Posts Tagged 'communitymodeling'

A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections (update)

Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here, we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and original data for Emiliania huxleyi, and compare the projections with those for Gephyrocapsa oceanica. Based on our analysis, the two most common bloom-forming species in present-day coccolithophore communities appear to be adapted for a similar fundamental light niche but slightly different ones for temperature and CO2, with E. huxleyi having a tolerance to lower temperatures and higher CO2 levels than G. oceanica. Based on growth rates, a dominance of E. huxleyi over G. oceanica is projected below temperatures of 22 °C at current atmospheric CO2 levels. This is similar to a global surface sediment compilation of E. huxleyi and G. oceanica coccolith abundances suggesting temperature-dependent dominance shifts. For a future Representative Concentration Pathway (RCP) 8.5 climate change scenario (1000 µatm fCO2), we project a CO2 driven niche contraction for G. oceanica to regions of even higher temperatures. However, the greater sensitivity of G. oceanica to increasing CO2 is partially mitigated by increasing temperatures. Finally, we compare satellite-derived particulate inorganic carbon estimates in the surface ocean with a recently proposed metric for potential coccolithophore success on the community level, i.e. the temperature-, light- and carbonate-chemistry-dependent CaCO3 production potential (CCPP). Based on E. huxleyi alone, as there was interestingly a better correlation than when in combination with G. oceanica, and excluding the Antarctic province from the analysis, we found a good correlation between CCPP and satellite-derived particulate inorganic carbon (PIC) with an R2 of 0.73, p < 0.01 and a slope of 1.03 for austral winter/boreal summer and an R2 of 0.85, p < 0.01 and a slope of 0.32 for austral summer/boreal winter.

Continue reading ‘A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections (update)’

Consequences of spatially variable ocean acidification in the California Current: lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions

Highlights

• Impacts of ocean acidification change with latitude in the California Current.
• Vulnerable species (e.g., calcifying invertebrates) and their predators decline most.
• Decline in revenue projected, mainly from lower Dungeness crab catch in the north.
Abstract

Marine ecosystems are experiencing rapid changes driven by anthropogenic stressors which, in turn, are affecting human communities. One such stressor is ocean acidification, a result of increasing carbon emissions. Most research on biological impacts of ocean acidification has focused on the responses of an individual species or life stage. Yet, understanding how changes scale from species to ecosystems, and the services they provide, is critical to managing fisheries and setting research priorities. Here we use an ecosystem model, which is forced by oceanographic projections and also coupled to an economic input-output model, to quantify biological responses to ocean acidification in six coastal regions from Vancouver Island, Canada to Baja California, Mexico and economic responses at 17 ports on the US west coast. This model is intended to explore one possible future of how ocean acidification may influence this coastline. Outputs show that declines in species biomass tend to be larger in the southern region of the model, but the largest economic impacts on revenue, income and employment occur from northern California to northern Washington State. The economic consequences are primarily driven by declines in Dungeness crab from loss of prey. Given the substantive revenue generated by the fishing industry on the west coast, the model suggests that long-term planning for communities, researchers and managers in the northern region of the California Current would benefit from tracking Dungeness crab productivity and potential declines related to pH.

Continue reading ‘Consequences of spatially variable ocean acidification in the California Current: lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions’

The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom

Highlights

• We estimate both direct and economy-wide economic losses of shellfish production by 2100 in UK.
• Direct potential losses due to reduced shellfish production range from 14% to 28% of fishery NPV.
• Total loss to the UK economy from shellfish production and consumption range from £23 – £88 million.
• There are regional variations to economic losses due to different speceis and patterns of shellfish production and consumption.

Abstract

Ocean acidification may pose a major threat to commercial fisheries, especially those for calcifying shellfish species. This study was undertaken to estimate the potential economic costs resulting from ocean acidification on UK wild capture and aquaculture shellfish production. Applying the net present value (NPV) and partial equilibrium (PE) models, we estimate both direct and economy-wide economic losses of shellfish production by 2100. Estimates using the NPV method show that the direct potential losses due to reduced shellfish production range from 14% to 28% of fishery NPV. This equates to annual economic losses of between ö3 and ö6 billion of the UK’s GDP in 2013, for medium and high emission scenarios. Results using the PE model showed the total loss to the UK economy from shellfish production and consumption ranging from ö23–ö88 million. The results from both the direct valuation and predicted estimate for the economic losses on shellfish harvest indicate that there are regional variations due to different patterns of shellfish wild-capture and aquaculture, and the exploitation of species with differing sensitivities to ocean acidification. These results suggest that the potential economic losses vary depending on the chosen valuation method. This analysis is also partial as it did not include a wider group of species in early-life-stages or predator-prey effects. Nevertheless, findings show that the economic losses to the UK and its devolved administrations due to ocean acidification could be substantial. We conclude that addressing ocean acidification with the aim of preserving commercially valuable shellfish resources will require regional, national or international solutions using a combined approach to reduce atmospheric CO2 emissions and shift in focus to exploit species that are less vulnerable to ocean acidification.

Continue reading ‘The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom’

Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean

Highlights

• In a future scenario, attenuation by DOM outcompetes its physico-chemical role.
• Global change conditions will favor growth and photosynthesis of nanoplankton.
• Global change favors growth and photosynthesis of nano- as compared to microplankton.

Abstract

We evaluated the dual role of DOM (i.e., as a source of inorganic nutrients and as an absorber of solar radiation) on a phytoplankton community of the western South Atlantic Ocean. Using a combination of microcosms and a cluster approach, we simulated the future conditions of some variables that are highly influenced by global change in the region. We increased nutrients (i.e., anthropogenic input) and dissolved organic matter (DOM), and we decreased the pH, to assess their combined impact on growth rates (μ), species composition/abundance and size structure, and photosynthesis (considering in this later also the effects of light quality i.e., with and without ultraviolet radiation). We simulated two Future conditions (Fut) where nutrients and pH were similarly manipulated, but in one the physical role of DOM (Futout) was assessed whereas in the other (Futin) the physico-chemical role was evaluated; these conditions were compared with a control (Present condition, Pres). The μ significantly increased in both Fut conditions as compared to the Pres, probably due to the nutrient addition and acidification in the former. The highest μ were observed in the Futout, due to the growth of nanoplanktonic flagellates and diatoms. Cells in the Futin were photosynthetically less efficient as compared to those of the Futout and Pres, but these physiological differences, also between samples with or without solar UVR observed at the beginning of the experiment, decreased with time hinting for an acclimation process. The knowledge of the relative importance of both roles of DOM is especially important for coastal areas that are expected to receive higher inputs and will be more acidified in the future.

Continue reading ‘Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean’

Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

Continue reading ‘Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification’

Modeling alternative stable states in Caribbean coral reefs

1. Abstract

The resilience of Caribbean coral reefs, which are an important source of biodiversity and provide essential ecosystem services, is constantly challenged by many reef stressors including ocean acidification, hurricane damage, and overharvesting of herbivorous reef fish. The presence of two alternative stable states—a desirable state with high levels of coral cover and its coral‐depleted counterpart—has been widely documented in the literature. Increasing coral resilience to prevent phase shifts to the undesirable state is a critical research priority, and mathematical models can serve as an important tool to not only better understand the underlying dynamics of observed coral communities, but also to evaluate the potential impacts of stressors and the outcome of management strategies designed to promote coral persistence. Here, we review the existing literature of mathematical models designed to understand the processes that generate alternative stable states. We focus on models that are comprised of ordinary differential equations and, at their core, capture algal–coral dynamics.

2. Recommendations for resource managers

Evidence for the existence of alternative stable states and the associated presence of hysteresis implies a need for management designed to increase the resilience of coral reef ecosystems.

In addition, holistic approaches to designing management strategies are required to both increase resilience of coral reefs and maximize the benefits of the ecosystem services they provide.

Due to the intrinsic complexity and spatial variability of coral reef ecosystems, management cannot be designed using a “one size fits all” approach. Instead, local dynamics and stressors need to be carefully considered. Continue reading ‘Modeling alternative stable states in Caribbean coral reefs’

Climate change alters fish community size‐structure, requiring adaptive policy targets

Size‐based indicators are used worldwide in research that supports the management of commercially exploited wild fish populations, because of their responsiveness to fishing pressure. Observational and experimental data, however, have highlighted the deeply rooted links between fish size and environmental conditions that can drive additional, interannual changes in these indicators. Here, we have used biogeochemical and mechanistic niche modelling of commercially exploited demersal fish species to project time series to the end of the 21st century for one such indicator, the large fish indicator (LFI), under global CO2 emissions scenarios. Our modelling results, validated against survey data, suggest that the LFI’s previously proposed policy target may be unachievable under future climate change. In turn, our results help to identify what may be achievable policy targets for demersal fish communities experiencing climate change. While fisheries modelling has grown as a science, climate change modelling is seldom used specifically to address policy aims. Studies such as this one can, however, enable a more sustainable exploitation of marine food resources under changes unmanageable by fisheries control. Indeed, such studies can be used to aid resilient policy target setting by taking into account climate‐driven effects on fish community size‐structure.

Continue reading ‘Climate change alters fish community size‐structure, requiring adaptive policy targets’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,088,568 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book