Posts Tagged 'growth'

Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities

Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70 % of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months) was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, ‘fitness’, and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness) is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+ 4°C), they decreased under elevated CO2 concentrations (~ 800 µatm). No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status in studies investigating organism responses under environmental changes.

Continue reading ‘Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities’

Acclimation of bloom-forming and perennial seaweeds to elevated pCO2 conserved across levels of environmental complexity

Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO2 in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom-forming/non-bloom-forming/perennial/annual) in the laboratory, in tanks in an in-door mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 μatm to 2000 μatm. We find that, across all scales of the experimental set-up, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth- and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds.

Continue reading ‘Acclimation of bloom-forming and perennial seaweeds to elevated pCO2 conserved across levels of environmental complexity’

Differential growth responses to water flow and reduced pH in tropical marine macroalgae

The physical environment plays a key role in facilitating the transfer of nutrients and dissolved gases to marine organisms and can alter the rate of delivery of dissolved inorganic carbon. For non-calcifying macroalgae, water motion can influence the physiological and ecological responses to various environmental changes such as ocean acidification (OA). We tested the effects of lowered pH under three different flow speeds on three dominant non-calcifying macroalgal species differing in their carbon-use and are commonly found in the back reefs of Moorea, French Polynesia. Relative growth rates (RGR) of two phaeophytes, Dictyota bartayresiana and Lobophora variegata (HCO3− users), and a rhodophyte, Amansia rhodantha (CO2 user) were measured to examine how the combined effects of OA and flow can affect algal growth. Growth rates were affected independently by pCO2 and flow treatments but there was no significant interactive effect. Additionally, growth rates among species varied within the different flow regimes. Of the three species, L. variegata had the overall greatest increase in RGR across all three flow speeds while A. rhodantha exhibited the greatest negative impact under elevated pCO2 at 0.1 cm·s− 1. These differential responses among algal species demonstrate the importance of flow when examining responses to a changing environment, and if the responses of macroalgae differ based on their carbon-use strategies, it may provide advantages to some macroalgal species in a future, more acidic ocean.

Continue reading ‘Differential growth responses to water flow and reduced pH in tropical marine macroalgae’

High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi

Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.

Continue reading ‘High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi’

Effects of CO2 concentration on a late summer surface sea ice community

Annual fast ice at Scott Base (Antarctica) in late summer contained a high biomass surface community of mixed phytoflagellates, dominated by the dinoflagellate, Polarella glacialis. At this time of the year, ice temperatures rise close to melting point and salinities drop to less than 20. At the same time, pH levels can rise above 9 and nutrients can become limiting. In January 2014, the sea ice microbial community from the top 30 cm of the ice was exposed to a gradient of pH and CO2 (5 treatments) that ranged from 8.87 to 7.12 and 5–215 µmol CO2 kg−1, respectively, and incubated in situ. While growth rates were reduced at the highest and lowest pH, the differences were not significant. Likewise, there were no significant differences in maximum quantum yield of PSII (Fv/Fm) or relative maximum electron transfer rates (rETRmax) among treatments. In a parallel experiment, a CO2 gradient of 26–230 µmol CO2 kg−1 (5 treatments) was tested, keeping pH constant. In this experiment, growth rates increased by approximately 40% with increasing CO2, although differences among treatments were not significant.. As in the previous experiment, there was no significant response in Fv/Fm or rETRmax. A synchronous grazing dilution experiment found grazing rates to be inconclusive These results suggest that the summer sea ice brine communities were not limited by in situ CO2 concentrations and were not adversely affected by pH values down to 7.1.

Continue reading ‘Effects of CO2 concentration on a late summer surface sea ice community’

Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a marine cyanobacterium, Synechococcus sp. PCC7002

Ocean acidification due to increasing atmospheric CO2 concentration and coastal eutrophication are growing global threats to affect marine organisms and ecosystem health. However, little is known about their interactive impacts on marine picocyanobacteria which contribute to a large proportion of primary production. In this study, we cultivated the cyanobacterium Synechococcus sp. PCC7002 at ambient (380 ppmv) and high CO2 (1000 ppmv), across a range of nitrogen levels (LN, 10 μM NO3−; MN, 35 μM NO3−; HN, 110 μM NO3−). In LN media, elevated CO2 significantly decreased cellular chlorophyll a, but insignificantly affected growth rate, photosynthetic efficiency (Fv/Fm) and maximum relative electron transport rate (rETRmax). Nitrogen (N)-supply positively increased the growth, Fv/Fm, dissolved organic carbon (DOC) and cellular carotenoids/Chl a ratios, but decreased the rETRmax in both ambient and elevated CO2 conditions. The cellular C/N ratios were significantly increased by either elevated CO2 or N-supply, and the cell size was significantly enhanced by elevated CO2, not by N-supply. In addition, we found the N-supply alone had no significant effects on the four main components of chromophoric dissolved organic matter (cDOM) in ambient CO2, while the N-supply interacted with elevated CO2 significantly decreasing the cDOM contents in the cultures. Our results indicated that elevated CO2 and N-supply interacted to alter the physiology and cellular biochemistry of Synechococcus sp. PCC7002, providing useful information for understanding the environmental adaptability of Synechococcus to coastal ocean acidification and eutrophication.

Continue reading ‘Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a marine cyanobacterium, Synechococcus sp. PCC7002’

Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi

We conducted a series of diagnostic fitness response experiments on the coccolithophore, Emiliania huxleyi, isolated from the Subtropical Convergence east of New Zealand. Dose response curves (i.e., physiological rate vs. environmental driver) were constructed for growth, photosynthetic, and calcification rates of E. huxleyi relative to each of five environmental drivers (nitrate concentration, phosphate concentration, irradiance, temperature, and pCO2). The relative importance of each environmental driver on E. huxleyi rate processes was then ranked using a semi-quantitative approach by comparing the percentage change caused by each environmental driver on the measured physiological metrics under the projected conditions for the year 2100, relative to those for the present day, in the Subtropical Convergence. The results reveal that the projected future decrease in nitrate concentration (33%) played the most important role in controlling the growth, photosynthetic and calcification rates of E. huxleyi, whereas raising pCO2 to 75 Pa (750 ppm) decreased the calcification : photosynthesis ratios to the greatest degree. These findings reveal that other environmental drivers may be equally or more influential than CO2 in regulating the physiological responses of E. huxleyi, and provide new diagnostic information to better understand how this ecologically important species will respond to the projected future changes to multiple environmental drivers.

Continue reading ‘Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 991,916 hits


Ocean acidification in the IPCC AR5 WG II

OUP book