Posts Tagged 'respiration'

Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms

Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10–11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180–750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

Continue reading ‘Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms’

Macroalgal response to a warmer ocean with higher CO2 concentration


• Decreased pH had a positive effect on short-term production of the studied species.
• Algae with tropical affinity increased their production at higher temperatures.
• Respiration rates were higher at the lower temperature treatments.
• Future pH and temperature conditions benefit tropical algal species.


Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions.

Continue reading ‘Macroalgal response to a warmer ocean with higher CO2 concentration’

Long-term exposure to acidification disrupts reproduction in a marine invertebrate

Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 (≈ 400 and 1600 μatm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.

Continue reading ‘Long-term exposure to acidification disrupts reproduction in a marine invertebrate’

Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations

Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the resilience and conservation of these threatened ecosystems.

Continue reading ‘Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations’

Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment

The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to ‘bounce back’ if subjected to repeated acute high-CO2 events.

Continue reading ‘Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment’

Transgenerational responses of a gammarid amphipod to ocean acidification: effects on reproductive traits, mate detection and metabolism

Ocean acidification (OA) poses a global threat to marine biodiversity. The rise in atmospheric carbon dioxide (CO2) concentration, resulting from anthropogenic activities, is responsible for the increase in the dissolved state of this gas in the oceans. The consequent changes in pH and seawater carbonate chemistry are responsible for the disruption of several biological processes (e.g. impairing survival and the maintenance of fitness-enhancing, physiological and behavioural, mechanisms) in certain marine groups. Disruption at the individual level, can originate negative cascading effects at higher levels of biological organization (i.e. populations and communities), which in turn can alter the underlying dynamics that control an ecosystem’s structure and overall function. Current theories suggest that marine organisms might be able to maintain their performance in future OA conditions, either through acclimation or through evolutionary adaptation. Surprisingly, the effects of prolonged high-CO2 exposure in crustaceans are still poorly known. The present dissertation investigates, for the first time, the transgenerational effects (i.e. over two generations) of ocean acidification in the physiology, behaviour (e.g. male mate-attraction) and reproductive traits (e.g. female investment, fecundity, mate-guarding and embryonic development) of the gammarid amphipod Gammarus locusta. Significant effects of ocean acidification were found for most reproductive traits. Although OA may initially stimulate female investment, transgenerational exposure led to an overall reduction in egg number and fecundity. The duration of mate-guarding behaviours was also diminished under high-CO2 exposure. Individuals from the second generation (F1) exhibited metabolic depression (i.e. reduced oxygen consumption rates), and males also displayed a reduced ability to accurately identify and track the origin of female scent cues, thus hinting at a possible disruption of chemosensory abilities. Overall, negative transgenerational (i.e. parental) effects were observed for all reproductive traits, as well as survival, in the acidified lineage. The present findings suggest that exposure to a future ocean acidification scenario will likely lead to a reduction in the fitness of the natural populations of G. locusta.

Continue reading ‘Transgenerational responses of a gammarid amphipod to ocean acidification: effects on reproductive traits, mate detection and metabolism’

Carbonate system parameters of an algal-dominated reef along West Maui

Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

Continue reading ‘Carbonate system parameters of an algal-dominated reef along West Maui’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,066,623 hits


Ocean acidification in the IPCC AR5 WG II

OUP book