Posts Tagged 'communitymodeling'

Assessing coral reef condition indicators for local and global stressors using Bayesian networks

Coral reefs are highly valued ecosystems currently threatened by both local and global stressors. Given the importance of coral reef ecosystems, a Bayesian network approach can benefit an evaluation of threats to reef condition. To this end, we used data to evaluate the overlap between local stressors (overfishing and destructive fishing, watershed‐based pollution, marine‐based pollution, and coastal development threats), global stressors (acidification and thermal stress) and management effectiveness with indicators of coral reef health (live coral index, live coral cover, population bleaching, colony bleaching and recently killed corals). Each of the coral health indicators had Bayesian networks constructed globally and for Pacific, Atlantic, Australia, Middle East, Indian Ocean, and Southeast Asia coral reef locations. Sensitivity analysis helped evaluate the strength of the relationships between different stressors and reef condition indicators. The relationships between indicators and stressors were also evaluated with conditional analyses of linear and nonlinear interactions. In this process, a standardized direct effects analysis was emphasized with a target mean analysis to predict changes in the mean value of the reef indicator from individual changes to the distribution of the predictor variables. The standardized direct effects analysis identified higher risks in the Middle East for watershed‐based pollution with population bleaching and Australia for overfishing and destructive fishing with living coral. For thermal stress, colony bleaching and recently killed coral in the Indian Ocean were found to have the strongest direct associations. For acidification threat, Australia had a relatively strong association with colony bleaching and the Middle East had the strongest overall association with recently killed coral although extrapolated spatial data were used for the acidification estimates. The Bayesian network approach helped to explore the relationships among existing databases used for policy development in coral reef management by examining the sensitivity of multiple indicators of reef condition to spatially‐distributed stress.

Continue reading ‘Assessing coral reef condition indicators for local and global stressors using Bayesian networks’

Projected expansion of Trichodesmium’s geographical distribution and increase in growth potential in response to climate change

Estimates of marine N2 fixation range from 52 to 73 Tg N/year, of which we calculate up to 84% is from Trichodesmium based on previous measurements of nifH gene abundance and our new model of Trichodesmium growth. Here, we assess the likely effects of four major climate change‐related abiotic factors on the spatiotemporal distribution and growth potential of Trichodesmium for the last glacial maximum (LGM), the present (2006–2015) and the end of this century (2100) by mapping our model of Trichodesmium growth onto inferred global surface ocean fields of pCO2, temperature, light and Fe. We conclude that growth rate was severely limited by low pCO2 at the LGM, that current pCO2 levels do not significantly limit Trichodesmium growth and thus, the potential for enhanced growth from future increases in CO2 is small. We also found that the area of the ocean where sea surface temperatures (SST) are within Trichodesmium‘s thermal niche increased by 32% from the LGM to present, but further increases in SST due to continued global warming will reduce this area by 9%. However, the range reduction at the equator is likely to be offset by enhanced growth associated with expansion of regions with optimal or near optimal Fe and light availability. Between now and 2100, the ocean area of optimal SST and irradiance is projected to increase by 7%, and the ocean area of optimal SST, irradiance and iron is projected to increase by 173%. Given the major contribution of this keystone species to annual N2 fixation and thus pelagic ecology, biogeochemistry and CO2 sequestration, the projected increase in the geographical range for optimal growth could provide a negative feedback to increasing atmospheric CO2 concentrations.

Continue reading ‘Projected expansion of Trichodesmium’s geographical distribution and increase in growth potential in response to climate change’

Remnant kelp bed refugia and future phase-shifts under ocean acidification

Ocean warming, ocean acidification and overfishing are major threats to the structure and function of marine ecosystems. Driven by increasing anthropogenic emissions of CO2, ocean warming is leading to global redistribution of marine biota and altered ecosystem dynamics, while ocean acidification threatens the ability of calcifying marine organisms to form skeletons due to decline in saturation state of carbonate Ω and pH. In Tasmania, the interaction between overfishing of sea urchin predators and rapid ocean warming has caused a phase-shift from productive kelp beds to overgrazed sea urchin barren grounds, however potential impacts of ocean acidification on this system have not been considered despite this threat for marine ecosystems globally. Here we use automated loggers and point measures of pH, spanning kelp beds and barren grounds, to reveal that kelp beds have the capacity to locally ameliorate effects of ocean acidification, via photosynthetic drawdown of CO2, compared to unvegetated barren grounds. Based on meta-analysis of anticipated declines in physiological performance of grazing urchins to decreasing pH and assumptions of nil adaptation, future projection of OA across kelp-barrens transition zones reveals that kelp beds could act as important pH refugia, with urchins potentially becoming increasingly challenged at distances >40 m from kelp beds. Using spatially explicit simulation of physicochemical feedbacks between grazing urchins and their kelp prey, we show a stable mosaicked expression of kelp patches to emerge on barren grounds. Depending on the adaptative capacity of sea urchins, future declines in pH appear poised to further alter phase-shift dynamics for reef communities; thus, assessing change in spatial-patterning of reef-scapes may indicate cascading ecological impacts of ocean acidification.

Continue reading ‘Remnant kelp bed refugia and future phase-shifts under ocean acidification’

Combining mesocosms with models to unravel the effects of global warming and ocean acidification on temperate marine ecosystems

Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modelling approach (Ecosim) with a community-level mesocosm experiment to determine the independent and combined effects of ocean warming and acidification, and fisheries exploitation, on a temperate coastal ecosystem. The mesocosm enabled important physiological and behavioural responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. We show that under current-day rates of exploitation, warming and ocean acidification will benefit most species in higher trophic levels (e.g. mammals, birds, demersal finfish) in their current climate ranges, with the exception of small pelagic fish, but these benefits will be reduced or lost when these physical stressors co-occur. We show that increases in exploitation will, in most instances, suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at high-trophic levels. Species diversity at the trailing edges of species distributions is likely to decline in the face of ocean warming, acidification and exploitation. We showcase how multi-level mesocosm food web experiments can be used to directly inform dynamic food web models, enabling the ecological processes that drive the responses of marine ecosystems to scenarios of global change to be captured in model projections and their individual and combined effects to be teased apart. Our approach for blending theoretical and empirical results from mesocosm experiments with computational models will provide resource managers and conservation biologists with improved tools for forecasting biodiversity change and altered ecosystem processes due to climate change.

Continue reading ‘Combining mesocosms with models to unravel the effects of global warming and ocean acidification on temperate marine ecosystems’

Ocean acidification has impacted coral growth on the Great Barrier Reef

Ocean acidification (OA) reduces the concentration of seawater carbonate ions that stony corals need to produce their calcium carbonate skeletons, and is considered a significant threat to the functional integrity of coral reef ecosystems. However, detection and attribution of OA impact on corals in nature are confounded by concurrent environmental changes, including ocean warming. Here we use a numerical model to isolate the effects of OA and temperature, and show that OA alone has caused 13±3% decline in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950. This OA‐induced thinning of coral skeletons, also evident in Porites from the South China Sea but not in the central equatorial Pacific, reflects enhanced acidification of reef water relative to the surrounding open ocean. Our finding reinforces concerns that even corals that might survive multiple heatwaves are structurally weakened and increasingly vulnerable to the compounding effects of climate change.

Continue reading ‘Ocean acidification has impacted coral growth on the Great Barrier Reef’

Effects of climate change on coastal ecosystem food webs: implications for aquaculture

Highlights

• Food web models and scenarios were used to forecast effects of climate change.

• Modeled bays were vulnerable to the effects of climate change.

• In two of three study bays the ability to support bivalve aquaculture disappeared.

Abstract

Coastal ecosystems provide important ecosystem services for millions of people. Climate change is modifying coastal ecosystem food web structure and function and threatens these essential ecosystem services. We used a combination of two new and one existing ecosystem food web models and altered scenarios that are possible with climate change to quantify the impacts of climate change on ecosystem stability in three coastal bays in Maine, United States. We also examined the impact of climate change on bivalve fisheries and aquaculture. Our modeled scenarios explicitly considered the predicted effects of future climatic change and human intervention and included: 1) the influence of increased terrestrial dissolved organic carbon loading on phytoplankton biomass; 2) benthic community change driven by synergisms between climate change, historical overfishing, and increased species invasion; and 3) altered trophic level energy transfer driven by ocean warming and acidification. The effects of climate change strongly negatively influenced ecosystem energy flow and ecosystem stability and negatively affected modeled bivalve carrying capacity in each of our models along the Maine coast of the eastern United States. Our results suggest that the interconnected nature of ecosystem food webs make them extremely vulnerable to synergistic effects of climate change. To better inform fisheries and aquaculture management, the effects of climate change must be explicitly incorporated.

Continue reading ‘Effects of climate change on coastal ecosystem food webs: implications for aquaculture’

A regional vulnerability assessment for the Dungeness crab (Metacarcinus magister) to changing ocean conditions: insights from model projections and empirical experiments

Among global coastal regions, the Northern California Current System (N-CCS) is already experiencing effects from ocean acidification and hypoxia during the summer, primarily due to the region’s seasonal upwelling, current systems, and high productivity. Oxygen, pH, and temperature conditions are expected to become more stressful with continued fossil fuel emissions under global climate change, posing a serious threat to the region’s fisheries. N-CCS fishing communities rely heavily on the economically and culturally important Dungeness crab (Metacarcinus magister). The fishery is currently sustainably managed, but potential negative impacts from changing ocean conditions on Dungeness crab life stages and populations could have adverse effects for the fishery and the communities that rely on it. To quantify the vulnerability of Dungeness crab life stages and populations to predicted future conditions, both model projections and empirical experiments need to be employed. A semi-quantitative, life stage-specific framework was adapted here to assess the vulnerability of Dungeness crab to low pH, low dissolved oxygen, and high temperature under present and future projected conditions in the seasonally dynamic N-CCS. This was achieved using a combination of regional ocean models, species distribution maps, larval transport models, a population matrix model, and a literature review. This multi-faceted approach revealed that crab vulnerability to the three climate stressors will increase in the future (year 2100) under the most intense emissions scenario, with vulnerability to low oxygen being the most severe to the N-CCS population overall. Increases in vulnerability were largely driven by the adult life stage, which contributes the most to population growth. Empirical experiments demonstrated that adult crab respiration rates increase exponentially with temperature, potentially making this life stage more susceptible to hypoxia in the future. Together, this work provides novel insights into the effects of changing ocean conditions on Dungeness crab populations, which may help inform fishery management strategies.

Continue reading ‘A regional vulnerability assessment for the Dungeness crab (Metacarcinus magister) to changing ocean conditions: insights from model projections and empirical experiments’

Trophic pyramids reorganize when food web architecture fails to adjust to ocean change

As human activities intensify, the structures of ecosystems and their food webs often reorganize. Through the study of mesocosms harboring a diverse benthic coastal community, we reveal that food web architecture can be inflexible under ocean warming and acidification and unable to compensate for the decline or proliferation of taxa. Key stabilizing processes, including functional redundancy, trophic compensation, and species substitution, were largely absent under future climate conditions. A trophic pyramid emerged in which biomass expanded at the base and top but contracted in the center. This structure may characterize a transitionary state before collapse into shortened, bottom-heavy food webs that characterize ecosystems subject to persistent abiotic stress. We show that where food web architecture lacks adjustability, the adaptive capacity of ecosystems to global change is weak and ecosystem degradation likely.

Continue reading ‘Trophic pyramids reorganize when food web architecture fails to adjust to ocean change’

An uncertain future: effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys a uratus) population

Highlights

• Modelling suggests the effect of climate change on snapper populations is uncertain.

• Impacts range from a 29% reduction to a 44% increase in fishery yield.

• These impacts are most likely mediated via impacts on recruitment.

Abstract

Anthropogenic CO2 emissions are warming and acidifying Earth’s oceans, which is likely to lead to a variety of effects on marine ecosystems. Fish populations will be vulnerable to this change, and there is now substantial evidence of the direct and indirect effects of climate change on fish. There is also a growing effort to conceptualise the effects of climate change on fish within population models. In the present study knowledge about the response of New Zealand snapper to warming and acidification was incorporated within a stock assessment model. Specifically, a previous tank experiment on larval snapper suggested both positive and negative effects, and otolith increment analysis on wild snapper indicated that growth may initially increase, followed by a potential decline as temperatures continue to warm. As a result of this uncertainty, sensitivity analysis was performed by varying average virgin recruitment (R0) by ±30%, adult growth by ±6%, but adjusting mean size at recruitment by +48% as we had better evidence for this increase. Overall adjustments to R0 had the biggest impact on the future yield (at a management target of 40% of an unfished population) of the Hauraki Gulf snapper fishery. The most negative scenario suggested a 29% decrease in fishery yield, while the most optimistic scenario suggested a 44% increase. While largely uncertain, these results provide some scope for predicting future impacts on the snapper fishery. Given that snapper is a species where the response to climate change has been specifically investigated, increasing uncertainty in a future where climate change and other stressors interact in complex and unpredictable ways is likely to be an important consideration for the management of nearly all fish populations.

Continue reading ‘An uncertain future: effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys a uratus) population’

Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios

Ocean acidification (OA) is projected to have profound impacts on marine ecosystems and resources, especially in estuarine habitats. Here, we describe biological risks under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine system that already experiences inherently low pH and aragonite saturation state (Ωar) conditions. We used the Pacific Northwest National Laboratory and Washington State Department of Ecology Salish Sea biogeochemical model (SSM) informed by a selection of OA-related biological thresholds of ecologically and economically important calcifiers, pteropods, and Dungeness crabs. The SSM was implemented to assess current exposure and associated risk due to reduced Ωar and pH conditions with respect to the magnitude, duration, and severity of exposure below the biological thresholds in the Salish Sea in comparison to the pre-industrial era. We further investigated the individual effects of atmospheric CO2 uptake and nutrient-driven eutrophication on changes in chemical exposure since pre-industrial times. Our model predicts average decreases in Ωar and pH since pre-industrial times of about 0.11 and 0.06, respectively, in the top 100 m of the water column of the Salish Sea. These decreases predispose pelagic calcifiers to increased duration, intensity, and severity of exposure. For pteropods, present-day exposure is below the thresholds related to sublethal effects across the entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited basis. The greatest risk for larval Dungeness crabs is associated with spatially limited exposures to low calcite saturation state in the South Sound in the springtime, triggering an increase in internal dissolution. The main anthropogenic driver behind the predicted impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a marginal role over spatially and temporally limited scales. Reduction of CO2 emissions can help sustain biological species vital for ecosystem functions and society.

Continue reading ‘Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,942 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives