Posts Tagged 'communitymodeling'

Ocean acidification has impacted coral growth on the Great Barrier Reef

Ocean acidification (OA) reduces the concentration of seawater carbonate ions that stony corals need to produce their calcium carbonate skeletons, and is considered a significant threat to the functional integrity of coral reef ecosystems. However, detection and attribution of OA impact on corals in nature are confounded by concurrent environmental changes, including ocean warming. Here we use a numerical model to isolate the effects of OA and temperature, and show that OA alone has caused 13±3% decline in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950. This OA‐induced thinning of coral skeletons, also evident in Porites from the South China Sea but not in the central equatorial Pacific, reflects enhanced acidification of reef water relative to the surrounding open ocean. Our finding reinforces concerns that even corals that might survive multiple heatwaves are structurally weakened and increasingly vulnerable to the compounding effects of climate change.

Continue reading ‘Ocean acidification has impacted coral growth on the Great Barrier Reef’

Effects of climate change on coastal ecosystem food webs: implications for aquaculture

Highlights

• Food web models and scenarios were used to forecast effects of climate change.

• Modeled bays were vulnerable to the effects of climate change.

• In two of three study bays the ability to support bivalve aquaculture disappeared.

Abstract

Coastal ecosystems provide important ecosystem services for millions of people. Climate change is modifying coastal ecosystem food web structure and function and threatens these essential ecosystem services. We used a combination of two new and one existing ecosystem food web models and altered scenarios that are possible with climate change to quantify the impacts of climate change on ecosystem stability in three coastal bays in Maine, United States. We also examined the impact of climate change on bivalve fisheries and aquaculture. Our modeled scenarios explicitly considered the predicted effects of future climatic change and human intervention and included: 1) the influence of increased terrestrial dissolved organic carbon loading on phytoplankton biomass; 2) benthic community change driven by synergisms between climate change, historical overfishing, and increased species invasion; and 3) altered trophic level energy transfer driven by ocean warming and acidification. The effects of climate change strongly negatively influenced ecosystem energy flow and ecosystem stability and negatively affected modeled bivalve carrying capacity in each of our models along the Maine coast of the eastern United States. Our results suggest that the interconnected nature of ecosystem food webs make them extremely vulnerable to synergistic effects of climate change. To better inform fisheries and aquaculture management, the effects of climate change must be explicitly incorporated.

Continue reading ‘Effects of climate change on coastal ecosystem food webs: implications for aquaculture’

A regional vulnerability assessment for the Dungeness crab (Metacarcinus magister) to changing ocean conditions: insights from model projections and empirical experiments

Among global coastal regions, the Northern California Current System (N-CCS) is already experiencing effects from ocean acidification and hypoxia during the summer, primarily due to the region’s seasonal upwelling, current systems, and high productivity. Oxygen, pH, and temperature conditions are expected to become more stressful with continued fossil fuel emissions under global climate change, posing a serious threat to the region’s fisheries. N-CCS fishing communities rely heavily on the economically and culturally important Dungeness crab (Metacarcinus magister). The fishery is currently sustainably managed, but potential negative impacts from changing ocean conditions on Dungeness crab life stages and populations could have adverse effects for the fishery and the communities that rely on it. To quantify the vulnerability of Dungeness crab life stages and populations to predicted future conditions, both model projections and empirical experiments need to be employed. A semi-quantitative, life stage-specific framework was adapted here to assess the vulnerability of Dungeness crab to low pH, low dissolved oxygen, and high temperature under present and future projected conditions in the seasonally dynamic N-CCS. This was achieved using a combination of regional ocean models, species distribution maps, larval transport models, a population matrix model, and a literature review. This multi-faceted approach revealed that crab vulnerability to the three climate stressors will increase in the future (year 2100) under the most intense emissions scenario, with vulnerability to low oxygen being the most severe to the N-CCS population overall. Increases in vulnerability were largely driven by the adult life stage, which contributes the most to population growth. Empirical experiments demonstrated that adult crab respiration rates increase exponentially with temperature, potentially making this life stage more susceptible to hypoxia in the future. Together, this work provides novel insights into the effects of changing ocean conditions on Dungeness crab populations, which may help inform fishery management strategies.

Continue reading ‘A regional vulnerability assessment for the Dungeness crab (Metacarcinus magister) to changing ocean conditions: insights from model projections and empirical experiments’

Trophic pyramids reorganize when food web architecture fails to adjust to ocean change

As human activities intensify, the structures of ecosystems and their food webs often reorganize. Through the study of mesocosms harboring a diverse benthic coastal community, we reveal that food web architecture can be inflexible under ocean warming and acidification and unable to compensate for the decline or proliferation of taxa. Key stabilizing processes, including functional redundancy, trophic compensation, and species substitution, were largely absent under future climate conditions. A trophic pyramid emerged in which biomass expanded at the base and top but contracted in the center. This structure may characterize a transitionary state before collapse into shortened, bottom-heavy food webs that characterize ecosystems subject to persistent abiotic stress. We show that where food web architecture lacks adjustability, the adaptive capacity of ecosystems to global change is weak and ecosystem degradation likely.

Continue reading ‘Trophic pyramids reorganize when food web architecture fails to adjust to ocean change’

An uncertain future: effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys a uratus) population

Highlights

• Modelling suggests the effect of climate change on snapper populations is uncertain.

• Impacts range from a 29% reduction to a 44% increase in fishery yield.

• These impacts are most likely mediated via impacts on recruitment.

Abstract

Anthropogenic CO2 emissions are warming and acidifying Earth’s oceans, which is likely to lead to a variety of effects on marine ecosystems. Fish populations will be vulnerable to this change, and there is now substantial evidence of the direct and indirect effects of climate change on fish. There is also a growing effort to conceptualise the effects of climate change on fish within population models. In the present study knowledge about the response of New Zealand snapper to warming and acidification was incorporated within a stock assessment model. Specifically, a previous tank experiment on larval snapper suggested both positive and negative effects, and otolith increment analysis on wild snapper indicated that growth may initially increase, followed by a potential decline as temperatures continue to warm. As a result of this uncertainty, sensitivity analysis was performed by varying average virgin recruitment (R0) by ±30%, adult growth by ±6%, but adjusting mean size at recruitment by +48% as we had better evidence for this increase. Overall adjustments to R0 had the biggest impact on the future yield (at a management target of 40% of an unfished population) of the Hauraki Gulf snapper fishery. The most negative scenario suggested a 29% decrease in fishery yield, while the most optimistic scenario suggested a 44% increase. While largely uncertain, these results provide some scope for predicting future impacts on the snapper fishery. Given that snapper is a species where the response to climate change has been specifically investigated, increasing uncertainty in a future where climate change and other stressors interact in complex and unpredictable ways is likely to be an important consideration for the management of nearly all fish populations.

Continue reading ‘An uncertain future: effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys a uratus) population’

Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios

Ocean acidification (OA) is projected to have profound impacts on marine ecosystems and resources, especially in estuarine habitats. Here, we describe biological risks under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine system that already experiences inherently low pH and aragonite saturation state (Ωar) conditions. We used the Pacific Northwest National Laboratory and Washington State Department of Ecology Salish Sea biogeochemical model (SSM) informed by a selection of OA-related biological thresholds of ecologically and economically important calcifiers, pteropods, and Dungeness crabs. The SSM was implemented to assess current exposure and associated risk due to reduced Ωar and pH conditions with respect to the magnitude, duration, and severity of exposure below the biological thresholds in the Salish Sea in comparison to the pre-industrial era. We further investigated the individual effects of atmospheric CO2 uptake and nutrient-driven eutrophication on changes in chemical exposure since pre-industrial times. Our model predicts average decreases in Ωar and pH since pre-industrial times of about 0.11 and 0.06, respectively, in the top 100 m of the water column of the Salish Sea. These decreases predispose pelagic calcifiers to increased duration, intensity, and severity of exposure. For pteropods, present-day exposure is below the thresholds related to sublethal effects across the entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited basis. The greatest risk for larval Dungeness crabs is associated with spatially limited exposures to low calcite saturation state in the South Sound in the springtime, triggering an increase in internal dissolution. The main anthropogenic driver behind the predicted impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a marginal role over spatially and temporally limited scales. Reduction of CO2 emissions can help sustain biological species vital for ecosystem functions and society.

Continue reading ‘Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios’

Forecasting ocean acidification impacts on kelp forest ecosystems

Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem wide responses are still poorly understood. This study integrates field and experimental data into a mass balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different community structure characterized by lower biodiversity and relatively greater dominance by lower trophic level organisms.

Continue reading ‘Forecasting ocean acidification impacts on kelp forest ecosystems’

Effects of ocean acidification on Antarctic microbial communities

Antarctic waters are amongst the most vulnerable in the world to ocean acidification due to their cold temperatures, naturally low levels of calcium carbonate and upwelling that brings deep CO2-rich waters to the surface. A meta-analysis demonstrated groups of Antarctic marine biota in waters south of 60!S have a range of tolerances to ocean acidification. Invertebrates and phytoplankton showed negative effects above 500 μatm and 1000 μatm CO2 respectively, while bacteria appear tolerant to elevated CO2. Phytoplankton studied as part of a natural microbial community were found to be more
sensitive than those studied as a single species in culture. This highlights the importance of community and ecosystem level studies, which incorporate the interaction and competition among species and trophic levels, to accurately assess the effects of ocean acidification on the Antarctic ecosystem.

Antarctic marine microbes (comprising phytoplankton, protozoa and bacteria) drive ocean productivity, nutrient cycling and mediate trophodynamics and the biological pump. While they appear vulnerable to changes in ocean chemistry, little is known about the nature and magnitude of their responses to ocean acidification, especially for natural communities. To address this lack of information, a six level, dose-response ocean acidification experiment was conducted in Prydz Bay, East Antarctica, using 650 L incubation tanks (minicosms). The minicosms were filled with Antarctic nearshore water and adjusted to a gradient of carbon dioxide (CO2) from 343 to 1641 μatm. Microscopy
and phylogenetic marker gene sequence analysis found the microbial community
composition altered at CO2 levels above approximately 1000 μatm. The CO2-
induced responses of microeukaryotes (>20 μm) and nanoeukaryotes (2 to 20 μm) were taxon-specific. For diatoms the response of taxa was related to cell size with micro-sized diatoms (>20 μm) increasing in abundance with moderate CO2 (506 to 634 μatm), while above this level their abundance declined. In contrast, nano-size diatoms (<20 μm) tolerated elevated CO2. Like large diatoms, Phaeocystis antarctica increased in abundance between 343 to 634 μatm CO2 but fell at higher levels. 18S and 16S rDNA sequencing showed that picoeukaryotic and prokaryotic composition was unaffected by CO2, despite having higher abundances at CO2 levels !634 μatm. This was likely due to the lower abundance of heterotrophic nanoflagellates at CO2 levels exceeding 953 μatm, which reduced the top-down control of their pico- and nanoplanktonic prey. As a result of the differences in the tolerance of individual taxa/size categories, CO2 caused a
significant change in the microbial community structure to one dominated by nano-sized diatoms, picoeukaryotes and prokaryotes.

Based on the CO2-induced changes in the microbial community, modelling was performed to investigate the future effects of different levels of elevated CO2 on the structure and function of microbial communities in Antarctic coastal systems. These models indicate CO2 levels predicted toward the end of the century under a “business as usual scenario” elicit changes in microbial composition, significantly altering trophodynamic pathways, reducing energy transfer to higher trophic levels and favouring respiration of carbon within the microbial loop. Such responses would alter elemental cycles, jeopardise the productivity that underpins the wealth and diversity of life for which Antarctica is renowned. In addition, it would reduce carbon sequestration in coastal Antarctic waters thereby having a positive feedback on global climate change.

Continue reading ‘Effects of ocean acidification on Antarctic microbial communities’

Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea

Anthropogenic carbon dioxide (CO2) emissions drive climate change and pose one of the major challenges of our century. The effects of increased CO2 in the form of ocean acidification (OA) on the communities of marine planktonic eukaryotes in tropical regions such as the Timor Sea are barely understood. Here, we show the effects of high CO2 (pCO2=1823±161 μatm, pHT=7.46±0.05) versus in situ CO2 (pCO2=504±42 μatm, pHT=7.95±0.04) seawater on the community composition of marine planktonic eukaryotes immediately and after 48 hours of treatment exposure in a shipboard microcosm experiment. Illumina sequencing of the V9 hypervariable region of 18S rRNA (gene) was used to study the eukaryotic community composition. Down-regulation of extracellular carbonic anhydrase occurred faster in the high CO2 treatment. Increased CO2 significantly suppressed the relative abundances of eukaryotic operational taxonomic units (OTUs), including important primary producers. These effects were consistent between abundant (DNA-based) and active (cDNA-based) taxa after 48 hours, e.g., for the diatoms Trieres chinensis and Stephanopyxis turris. Effects were also very species-specific among the different diatoms. The microbial eukaryotes showed adaptation to the CO2 treatment over time, but many OTUs were adversely affected by decreasing pH. OA effects might fundamentally impact the base of marine biodiversity, suggesting unpredictable outcomes for food web functioning in the future ocean.

Continue reading ‘Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea’

Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100

The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.

Continue reading ‘Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,015 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book