Posts Tagged 'respiration'

Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions

Global degradation of coral reefs has increased the urgency of identifying stress-tolerant coral populations, to enhance understanding of the biology driving stress tolerance, as well as identifying stocks of stress-hardened populations to aid reef rehabilitation. Surprisingly, scientists are continually discovering that naturally extreme environments house established coral populations adapted to grow within extreme abiotic conditions comparable to seawater conditions predicted over the coming century. Such environments include inshore mangrove lagoons that carry previously unrecognised ecosystem service value for corals, spanning from refuge to stress preconditioning. However, the existence of such hot-spots of resilience on the Great Barrier Reef (GBR) remains entirely unknown. Here we describe, for the first time, 2 extreme GBR mangrove lagoons (Woody Isles and Howick Island), exposing taxonomically diverse coral communities (34 species, 7 growth morphologies) to regular extreme low pH (<7.6), low oxygen (7°C) conditions. Coral cover was typically low (0.5 m diameter), with net photosynthesis and calcification rates of 2 dominant coral species (Acropora millepora, Porites lutea) reduced (20-30%), and respiration enhanced (11-35%), in the mangrove lagoon relative to adjacent reefs. Further analysis revealed that physiological plasticity (photosynthetic ‘strategy’) and flexibility of Symbiodiniaceae taxa associations appear crucial in supporting coral capacity to thrive from reef to lagoon. Prevalence of corals within these extreme conditions on the GBR (and elsewhere) increasingly challenge our understanding of coral resilience to stressors, and highlight the need to study unfavourable coral environments to better resolve mechanisms of stress tolerance.

Continue reading ‘Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions’

Long-term effects of ocean acidification upon energetics and oxygen transport in the European sea bass (Dicentrarchus labrax, Linnaeus)

The accumulation of CO2 in the atmosphere and resulting ocean acidification represent a threat to marine ecosystems. While acid–base regulatory capacity is well developed in marine fish, allowing compensation of extra-cellular pH during short-term hypercapnia, the possible energetic costs of such regulation during long-term exposure remain to be established. In this study, juvenile European sea bass (Dicentrarchus labrax) were exposed from 2 days post-hatching to three different ocean acidification scenarios: control (present condition, PCO2  = 520 µatm, pH 7.9), moderate acidification ( PCO2  = 950 µatm, pH 7.7), and high acidification ( PCO2  = 1490 µatm, pH 7.5). After 1.5 years of exposure, fish aerobic metabolic capacities, as well as elements of their oxygen extraction and transport chain, were measured. Compared to control, PCO2 treatments did not affect fish standard metabolic rate (SMR). However, the most severe acidification condition was associated with a significantly elevated maximum metabolic rate (MMR).This was supported by heavier gill system and higher blood haemoglobin concentration. A reduction of maximum cardiac frequency (fHmax) during incremental warming of anaesthetized fish was also observed in both acidification scenarios. On the other hand, the critical oxygen level (O2crit), the minimum oxygen level required to sustain SMR, did not differ among groups. The increased MMR, associated with maintained SMR, suggests that acid–base compensatory processes, although not increasing maintenance costs, may affect components of bass homeostasis, resulting in new internal physico-chemical conditions. The possibility that these alterations influence metabolic pathways and physiological functions involved in fish aptitude to maximally transport oxygen is discussed.

Continue reading ‘Long-term effects of ocean acidification upon energetics and oxygen transport in the European sea bass (Dicentrarchus labrax, Linnaeus)’

The combined effects of ocean acidification with fleshy macroalgae and filamentous turfs on tropical crustose coralline algae

Global climate change induces multiple stressors on tropical coral reefs that threaten their persistence. Ocean acidification decreases calcification in most dominant reef builders, such as crustose coralline algae (CCA). Climate change also has the potential to increase the biomass of fleshy macroalgae and filamentous turf in coral reef ecosystems. While fleshy macroalgae and turf may shade, abrade, and have otherwise negative consequences on CCA metabolism, their high rates of photosynthesis may mitigate OA locally through carbon uptake, resulting in a local increase in pH. This thesis explored the effects of OA, combined with the presence of either fleshy macroalgae or algal turfs, on Lithophyllum kotschyanum, an abundant species of CCA in Moorea, French Polynesia. In a mesocosm study, three canopy types, clear mimics, dark mimics, and S. pacificum, were crossed with two CO2 levels, ambient (400 μatm) and elevated (1000 μatm). The clear, dark, and S. pacificum canopies resulted in stepwise decreases in calcification of L. kotschyanum. This response suggests that shading and likely flow moderation decrease CCA calcification. To separate the effects of fleshy macroalgal metabolism from the effects of its physical structure, a subsequent mesocosm and field experiment were performed. In the mesocosm study, a header tank that provided S. pacificum-treated seawater to treatment tanks was used to determine the metabolic effect of S. pacificum on L. kotschyanum. In the field, S. pacificum canopies were attached to 20  30 cm grids, upstream from CCA samples. Data from the mesocosm study support a positive effect of carbon uptake by S. pacificum, but the metabolic effect did not translate into the field. Because S. pacificum was placed in closer proximity to CCA samples in the field than in lab, the difference in L. kotschyanum calcification between the mesocosm and field experiment may be due to physical effects of the canopy in the field, such as shading. The combined results of these two studies suggest that upstream macroalgal communities have the potential to mitigate the negative effects of OA to downstream calcifiers, but will not benefit understory calcifiers. Finally, a mesocosm experiment was conducted to address the combined effects of OA and the presence of epiphytic turf algae on host CCA. In a factorial experiment, L. kotschyanum samples with and without epiphytic turf algae were placed in flow through tanks where pCO2 was ambient (400 μatm) or elevated (1000 μatm). Results indicated a significant effect of elevated pCO2 on CCA calcification and a negative effect of turf presence, despite a higher pH in the presence of turf during light incubations. This indicates that any benefit of higher daytime pH within the DBL of L. kotschyanum was outweighed by the negative effects, such as shading, nighttime anoxia and low pH. Overall, these studies indicate that fleshy macroalgae and filamentous turfs can raise seawater pH locally, but any benefit of this effect is outweighed by the negative effects of fleshy macroalgae and turf presence. The only instance during which CCA may incur a net benefit from fleshy macroalgae occurs when calcifiers are situated downstream of a dense macroalgal community, entirely unaffected by its physical structure. Ultimately, fleshy macroalgae and turf affect CCA negatively, regardless of OA treatment.

Continue reading ‘The combined effects of ocean acidification with fleshy macroalgae and filamentous turfs on tropical crustose coralline algae’

Hypoxia aggravates the effects of ocean acidification on the physiological energetics of the blue mussel Mytilus edulis


• Combined effects of ocean acidification and hypoxia are investigated in mussels.

• Physiological activities of mussels are inhibited by low pH and hypoxia.

• OA and hypoxia exert additive effects on the physiological metabolism of mussels.


Apart from ocean acidification, hypoxia is another stressor to marine organisms, especially those in coastal waters. Their interactive effects of elevated CO2 and hypoxia on the physiological energetics in mussel Mytilus edulis were evaluated. Mussels were exposed to three pH levels (8.1, 7.7, 7.3) at two dissolved oxygen levels (6 and 2 mg L−1) and clearance rate, absorption efficiency, respiration rate, excretion rate, scope for growth and O: N ratio were measured during a14-day exposure. After exposure, all parameters (except excretion rate) were significantly reduced under low pH and hypoxic conditions, whereas excretion rate was significantly increased. Additive effects of low pH and hypoxia were evident for all parameters and low pH appeared to elicit a stronger effect than hypoxia (2.0 mg L−1). Overall, hypoxia can aggravate the effects of acidification on the physiological energetics of mussels, and their populations may be diminished by these stressors.

Continue reading ‘Hypoxia aggravates the effects of ocean acidification on the physiological energetics of the blue mussel Mytilus edulis’

Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data


• OBM is more skilful than CN-REcoM when calibrated and validated with mesocosm data.

• OBM suggests that ocean acidification (OA) may stimulate carbon fixation rates in algae.

• Also, OA may elevate metabolic stress in phytoplankton, according to OBM.

• CN-REcoM imposes weak constraints on parameter values, hence solutions are flexible.

• As OBM is constrained by the physiological trade-offs, solutions are rigid and robust.


Marine phytoplankton can regulate their stoichiometric composition in response to variations in the availability of nutrients, light and the pH of seawater. Varying elemental composition of photoautotrophs affects several important ecological and biogeochemical processes, e.g., primary and export production, nutrient cycling, calcification, and grazing. Here we compare two plankton ecosystem models that consider regulatory mechanisms of cellular carbon and nitrogen, driving the physiological acclimation of photoautotrophs. The Carbon:Nitrogen Regulated Ecosystem Model (CN-REcoM) and the optimality-based model (OBM) differ in their representation of phytoplankton dynamics, i.e. nutrient acquisition, synthesis of chlorophyll a, and growth. All other model compartments (zooplankton, detritus, dissolved inorganic and organic matter) and processes (grazing, aggregation, remineralisation) remain identical in both models.

We assess the skills of the two models against data from an ocean acidification mesocosm experiment with three CO2 treatments. Neither model accounts for any carbon dioxide (CO2) effects explicitly. Instead, we assimilate data of the different CO2 treatments separately into the models. Thereby we aim at identifying optimal model parameter values that might correlate with differences in CO2 conditions. For the OBM, optimal parameter estimates of Qmin (subsistence N:C ratio) and V (maximum potential photosynthesis rate of photoautotrophs) turned out to be higher for mesocosms exposed to high CO2 compared to those with low CO2 concentrations. By contrast, a similar correlation is not observed for the CN-REcoM. A possible physiological interpretation of higher estimates of Qmin and V according to the OBM is that phytoplankton may experience environmental stress under more acidic conditions, and hence must invest more energy/resources for maintaining basic cellular functions. Our data assimilation reveals that the parameters of the OBM are better constrained by the data than those of the CN-REcoM. Furthermore, the OBM is better able than CN-REcoM to reproduce data that were not used for parameter optimization.

Continue reading ‘Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data’

Biological modification of seawater chemistry by an ecosystem engineer, the California mussel, Mytilus californianus

Marine habitat‐forming species often play critical roles on rocky shores by ameliorating stressful conditions for associated organisms. Such ecosystem engineers provide structure and shelter, for example, by creating refuges from thermal and desiccation stresses at low tide. Less explored is the potential for habitat formers to alter interstitial seawater chemistry during their submergence. Here, we quantify the capacity for dense assemblages of the California mussel, Mytilus californianus, to change seawater chemistry (dissolved O2, pH, and total alkalinity) within the interiors of mussel beds at high tide via respiration and calcification. We established a living mussel bed within a laboratory flow tank and measured vertical pH and oxygen gradients within and above the mussel bed over a range of water velocities. We documented decreases of up to 0.1 pH and 25 μmol O2 kg−1 internal to the bed, along with declines of 100 μmol kg−1 in alkalinity, when external flows were  95% of the time. Reductions in pH and O2 inside mussel beds may negatively impact resident organisms and exacerbate parallel human‐induced perturbations to ocean chemistry while potentially selecting for improved tolerance to altered chemistry conditions.

Continue reading ‘Biological modification of seawater chemistry by an ecosystem engineer, the California mussel, Mytilus californianus’

High pCO2 promotes coral primary production

While research on ocean acidification (OA) impacts on coral reefs has focused on calcification, relatively little is known about effects on coral photosynthesis and respiration, despite these being among the most plastic metabolic processes corals may use to acclimatize to adverse conditions. Here, we present data collected between 2016 and 2018 at three natural CO2 seeps in Papua New Guinea where we measured the metabolic flexibility (i.e. in hospite photosynthesis and dark respiration) of 12 coral species. Despite some species-specific variability, metabolic rates as measured by net oxygen flux tended to be higher at high pCO2 (ca 1200 µatm), with increases in photosynthesis exceeding those of respiration, suggesting greater productivity of Symbiodiniaceae photosynthesis in hospite, and indicating the potential for metabolic flexibility that may enable these species to thrive in environments with high pCO2. However, laboratory and field observations of coral mortality under high CO2 conditions associated with coral bleaching suggests that this metabolic subsidy does not result in coral higher resistance to extreme thermal stress. Therefore, the combined effects of OA and global warming may lead to a strong decrease in coral diversity despite the stimulating effect on coral productivity of OA alone.

Continue reading ‘High pCO2 promotes coral primary production’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,647 hits


Ocean acidification in the IPCC AR5 WG II

OUP book