Posts Tagged 'growth'

Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins

Highlights

  • Strain of Alexandrium tamarense isolated from East China Seas, showed a significant response to elevated CO2 levels in growth and toxicity.
  • Strain ATDH grew faster and showed a larger density when exposed to elevated CO2 concentration, especially in the exponential period.
  • The concentration per cell of each PST derivate varied and eventually caused the cellular toxicity increased when exposed to higher pCO2.


Abstract

In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.

Continue reading ‘Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins’

Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea (update)

Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( <  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.

Continue reading ‘Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea (update)’

The organizing effects of elevated CO2 on competition among estuarine primary producers

Fossil fuel combustion, eutrophication, and upwelling introduce excess CO2 into coastal zones. The extent to which marine autotrophs may benefit from elevated CO2 will be a function of their carbon limitation and, among other factors, competition with other primary producers. Here, we report on experiments performed with North Atlantic species of Ulva and Gracilaria grown in situ or exposed to ambient (~400 µatm) and elevated pCO2 (~2500 µatm) and/or subjected to competition with each other and/or with natural plankton assemblages. Elevated pCO2significantly increased the growth rates of Gracilaria and Ulva and yielded significant declines in tissue δ13C, suggesting that increased growth was associated with increased CO2 use relative to HCO3−. Gracilaria growth was unaffected by competition with plankton or Ulva, while Ulva experienced significantly reduced growth when competing with Gracilaria or plankton. Dinoflagellates experienced significantly increased growth when exposed to elevated pCO2 but significantly slower growth when competing with Gracilaria. Elevated carbon-to-nitrogen ratios among macroalgae suggested that competition for nitrogen also shaped interactions among autotrophs, particularly Ulva. While some estuarine autotrophs benefit from elevated pCO2, the benefit can change when direct competition with other primary producers is considered with Gracilaria outcompeting Ulva and dinoflagellates outcompeting diatoms under elevated pCO2.

Continue reading ‘The organizing effects of elevated CO2 on competition among estuarine primary producers’

CO2 fixation stability by Sulfurovum lithotrophicum 42BKTT depending on pH and ionic strength conditions

The dissolution of CO2, a greenhouse gas most responsible for global warming, in seawater lowers its pH and increases its ionic strength. Sulfurovum lithotrophicum42BKTT, a deep-sea chemolithotrophic bacterium, can fix high concentration CO2. In this study, we investigated the effect of pH and ionic strength variation of seawater on CO2fixation by this bacterium. For a stable and continuous fixation of high concentration CO2by S. lithotrophicum 42BKTT, the pH and ionic strength of the seawater-based medium should be 6.1–6.8 and <0.8 M, respectively. The deviation of pH and ionic strength from these ranges was indicated by the appearance of lengthened and fattened cells whose length and diameter increased by 70–90%. These results imply that the harmful effect of dissolved CO2 on marine ecosystem is due to the increase in ionic strength and decrease in pH of seawater.

Continue reading ‘CO2 fixation stability by Sulfurovum lithotrophicum 42BKTT depending on pH and ionic strength conditions’

Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi

Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4–6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3-was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.

Continue reading ‘Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi’

The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta)

Ocean acidification (OA) and coastal eutrophication affect coastal marine organisms. We studied the physiological responses of Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) to increased concentrations of CO2 and NH4 +. Incubation treatments were applied at two different pH units (low, 7.5; high (control), 7.9) and three different NH4 + concentrations (low, 10; medium, 50; high, 100 μM). Growth, rates of photosynthetic oxygen evolution, and NH4 + uptake rates were affected by both elevated CO2 and NH4 + conditions. The changes in the pH of culture media were influenced by elevated CO2 or NH4 +treatments. However, chlorophyll fluorescence was affected only by the level of NH4 +. These results indicate that the physiological responses of G. lemaneiformis might be enhanced when the concentrations of CO2and NH4 + rise. Therefore, cultures of this alga could provide a good mitigation solution against ongoing problems with OA and coastal eutrophication.

Continue reading ‘The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta)’

Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

Over the last decade, hydrogen isotope fractionation of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using hydrogen isotope fractionation to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high and low light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the applicability of hydrogen isotope fractionation as a paleosalinity proxy.

Continue reading ‘Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,025,944 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book