely on fished species for their livelihood and culture. Only by understanding the vulnerability of fished species and fishing communities to global change can we take effective adaptive action and implement climate-ready fisheries management. In this dissertation, I investigate the vulnerability of eight commercially important fished species and one fishing community to global change in the Northeastern Pacific Ocean. In chapter one, I expose Lingcod (Ophiodon elongatus), a benthic egg layer, to temperature, oxygen, and pH conditions we expect to see in the Central California Current System (CCS) by the year 2050 and 2100. I examine both the lethal and sublethal effects of these two multistressor climate change scenarios by measuring differences in metabolic rate, hatching success, and larval quality between treatments. In chapter two, I use a species distribution modeling approach to evaluate how historical (1982-2019) and projected (2030 through end-of-century) warming in the Eastern Bering Sea (EBS), Alaska, affects predator-prey interactions for some of the most commercially valuable fisheries in the U.S. These species include: 1) Pacific Cod (Gadus macrocephalus), 2) Pacific Halibut (Hippoglossus stenolepis), 3) Arrowtooth Flounder, 4) Walleye Pollock (Gadus chalcogrammus), 5) Tanner Crab (Chionoecetes bairdi), 6) Snow Crab (Chionoecetes opilio), and 7) Alaskan Pink Shrimp (Pandalus eous). In chapter three, I use social network analyses to depict the resilience and adaptability of the California Market Squid fishery (Doryteuthis opalescens), the most valuable in the state, to climate perturbations and project changes in habitat suitability by the year 2100 in the CCS. By using all of these vulnerability assessment tools, we can begin to prepare U.S. west coast fisheries for global environmental change.

Continue reading ‘Impacts of global environmental change on fish and fisheries of the Northeastern Pacific Ocean’

Coral reef fishes in a multi-stressor world

Coral reef fishes and the ecosystems they support represent some of the most biodiverse and productive ecosystems on the planet yet are under threat as they face dramatic increases in multiple, interacting stressors that are largely intensified by anthropogenic influences, such as climate change. Coral reef fishes have been the topic of 875 studies between 1979 and 2020 examining physiological responses to various abiotic and biotic stressors. Here, we highlight the current state of knowledge regarding coral reef fishes’ responses to eight key abiotic stressors (i.e., pollutants, temperature, hypoxia and ocean deoxygenation, pH/CO2, noise, salinity, pressure/depth, and turbidity) and four key biotic stressors (i.e., prey abundance, predator threats, parasites, and disease) and discuss stressors that have been examined in combination. We conclude with a horizon scan to discuss acclimation and adaptation, technological advances, knowledge gaps, and the future of physiological research on coral reef fishes. As we proceed through this new epoch, the Anthropocene, it is critical that the scientific and general communities work to recognize the issues that various habitats and ecosystems, such as coral reefs and the fishes that depend on and support them, are facing so that mitigation strategies can be implemented to protect biodiversity and ecosystem health.

Continue reading ‘Coral reef fishes in a multi-stressor world’

Design of a low-cost pH-Stat to study effects of ocean acidification on growth and nutrient consumption of diatoms


  • A low-cost pH-stat was designed to evaluate the effect of pH variations on the growth rate and nutrient consumption in multiple microalgae cultures.
  • The current pH of the ocean resulted in the highest growth rate for P. tricornutum.
  • Nitrate was the limiting nutrient in the three pH levels evaluated.
  • Phosphate and iron were related to the acclimatization response of the microalgae.
  • Efficient pH control allowed for the observation of some of the effects of climate change on diatoms related to nutrient consumption.


Increasing CO2 emissions has modified oceanic pH levels. These pH changes affect phytoplankton growth and composition. Diatom cells constitute almost 50% of phytoplankton, and they have significant importance in the ocean food chains and biotechnology industries. Therefore, knowledge of their response to pH changes could be useful for conservation and aquaculture of these species. There are different pH-Stat systems to supply CO2 gas to the culture medium, however, it is common to use one unit or pH probe for each culture. In this study, we designed a low-cost pH-stat to regulate the pH level in fifteen simultaneous cultures. It was evaluated with Phaeodactylum tricornutum at three pH setpoints:7.5 and 7.8 as acid treatments and 8.1 as control; each experiment lasted seven days, and growth rates, latency phases and nutrient consumption rates were determined. The accuracy and precision of the pH regulated was in an acceptable level compared with other systems. The growth rate and consumption of nitrate were higher at pH 8.1, moreover differences were observed in the duration of the latency phase, suggesting a longer acclimation process at lower pH. Changes in phosphate and iron consumption indicated a higher availability in acid treatments, however they did not enhance the growth. These denoted unfavorable effects of ocean acidification on diatoms growth.

Continue reading ‘Design of a low-cost pH-Stat to study effects of ocean acidification on growth and nutrient consumption of diatoms’

Quantification of the dominant drivers of acidification in the coastal Mid-Atlantic Bight


In shallow coastal shelves like the Mid-Atlantic Bight (MAB), ocean acidification due to increased atmospheric carbon dioxide (CO2) is compounded by highly variable coastal processes including riverine freshwater inputs, nutrient loading, biogeochemical influence, coastal currents and water mass mixing, and seasonal transitions in physical parameters. Past deconstructions of carbonate system drivers in the MAB have focused on nearshore zones or single season data, and thus lack the spatial and temporal resolution required to assess impacts to important species occupying the shelf. Deconstructing highly resolved data collected during four seasonal Slocum glider deployments in the MAB, this study uses a Taylor Series decomposition to quantify the influence of temperature, salinity, biogeochemical activity, and water mass mixing on pH and aragonite saturation state from sea surface to bottom. Results show that water mass mixing and biogeochemical activity were the most significant drivers of the carbonate system in the MAB. Nearshore water was more acidic year-round due to riverine freshwater input, but photosynthesis reduced acidity at certain depths and times. Water mass mixing increased acidity in bottom water on the shelf, particularly in summer. Gulf Stream intrusions at the shelf break during fall acted to mitigate acidification on the shelf in habitats occupied by carbonate-bearing organisms. The relationships quantified here can be used to improve biogeochemical forecast models and determine habitat suitability for commercially important fin and shellfish species residing in the MAB.

Key Points

  • Water mass mixing and biogeochemical activity are the major drivers of seasonal carbonate system dynamics in the MAB
  • Water mass mixing has opposing effects on carbonate chemistry in the nearshore and at the continental shelf break

Plain Language Summary

The coastal ocean is experiencing changes in chemistry due to human activities, including carbon dioxide emissions, nutrient runoff, and seasonal changes in temperature, salinity, and coastal currents. These drivers have been studied close to shore and/or only during single seasons, leaving a gap in our understanding of seasonal changes across the entire economically important shelf region. Here, we use high-resolution data collected by a deep-sea robot that measures chemistry from ocean surface to the sea floor. We determined the importance of four key influences (temperature, salinity, water mass mixing, and biological activity) on changes in coastal chemistry over the course of a year. We found that the most important driver of shelf chemistry was mixing of freshwater at the coast and warm, salty water at the edge of the shelf. Biological activity was a secondary influence, which caused smaller scale changes in chemistry. These results can help to predict how coastal chemistry might change in the future, so that we can prepare for the effects on economically important animals and industries.

Continue reading ‘Quantification of the dominant drivers of acidification in the coastal Mid-Atlantic Bight’

Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis)

Graphical abstract.


  • Climate change can affect nutritional quality and physiology of marine organisms.
  • Growth, metabolism and excretion were assessed under acidification and warming.
  • Weight gain, metabolic rates and energy intake increased under future climate conditions.
  • The highest energy budget fractions were allocated to growth and faecal excretion.
  • Juvenile Senegalese sole is resilient to climate change-related scenarios.


Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = −0.3 units equivalent to ΔpCO2 ~ +600 μatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48–63 %), followed by excretion through faeces (36–51 %), respiration (approximately 1 %) and ammonia excretion (0.1–0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.

Continue reading ‘Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis)’

Marine heatwave impacts on newly-hatched planktonic larvae of an estuarine crab

Graphical abstract.


  • Larvae survival was affected by temperature increase regardless of pH conditions.
  • Larvae heart beating and abdominal contractions were affected by temperature and pH.
  • Over the past 38 years Santos/São Vicente coast had a mean SST increase of 0.85 °C.
  • Higher intensity and duration of heatwaves are expected to reduce larval recruitment.


Climate change is imposing constant and more severe environmental challenges to coastal and marine species. Regional climate and species acclimation capacity determine the communities’ ecological response to stressors. Marine heatwave events are of serious threat to species fitness and survivorship, even more to the sensitive early-history stages of ectotherms. By combining modeled regional historical data and climate change predictions with manipulative experiments, we evaluated the potential impact of marine heatwaves in a widespread and abundant planktonic larvae of the fiddler crab Leptuca thayeri. Larvae survival was affected by temperature increase with lowest survival probability under higher temperature treatments regardless of pH conditions. Larval physiology was affected by both temperature increase and pH conditions. With heatwaves becoming more frequent, hotter, and lasting longer in the region, we could expect potential reductions in the larval recruitment and stocks with cascade ecological negative effects on estuarine habitats.

Continue reading ‘Marine heatwave impacts on newly-hatched planktonic larvae of an estuarine crab’

Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification (update)

The ability of coral populations to recover from disturbance depends on larval dispersion and recruitment. While ocean warming and acidification effects on adult corals are well documented, information on early life stages is comparatively scarce. Here, we investigate whether ocean warming and acidification can affect the larval and recruit development of the Mediterranean azooxanthellate coral Astroides calycularis. Larvae and recruits were raised for 9 months at ambient (23 C) and warm (26 C) temperatures and ambient (8.0) and low pH (7.7, on the total scale). The timing of the larval metamorphosis, growth of the recruit polyp by linear extension and budding, and skeletal characteristics of the 9-month-old polyps were monitored. Settlement and metamorphosis were more successful and hastened under a warm temperature. In contrast, low pH delayed the metamorphosis and affected the growth of the recruits by reducing the calcified area of attachment to the substrate as well as by diminishing the skeleton volume and the number of septa. However, skeleton density was higher under low pH and ambient temperature. The warm temperature and low-pH treatment had a negative impact on the survival, settlement, and growth of recruits. This study provides evidence of the threat represented by ocean warming and acidification for the larval recruitment and the growth of recruits of A. calycularis.

Continue reading ‘Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification (update)’

Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: a study of the Pacific Oyster (Crassostrea gigas)

Graphical abstract.


  • The toxicity of combined exposure fell in between tralopyril and OA alone.
  • Tralopyril and/or OA activates stress defense and interferes with energy metabolism.
  • Tralopyril and/or OA affects bivalve biomineralization and marine carbon cycling.


The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.

Continue reading ‘Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: a study of the Pacific Oyster (Crassostrea gigas)’

Elevated CO2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation


  • High CO2 exacerbated the UVR-induced inhibition on PSII activity.
  • UVR stimulated the removal rates of both PsbA and PsbD.
  • The removal of PsbD declined by high CO2 under the exposure of UVR.
  • High CO2 reversed the UVR-induced YNPQ to YNo.


Diatoms account for a large proportion of marine primary productivity, they tend to be the predominant species in the phytoplankton communities in the surface ocean with frequent and large light fluctuations. To understand the impacts of increased CO2 on diatoms’ capacity in exploitation of variable solar radiation, we cultured a model diatom Thalassiosira pseudonana with 400 or 1000ppmv CO2 and exposed it to high photosynthetically active radiation (PAR) alone or PAR plus ultraviolet radiation (UVR) to examine its physiological performances. The results showed that the maximum photochemical efficiency (Fv/fm) was significantly reduced by high PAR and PAR + UVR in T. pseudonana, UVR-induced inhibition on PSII activity was exacerbated by high CO2. PSII activity drops coincide approximately with PsbA content in the cells exposed to high PAR or PAR + UVR, which was pronounced at high CO2. The removal of PsbD in T. pseudonana cells declined under high CO2 during UVR exposure, limiting the repair capacity of PSII. In addition, high CO2 reversed the induction of energy-dependent form of NPQ by UVR to the increase of Y(No), indicating the severe damage of the photoprotective reactions. Our findings suggest that the adverse impacts of UVR on PSII function of T. pseudonana were aggravated by the elevated CO2 through modulating its capacity in repair and protection, which thereby would influence its abundance and competitiveness in phytoplankton communities.

Continue reading ‘Elevated CO2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation’

Benthic foraminifera and pore water carbonate chemistry on a tidal flat and salt marsh at Ria Formosa, Algarve, Portugal

Graphical abstract


  • Foraminifera and halophytes showed a relationship with pore water properties.
  • Soil salinity and evaporation are the governing environmental factors.
  • Agglutinated foraminifera were rather related to pore water pCO2 than to submergence time or elevation.
  • Calcareous foraminifera specialised to tolerate carbonate-corrosive conditions prevailed at lowest saturation levels.


Benthic foraminifera showed a vertical zonation in tidally influenced salt marshes, which has been used for sea level reconstructions. Growing evidence suggested that freshwater influx, salinity, or the pH of interstitial waters has also an impact on the foraminiferal distribution. A tidal flat and salt marsh transect was investigated in the north-western Ria Formosa coastal lagoon, Algarve, Portugal, to constrain the relationship of benthic foraminifera, halophytes, and pore water properties. The dominance of saltworts from the subfamily Salicornioideae and landward increasing soil salinities depicted evaporation as governing environmental factor. The carbonate chemistry from lagoonal and pore waters identified anoxic tidal flat sediments of as main source of total alkalinity. The alkalinity was lower in the salt marsh, where the pCO2 was extremely high. Salt marsh pore waters showed a high variability of carbonate system parameters, which mirrored small-scale spatial heterogeneities in the soil. The distribution of textulariid salt marsh foraminifera was confined to the vegetated zones, where their abundance increased with elevation. Calcareous species were frequent on the tidal flat and in the highest salt marsh. Many of them were specialised to high salinities or to extreme and variable environmental conditions. Two levels of faunal change in the salt marsh coincide with vegetation zonal boundaries, mean tide or mean high water levels. The two other faunal changes were related to changes in calcite saturation state or organic carbon concentrations. The proportion of textulariids showed a negative correlation with submergence time or elevation, and a significant correlation with pore water pCO2. The faunal distribution, pore water calcite saturation, and Ammonia dissolution patterns indicated that calcareous species specialised to tolerate carbonate-corrosive conditions prevailed even at lowest saturation levels.

Continue reading ‘Benthic foraminifera and pore water carbonate chemistry on a tidal flat and salt marsh at Ria Formosa, Algarve, Portugal’

Environmental change impacts on shell formation in the muricid Nucella lapillus

Environmental change is a significant threat to marine ecosystems worldwide. Ocean acidification, global warming and long-term emissions of anthropogenic effluents are all negatively impacting aquatic life. Marine calcifying organisms, in particular, are expected to be severely affected by decreasing seawater pH, resulting in shell dissolution and retardations during the formation and repair of shells. Understanding the underlying biological and environmental factors driving species vulnerabilities to habitat alterations is thus crucial to our ability to faithfully predict impacts on marine ecosystems under an array of environmental change scenarios. So far, existing knowledge about organism responses mainly stems from short to medium term laboratory experiments of single species or over- simplified communities. Although these studies have provided important insights, results may not translate to organism responses in a complex natural system requiring a more holistic experimental approach. In this thesis, I investigated shell formation mechanisms and shape and elemental composition responses in the shell of the important intertidal predatory muricid Nucella lapillus both in situ and across heterogeneous environmental gradients. The aim was to identify potential coping mechanisms of N. lapillus to environmental change and provide a more coherent picture of shell formation responses along large ecological gradients in the spatial and temporal domain. To investigate shell formation mechanisms, I tested for the possibility of shell recycling as a function to reduce calcification costs during times of exceptional demand using a multi-treatment shell labelling experiment. Reports on calcification costs vary largely in the literature. Still, recent discoveries showed that costs might increase as a function of decreasing calcification substrate abundance, suggesting that shell formation becomes increasingly more costly under future environmental change scenarios. However, despite the anticipated costs, no evidence was found that would indicate the use of functional dissolution as a means to recycle shell material for a more cost-efficient shell formation in N. lapillus. To investigate shell formation responses, I combined morphometric and shell thickness analyses with novel statistical methods to identify natural shape and thickness response of N. lapillus to large scale variability in temperature, salinity, wind speed and the carbonate system across a wide geographic range (from Portugal to Iceland) and through time (over 130 years). I found that along geographical gradients, the state of the carbonate system and, more specifically, the substrate inhibitor ratio ([HCO3−][H+]−1) (SIR) was the main predictor for shape variations in N. lapillus. Populations in regions with a lower SIR tend to form narrower shells with a higher spire to body whorl ratio. In contrast, populations in regions with a higher SIR form wider shells with a much lower spire to body whorl ratio. The results suggest a widespread phenotypic response of N. lapillus to continuing ocean acidification could be expected, affecting its phenotypic response patterns to predator or wave exposure regimes with profound implications for North Atlantic rocky shore communities. On the contrary, investigations of shell shape and thickness changes over the last 130 years from adjacent sampling regions on the Southern North Sea coast revealed that contrary to global predictions, N. lapillus built continuously thicker shells while maintaining a consistent shell shape throughout the last century. Systematic modelling efforts suggested that the observed shell thickening resulted from higher annual temperatures, longer yearly calcification windows, nearshore eutrophication, and enhanced prey abundance, which mitigated the impact of other climate change factors. An investigation into the trace elemental composition of common pollutant metals in the same archival N. lapillus specimens revealed that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant throughout the last 130 years despite substantial shifts in the environmental concentration. However, Pb/Ca concentration ratios showed a definite trend closely aligned with leaded petrol emissions in Europe over the same period. Discussing physiological and environmental drivers for the observed shell bound heavy metal patterns, I argue that, unlike for Pb, constraints on environmental dissolved Cu species abundance and biologically mediated control on internal Zn levels were likely responsible for a decoupling of shell-bound to total ambient Cu and Zn concentrations. The results highlight the complexity of internal and external pathways that govern the uptake of heavy metals into the molluscan shell and suggest that the shell of N. lapillus could be a suitable archive for a targeted investigation of Pb pollution in the intertidal zone.

Continue reading ‘Environmental change impacts on shell formation in the muricid Nucella lapillus’

Responses of elemental content and macromolecule of the coccolithophore Emiliania huxleyi to reduced phosphorus availability and ocean acidification depend on light intensity

Global climate change leads to simultaneous changes in multiple environmental drivers in the marine realm. Although physiological characterization of coccolithophores have been studied under climate change, there is limited knowledge on the biochemical responses of this biogeochemically important phytoplankton group to changing multiple environmental drivers. Here we investigate the interactive effects of reduced phosphorus availability (4 to 0.4 μmol L–1), elevated pCO2 concentrations (426 to 946 μatm) and increasing light intensity (40 to 300 μmol photons m–2 s–1) on elemental content and macromolecules of the cosmopolitan coccolithophore Emiliania huxleyi. Reduced phosphorus availability reduces particulate organic nitrogen and protein contents under low light intensity, but not under high light intensity. Reduced phosphorus availability and ocean acidification act synergistically to increase particulate organic carbon (POC) and carbohydrate contents under high light intensity but not under low light intensity. Reduced phosphorus availability, ocean acidification and increasing light intensity act synergistically to increase the allocation of POC to carbohydrates. Under future ocean acidification and increasing light intensity, enhanced carbon fixation could increase carbon storage in the phosphorus-limited regions of the oceans where E. huxleyi dominates the phytoplankton assemblages. In each light intensity, elemental carbon to phosphorus (C : P) and nitrogen to phosphorus (N : P) ratios decrease with increasing growth rate. These results suggest that coccolithophores could reallocate chemical elements and energy to synthesize macromolecules efficiently, which allows them to regulate its elemental content and growth rate to acclimate to changing environmental conditions.

Continue reading ‘Responses of elemental content and macromolecule of the coccolithophore Emiliania huxleyi to reduced phosphorus availability and ocean acidification depend on light intensity’

  • Reset


OA-ICC Highlights

%d bloggers like this: