Posts Tagged 'respiration'

Impact of ocean acidification and warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus

Atlantic herring (Clupea harengus) is a benthic spawner, therefore its eggs are prone to encounter different water conditions during embryonic development, with bottom waters often depleted of oxygen and enriched in CO2. Some Atlantic herring spawning grounds are predicted to be highly affected by ongoing Ocean Acidification and Warming with water temperature increasing by up to +3°C and CO2 levels reaching ca. 1000 μatm (RCP 8.5). Although many studies investigated the effects of high levels of CO2 on the embryonic development of Atlantic herring, little is known about the combination of temperature and ecologically relevant levels of CO2. In this study, we investigated the effects of Ocean Acidification and Warming on embryonic metabolic and developmental performance such as mitochondrial function, respiration, hatching success (HS) and growth in Atlantic herring from the Oslo Fjord, one of the spawning grounds predicted to be greatly affected by climate change. Fertilized eggs were incubated under combinations of two PCO2 conditions (400 μatm and 1100 μatm) and three temperatures (6, 10 and 14°C), which correspond to current and end-of-the-century conditions. We analysed HS, oxygen consumption (MO2) and mitochondrial function of embryos as well as larval length at hatch. The capacity of the electron transport system (ETS) increased with temperature, reaching a plateau at 14°C, where the contribution of Complex I to the ETS declined in favour of Complex II. This relative shift was coupled with a dramatic increase in MO2 at 14°C. HS was high under ambient spawning conditions (6–10°C), but decreased at 14°C and hatched larvae at this temperature were smaller. Elevated PCO2 increased larval malformations, indicating sub-lethal effects. These results indicate that energetic limitations due to thermally affected mitochondria and higher energy demand for maintenance occur at the expense of embryonic development and growth.

Continue reading ‘Impact of ocean acidification and warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus’

Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination

Highlights

• Ocean acidification will increase the fraction of the most toxic form of copper, increasing its bioavailability to marine organisms
• We tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions in three laboratory experiments
• Larvae are robust to the pH and the copper levels we tested (little/no mortality)
• However, significant sub-lethal effects, could have indirect consequences on survival

Abstract

Metallic pollution is of particular concern in coastal cities. In the Asian megacity of Hong Kong, despite water qualities have improved over the past decade, some local zones are still particularly affected and could represent sinks for remobilization of labile toxic species such as copper. Ocean acidification is expected to increase the fraction of the most toxic form of copper (Cu2+) by 2.3-folds by 2100 (pH ≈7.7), increasing its bioavailability to marine organisms. Multiple stressors are likely to exert concomitant effects (additive, synergic or antagonist) on marine organisms.

Here, we tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions. We exposed sea urchin embryos and larvae to two low-pH and two copper treatments (0.1 and 1.0 μM) in three separate experiments. Over the short time typically used for toxicity tests (up to 4-arm plutei, i.e. 3 days), larvae of the sea urchin Heliocidaris crassispina were robust and survived the copper levels present in Hong Kong waters today (≤0.19 μM) as well as the average pH projected for 2100. We, however, observed significant mortality with lowering pH in the longer, single-stressor experiment (Expt A: 8-arm plutei, i.e. 9 days). Abnormality and arm asymmetry were significantly increased by pH or/and by copper presence (depending on the experiment and copper level). Body size (d3; but not body growth rates in Expt A) was significantly reduced by both lowered pH and added copper. Larval respiration (Expt A) was doubled by a decrease at pHT from 8.0 to 7.3 on d6. In Expt B1.0 and B0.1, larval morphology (relative arm lengths and stomach volume) were affected by at least one of the two investigated factors.

Although the larvae appeared robust, these sub-lethal effects may have indirect consequences on feeding, swimming and ultimately survival. The complex relationship between pH and metal speciation/uptake is not well-characterized and further investigations are urgently needed to detangle the mechanisms involved and to identify possible caveats in routinely used toxicity tests.

Continue reading ‘Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination’

The effects of nutrient addition and ocean acidification on tropical crustose coralline algae

As the global population increases, the occurrence of multiple anthropogenic
impacts on valuable coastal ecosystems, such as coral reefs, also increases. These
stressors can be global and long-term, like ocean acidification (OA), or local and short term, like nutrient runoff in some areas. The combination of these stressors can  potentially have additive or interactive effects on the organisms in coral reef
communities. Among the most important groups of organisms on coral reefs are crustose coralline algae (CCA), calcifying algae that cement the reef together and contribute to the global carbon cycle. This thesis studied the effects of nutrient addition and OA on Lithophyllum kotschyanum, a common species of CCA on the fringing reefs of Mo’orea, French Polynesia. Two mesocosm experiments tested the individual and interactive effects of OA and short-term nitrate and phosphate addition on L. kotschyanum. These experiments showed that nitrate and phosphate addition together increased photosynthesis, OA had interactive effects with nutrient addition, and after nutrient addition ended, calcification and photosynthetic rates changed in unpredictable ways in different OA and nutrient treatments. Because the results of the first two experiments showed impacts of nutrients even after addition stopped, two more mesocosm experiments were conducted to study the changes in photosynthesis and calcification over hourly time scales more relevant to a single nutrient pulse event. These two experiments revealed the existence of diurnal variation in light-saturated photosynthetic rate, but not calcification rate, under ambient and elevated pCO2. This pattern of increased maximum photosynthesis in the middle of the day can have important implications for how the time of nutrient runoff events during the day impacts CCA physiology. Finally, a field experiment was conducted to determine the effects of short- and long-term nutrient addition on L. kotschyanum. The results showed that a series of short-term nutrient additions did not increase photosynthesis or calcification rates above those in ambient nutrient conditions, but continual nutrient enrichment for 6 weeks increased photosynthetic rates. This increase in photosynthesis under only long-term enrichment shows the need for consideration of specific nutrient addition scenarios on coral reefs when predicting how the community will be affected.

Continue reading ‘The effects of nutrient addition and ocean acidification on tropical crustose coralline algae’

Rising levels of temperature and CO2 antagonistically affect phytoplankton primary productivity in the South China Sea

Highlights

• Ocean warming and acidification individually increased phytoplankton productivity of western South China Sea.
• The combination of high temperature and high CO2 showed an antagonistic effect on phytoplankton productivity.
• High temperature decreased Chl a concentrations in off-shore waters at ambient CO2.
• High CO2 level increased night respiration in the coastal waters at ambient temperatures.

Abstract

Coastal and offshore waters in the South China Sea are warming and becoming acidified due to rising atmospheric levels of carbon dioxide (CO2), yet the combined effects of these two stressors are poorly known. Here, we carried out shipboard incubations at ambient (398 μatm) and elevated (934 μatm) pCO2 at in situ and in situ+1.8 °C temperatures and we measured primary productivity at two coastal and two offshore stations. Both warming and increased CO2 levels individually increased phytoplankton productivity at all stations, but the combination of high temperature and high CO2 did not, reflecting an antagonistic effect. Warming decreased Chl a concentrations in off-shore waters at ambient CO2, but had no effect in the coastal waters. The high CO2 treatment increased night time respiration in the coastal waters at ambient temperatures. Our findings show that phytoplankton assemblage responses to rising temperature and CO2 levels differ between coastal and offshore waters. While it is difficult to predict how ongoing warming and acidification will influence primary productivity in the South China Sea, our data imply that predicted increases in temperature and pCO2 will not boost surface phytoplankton primary productivity.

Continue reading ‘Rising levels of temperature and CO2 antagonistically affect phytoplankton primary productivity in the South China Sea’

Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability

Ocean acidification is a threat to the continued accretion of coral reefs, though some undergo daily fluctuations in pH exceeding declines predicted by 2100. We test whether exposure to greater pH variability enhances resistance to ocean acidification for the coral Goniopora sp. and coralline alga Hydrolithon reinboldii from two sites: one with low pH variability (less than 0.15 units daily; Shell Island) and a site with high pH variability (up to 1.4 pH units daily; Tallon Island). We grew populations of both species for more than 100 days under a combination of differing pH variability (high/low) and means (ambient pH 8.05/ocean acidification pH 7.65). Calcification rates of Goniopora sp. were unaffected by the examined variables. Calcification rates of H. reinboldii were significantly faster in Tallon than in Shell Island individuals, and Tallon Island individuals calcified faster in the high variability pH 8.05 treatment compared with all others. Geochemical proxies for carbonate chemistry within the calcifying fluid (cf) of both species indicated that only mean seawater pH influenced pHcf. pH treatments had no effect on proxies for Ωcf. These limited responses to extreme pH treatments demonstrate that some calcifying taxa may be capable of maintaining constant rates of calcification under ocean acidification by actively modifying Ωcf.

Continue reading ‘Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability’

The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: a transcriptomic study

Ocean acidification (OA) and high light was found to negatively affect the Antarctic key species Phaeocystis antarctica, Fragilariopsis kerguelensis and Chaetoceros debilis. To unravel the underlying physiological response at the transcriptomic level, these species were grown under ambient and elevated pCO2 combined with low or high light. RNA sequencing revealed that the haptophyte was much more tolerant towards OA than the two diatoms as only these showed distinct OA-dependent gene regulation patterns. Under ambient pCO2, high light resulted in decreased glycolysis in P. antarctica. Contrastingly, upregulation of genes related to cell division and transcription as well as reduced expression of both cata- and anabolic carbon related pathways were seen in C. debilis. OA in combination with low light led to reduced respiration, but also surprisingly to higher expression of genes involved in light protection, transcription and translation in C. debilis. Though not affecting P. antarctica, OA combined with high light caused also photosensitivity in both diatoms. As additional response reallocation of carbon to lipids was found in C. debilis under these conditions. Overall, we conclude that P. antarctica is better adapted than the two diatoms to OA and high light.

Continue reading ‘The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: a transcriptomic study’

Plankton community respiration and ETS activity under variable CO2 and nutrient fertilization during a mesocosm study in the subtropical North Atlantic

The enzymatic electron transport system (ETS) assay is frequently used as a proxy of respiratory activity in planktonic communities. It is thought to estimate the maximum overall activity of the enzymes associated with the respiratory ETS systems in both eukaryotic and prokaryotic organisms. Thus, in order to derive actual respiration rates (R) from ETS it is necessary to determine empirical R/ETS conversion algorithms. In this study we explore the temporal development of R and ETS activity in natural plankton communities (from bacteria to large phytoplankton) enclosed in mesocosms, treated with different CO2 concentrations. The experiment lasted 30 days, during which abrupt changes in community structure and biomass occurred through a sharp transition from oligotrophy (phase I) to highly eutrophic conditions (phase II) after nutrient-induced fertilization (day 18). R and ETS did not show any response to CO2 under oligotrophic conditions, but R increased significantly more in the two high CO2 mesocosms after fertilization, coinciding with a sharp rise in large phytoplankton (mostly diatoms). R and ETS were significantly correlated only during the eutrophic phase. The R/ETS ranged more than 3 fold in magnitude during the experiment, with phase-averaged values significantly higher under oligotrophic conditions (0.7-1.1) than after nutrient fertilization (0.5-0.7). We did not find any significant relationship between R/ETS and community structure or biomass, although R correlated significantly with total biomass after fertilization in the four mesocosms. Multiple stepwise regression models show that large phytoplankton explains most of the variance in R during phases I (86%) and II (53%) and of ETS (86%) during phase II, while picophytoplankton contributes up to 73% to explain the variance in the ETS model during phase I. Our results suggest that R/ETS may be too variable in the ocean as to apply constant values to different communities living under contrasting environmental conditions. Controlled experiments with natural communities, like the present one, would help to constrain the range of variability of the R/ETS ratio, and to understand the factors driving it.

Continue reading ‘Plankton community respiration and ETS activity under variable CO2 and nutrient fertilization during a mesocosm study in the subtropical North Atlantic’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,444 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book