Posts Tagged 'respiration'

Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

Ambient conditions shape microbiome responses to both short- and long-duration environment changes through processes including physiological acclimation, compositional shifts, and evolution. Thus, we predict that microbial communities inhabiting locations with larger diel, episodic, and annual variability in temperature and pH should be less sensitive to shifts in these climate-change factors. To test this hypothesis, we compared responses of surface ocean microbes from more variable (nearshore) and more constant (offshore) sites to short-term factorial warming (+3 °C) and/or acidification (pH −0.3). In all cases, warming alone significantly altered microbial community composition, while acidification had a minor influence. Compared with nearshore microbes, warmed offshore microbiomes exhibited larger changes in community composition, phylotype abundances, respiration rates, and metatranscriptomes, suggesting increased sensitivity of microbes from the less-variable environment. Moreover, while warming increased respiration rates, offshore metatranscriptomes yielded evidence of thermal stress responses in protein synthesis, heat shock proteins, and regulation. Future oceans with warmer waters may enhance overall metabolic and biogeochemical rates, but they will host altered microbial communities, especially in relatively thermally stable regions of the oceans.

Continue reading ‘Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity’

Calcification and organic productivity at the world’s southernmost coral reef

Highlights

  • High-latitude coral reefs are hotspots of ocean change and vulnerable to bleaching.
  • Coral ecosystem calcification in winter was lower than most studied ecosystems.
  • The reef was net heterotrophic in the winter and net respiratory in the summer.
  • Detailed bathymetric observations reduce uncertainties in metabolic calculations.
  • Summer calcification was not driven by temperature or aragonite saturation state.

Abstract

Estimates of coral reef calcification and organic productivity provide valuable insight to community functionality and the response of an ecosystem to stress events. High-latitude coral reefs are expected to experience rapid changes in calcification rates and become refugia for tropical species following climate change and increasing bleaching events. Here, we estimate ecosystem-scale calcification and organic productivity at the world’s southernmost coral reef using seawater carbon chemistry observations (Lord Howe Island, Australia). We reduce uncertainties in metabolic calculations by producing a detailed bathymetric model and deploying two current meters to refine residence time and volume estimates. Bathymetry-modelled transect depths ranged from 74% shallower to 20% deeper than depths averaged from reef crest/flat current meters, indicating that higher-resolution depth observations help to reduce uncertainties in reef metabolic calculations. Rates of ecosystem calcification were 56.6 ± 14.8 mmol m−2 d−1 in the winter and 125.3 ± 39.4 mmol m−2 d−1 in the summer. These rates are lower than most other high-latitude reefs according to our compilation of high-latitude coral ecosystem metabolism estimates. Coral cover ranged from 14.7 ± 2.3% in winter to 19.8 ± 2.1% in the summer. A concurrent bleaching event and cyclone occurred during summer sampling (February – March 2019), resulting in 47% of corals bleached at the study site and 2% mortality due to cyclonal damage. Therefore, it is likely that the summertime Gnet rates underestimate baseline calcification. Our results enable future assessments of long-term change, but do not resolve the impact of bleaching at Lord Howe Island.

 

Continue reading ‘Calcification and organic productivity at the world’s southernmost coral reef’

Ocean acidification effects on calcification and dissolution in tropical reef macroalgae

Net calcification rates for coral reef and other calcifiers have been shown to decline as ocean acidification (OA) occurs. However, the role of calcium carbonate dissolution in lowering net calcification rates is unclear. The objective of this study was to distinguish OA effects on calcification and dissolution rates in dominant calcifying macroalgae of the Florida Reef Tract, including two rhodophytes (Neogoniolithon strictum, Jania adhaerens) and two chlorophytes (Halimeda scabra, Udotea luna). Two experiments were conducted: (1) to assess the difference in gross (45Ca uptake) versus net (total alkalinity anomaly) calcification rates in the light/dark and (2) to determine dark dissolution (45CaCO3), using pH levels predicted for the year 2100 and ambient pH. At low pH in the light, all species maintained gross calcification rates and most sustained net calcification rates relative to controls. Net calcification rates in the dark were ~84% lower than in the light. In contrast to the light, all species had lower net calcification rates in the dark at low pH with chlorophytes exhibiting net dissolution. These data are supported by the relationship (R2 = 0.82) between increasing total alkalinity and loss of 45Ca from pre-labelled 45CaCO3 thalli at low pH in the dark. Dark dissolution of 45CaCO3-labelled thalli was ~18% higher in chlorophytes than rhodophytes at ambient pH, and ~ twofold higher at low pH. Only Udotea, which exhibited dissolution in the light, also had lower daily calcification rates integrated over 24 h. Thus, if tropical macroalgae can maintain high calcification rates in the light, lower net calcification rates in the dark from dissolution may not compromise daily calcification rates. However, if organismal dissolution in the dark is additive to sedimentary carbonate losses, reef dissolution may be amplified under OA and contribute to erosion of the Florida Reef Tract and other reefs that exhibit net dissolution.

Continue reading ‘Ocean acidification effects on calcification and dissolution in tropical reef macroalgae’

Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula

Pteropods (pelagic snails) are ubiquitous zooplankton in the Southern Ocean and abundant along the Western Antarctic Peninsula (WAP), one of the most rapidly warming regions on the planet. They are important prey for higher trophic levels, grazers of phytoplankton, and contribute to particulate organic and inorganic carbon export. Pteropods are heralded as bioindicators of ecosystem health due to the vulnerability of their aragonitic shells under ocean acidification conditions, which could greatly affect their abundances in the future. Despite their importance within Antarctic food webs, few studies have analyzed the effects of climate change on pteropod physiology and biogeography in the Southern Ocean. I utilized zooplankton net tows and sediment trap samples collected as part of the Palmer Antarctica Long Term Ecological Research (PAL LTER) program to determine long-term changes in pteropod biogeography and phenology (life history). I also conducted shipboard experiments on PAL LTER research cruises to analyze the effects of shifting temperature and food conditions on pteropod metabolism. Lastly, to examine WAP pteropod feeding ecology, I utilized high-throughput sequencing techniques and analyzed pteropod gut contents at an unprecedented taxonomic resolution. Pteropod populations along the WAP from 1993-2017 either remained stable (shelled pteropods) or increased (non-shelled pteropods) and were most strongly controlled by La Niña conditions the year prior, which led to warmer, ice-free waters. There was a weak relationship between pteropod abundance and carbonate chemistry, and no detectable long-term trend in carbonate chemistry parameters (i.e., aragonite saturation), thus ocean acidification is not presently a factor influencing WAP pteropod abundance. More open-water areas the year prior also increased growth rates of the shelled pteropod, Limacina helicina antarctica, and caused earlier time of appearance in the PAL LTER sediment trap. There was considerable interannual variability in the time of appearance of a new pteropod cohort, which ranged from year day 22 to 255, but no long-term, directional change in time of appearance or growth rate. The effects of warming seawater temperatures and shifting food availability on L. h. antarctica metabolism revealed that highest respiration and usually highest excretion rates occurred under higher temperatures, but the effect of food concentration was more limited. The proportion of dissolved organic matter to total organic and inorganic dissolved constituents was high and the metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which can directly affect phytoplankton growth and bacterial production in the WAP. Analysis of L. h. antarctica gut contents revealed its microbiome for the first time with Mollicutes bacteria the most abundant prokaryote. Pteropods were mainly herbivorous in summer, consuming predominantly diatoms but also supplementing their diet with microzooplankton such as ciliates. My dissertation shows that pteropods along the WAP are sensitive to changes in the environment from daily to interannual time scales. These insights into the metabolic and ecologic responses of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula’

Physiological responses of Skeletonema costatum to the interactions of seawater acidification and combination of photoperiod and temperature

Ocean acidification (OA), which is a major environmental change caused by increasing atmospheric CO2, has considerable influences on marine phytoplankton. But few studies have investigated interactions of OA and seasonal changes in temperature and photoperiod on marine diatoms. In the present study, a marine diatom Skeletonema costatum was cultured under two different CO2 levels (LC, 400 μatm; HC, 1000 μatm) and three different combinations of temperature and photoperiod length (8:16 L:D with 5 ℃, 12:12 L:D with 15 ℃, 16:8 L:D with 25 ℃), simulating different seasons in typical temperate oceans, to investigate the combined effects of these factors. The results showed that specific growth rate of S. costatum increased with increasing temperature and daylength. However, OA showed contrasting effects on growth and photosynthesis under different combinations of temperature and daylength: while positive effects of OA were observed under spring and autumn conditions, it significantly decreased growth (11 %) and photosynthesis (21 %) in winter. In addition, low temperature and short daylength decreased the proteins of PSII (D1, CP47 and RubcL) at ambient pCO2 level, while OA alleviated the negative effect. These data indicated that future ocean acidification may show differential effects on diatoms in different cluster of other factors.

Continue reading ‘Physiological responses of Skeletonema costatum to the interactions of seawater acidification and combination of photoperiod and temperature’

Daily to weekly impacts of mixing and biological activity on carbonate dynamics in a large river-dominated shelf

Highlights

• We surveyed at a fixed station for 6 d at the end of ENSO 2015/2016 in summer.

• High temperature and salinity water intruded the river plume on day 3.

• Net respiration changed to net photosynthesis in the near-surface water on day 3.

• The southwesterly monsoon was disturbed, and coastal upwelling was relaxed.

• Bottom water continuously reflected a pH reduction and oxygen consumption.

Abstract

Large eutrophic river plumes can lead to hypoxic near-bottom water during summer. However, how the carbonate system in this stratified water column varies at a daily to weekly scale is still unclear. At the end of the first severe El Niño Southern Oscillation event in the 21st century during 2015/2016, high temperature, high salinity water was observed in the middle of the Pearl River plume on the northern South China Sea shelf over 6 d (July 24–29, 2016). We deployed a sensor pack (conductivity, temperature, pressure, and dissolved oxygen [DO]) along the water column each hour and took discrete samples, including total alkalinity and dissolved inorganic carbon every 3 h, to calculate pH. We observed a pH reduction rate of 0.011 pH unit·d−1 and an oxygen consumption rate of 4.4 μmol kg−1·d−1 in the near-bottom water. The temporal variations in calculated net community production rate and excess DO (measured DO – saturated DO) implied the switch in the dominance of net respiration to net photosynthesis in the near-surface water during this mixing event. We suggested that both net photosynthesis and net respiration were in the water with oversaturated DO on a short-term scale. The pH reduction and oxygen consumption rates in this study could help to estimate the level of coastal acidification and hypoxia better.

Continue reading ‘Daily to weekly impacts of mixing and biological activity on carbonate dynamics in a large river-dominated shelf’

Trophic pyramids reorganize when food web architecture fails to adjust to ocean change

As human activities intensify, the structures of ecosystems and their food webs often reorganize. Through the study of mesocosms harboring a diverse benthic coastal community, we reveal that food web architecture can be inflexible under ocean warming and acidification and unable to compensate for the decline or proliferation of taxa. Key stabilizing processes, including functional redundancy, trophic compensation, and species substitution, were largely absent under future climate conditions. A trophic pyramid emerged in which biomass expanded at the base and top but contracted in the center. This structure may characterize a transitionary state before collapse into shortened, bottom-heavy food webs that characterize ecosystems subject to persistent abiotic stress. We show that where food web architecture lacks adjustability, the adaptive capacity of ecosystems to global change is weak and ecosystem degradation likely.

Continue reading ‘Trophic pyramids reorganize when food web architecture fails to adjust to ocean change’

Epiphytes provide micro-scale refuge from ocean acidification

Highlights

• OA induced bleaching and reduced metabolism in non-epiphytized coralline.

• Epiphytized corallines were less susceptible to the detrimental effects of OA.

• Epiphytized corallines had thicker diffusive boundary layer than non-epiphytized.

• Non-calcifying epiphytes provide small scale refuge from OA.

• Epiphytic refugia may protect corallines under future OA conditions.

Abstract

Coralline algae, a major calcifying component of coastal shallow water communities, have been shown to be one of the more vulnerable taxonomic groups to ocean acidification (OA). Under OA, the interaction between corallines and epiphytes was previously described as both positive and negative. We hypothesized that the photosynthetic activity and the complex structure of non-calcifying epiphytic algae that grow on corallines ameliorate the chemical microenvironmental conditions around them, providing protection from OA. Using mesocosm and microsensor experiments, we showed that the widespread coralline Ellisolandia elongata is less susceptible to the detrimental effects of OA when covered with non-calcifying epiphytic algae, and its diffusive boundary layer is thicker than when not covered by epiphytes. By modifying the microenvironmental carbonate chemistry, epiphytes, facilitated by OA, create micro-scale shield (and refuge) with more basic conditions that may allow the persistence of corallines associated with them during acidified conditions. Such ecological refugia could also assist corallines under near-future anthropogenic OA conditions.

Continue reading ‘Epiphytes provide micro-scale refuge from ocean acidification’

Nutrient availability modulates the effects of climate change on growth and photosynthesis of marine macroalga Pyropia haitanensis (Bangiales, Rhodophyta)

The present research investigated the effect of pCO2 levels (C), seawater temperature (T), and nutrient availability (N) on the growth and physiochemical changes in Pyropia haitanensis. With nutrient enrichment, the interaction of higher pCO2 increased relative growth rates (RGR) by 105.9% when temperature increased (22 °C) compared with the control (lower T, lower C, and lower N: LTLCLN). The higher pCO2 decreased the Pm rates at the lower temperature (18 °C), yet displayed no interaction with higher T or N levels. The higher N increased dark respiration rate (Rd) at 18 °C. At 22 °C, higher pCO2 significantly enhanced the maximum ratio of (quantum yields (Fv/Fo) and the maximum quantum yield (ψpo), while it sharply decreased the absorption of photons per active reaction center (ABS/RC) and dissipation of energy fluxes (per RC) (DIo/RC). Higher temperature obviously reduced the Fv/Fo and ψpo under ambient CO2 level. The higher pCO2 significantly increased the phycoerythrin (PE) and phycocyanin (PC) contents, while higher temperature decreased the PE contents with elevated CO2 and declined the PC content regardless of CO2 condition. At lower nutrient condition, higher pCO2 increased Chl a content. Soluble carbohydrates (SC) and soluble protein (SP) content almost was unchanged among all treatments. Our findings indicate that nutrient availability may regulate photosynthetic mechanism to offset the negative effect of future ocean warming on P. haitanensis, thereby sustaining or increasing the biomass yield of the algae.

Continue reading ‘Nutrient availability modulates the effects of climate change on growth and photosynthesis of marine macroalga Pyropia haitanensis (Bangiales, Rhodophyta)’

Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae

Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single‐species experiments, these do not capture ecologically relevant scenarios where the potential for multi‐organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis , to the effects of increased temperature (±3°C) and p CO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata . Specimens of M. vertebralis were incubated for 15 days in flow‐through aquaria simulating current and end‐of‐century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm ), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end‐of‐century projections of ocean acidification conditions, while calcification rates were lowest in the high‐temperature, low‐pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata , while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata , although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata . These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions.

Continue reading ‘Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,376,304 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book