Posts Tagged 'nutrients'

Iron availability modulates the effects of future CO2 levels within the marine planktonic food web

Ocean acidification (OA) due to increased anthropogenic CO2 emissions is affecting marine ecosystems at an unprecedented rate, altering biogeochemical cycles. Direct empirical studies on natural communities are required to analyse the interactive effects of multiple stressors while spanning multiple trophic levels. We investigated the interactive effects of changes in CO2 and iron availability on functional plankton groups. We used mesocosms manipulating the carbonate system from the start to achieve present (low concentration, LC) and predicted future pCO2 levels (high concentration, HC). To manipulate dissolved iron (dFe), half of the mesocosms were amended with 70 nM (final concentration) of the siderophore desferoxamine B (DFB) on Day 7 (+DFB and -DFB treatments). Manipulation of both CO2 and DFB increased dFe compared to the control. During the 22 experimental days, the plankton community structure showed 2 distinct phases. In phase 1 (Days 1-10), only bacterioplankton abundances increased at elevated pCO2. In contrast, a strong community response was evident in phase 2 (Days 11-22) due to DFB addition. Biomass of the coccolithophore Emiliania huxleyi increased massively at LC+DFB. HC negatively affected E. huxleyi and Synechococcus sp., and high dFe (+DFB) had a positive effect on both. The rest of the plankton community was unaffected by the treatments. Increased dFe partially mitigated the negative effect of HC imposed on the coccolithophores, indicating that E. huxleyi was able to acclimate better to OA. This physiological iron-mediated acclimation can diminish the deleterious effects of OA on carbon export and the rain ratio, thus affecting food web dynamics and future ecosystem functioning.

Continue reading ‘Iron availability modulates the effects of future CO2 levels within the marine planktonic food web’

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.

Continue reading ‘Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors’

Special edition of Estuarine, Coastal and Shelf Science – “Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments”

The topic of ocean acidification has received extensive attention in a recently published special edition of the journal Estuarine, Coastal and Shelf Science. Volume 186, Part A presents a series of 12 research papers focusing on pelagic mesocosm experiments conducted in the Mediterranean Sea in 2012 and 2013. Plankton plays a key role in the global carbon cycle. It is therefore important to project the evolution of plankton community structure and function in a future high-CO2 world. Several results from experiments conducted at the community level have shown increased rates of community primary production and shifts in community composition as a function of increasing pCO2. However, the great majority of these – experiments have been performed under high natural or nutrient-enriched conditions and very few data are available in areas with naturally low levels of nutrient and chlorophyll i.e. oligotrophic areas such as the Mediterranean Sea, although they represent a large and expanding part of the ocean surface. In the frame of the European Mediterranean Sea Acidification in a changing climate project (MedSeA; http://medsea-project.eu), large-scale in situ mesocosms (9 x 50 m3, 12 m deep) have been used to quantify the potential effects of CO2 enrichment in two coastal areas of the Mediterranean Sea: the bay of Calvi (Corsica, France) in June/July 2012 and the bay of Villefranche (France) in February/March 2013. These two experiments gathered the expertise of more than 25 scientists from 7 institutes and 6 countries (France, Greece, Spain, UK, Italy, Belgium, US).

Continue reading ‘Special edition of Estuarine, Coastal and Shelf Science – “Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments”’

Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment (update)

The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40 µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48 %, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid–base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.

Continue reading ‘Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment (update)’

Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium

Ocean acidification (OA) and eutrophication intensifies in coastal sea under anthropogenic impact. OA coupled with the NH4-N source effect in coastal water is likely to affect the planktonic ecosystem. In this work, Skeletonema costatum and Nitzschia closterium were chosen as typical species of diatom in Chinese coastal ecosystems to test the potential effect of OA and NH4-N. Results showed that the growth and NH4-N uptake of S. costatum and N. closterium were significantly inhibited by pH decline. The maximum uptake rate is higher than the maximum growth rate, implying that NH4-N was assimilated faster for S. costatum and N. closterium with decreasing pH. Therefore, the inhibition rate of the growth of the two diatoms by the coupling effect of OA and eutrophication (pH 7.45) is higher that than in the coastal sea by the end of the 21st century (pH 7.71).

Continue reading ‘Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium’

Insignificant effects of elevated CO2 on bacterioplankton community in a eutrophic coastal mesocosm experiment

There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, Southern China. We found that the elevated CO2 hardly altered the network structure of the bacterioplankton taxa present with high abundance but appeared to reassemble the community network of taxa present with low abundance by sequencing of the bacterial 16S rRNA gene V3-V4 region and ecological network analysis. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteriia group, which plays an important role in the microbial carbon pump, showed higher relative abundance under elevated CO2 condition during the developing stage of the phytoplankton bloom in the mesocosms. Compared to the CO2 enrichment, the phytoplankton bloom had more pronounced effects on baterioplankton community structure. Our results suggest that the bacterioplankton community in this subtropical, high nutrient coastal environment is relatively insensitive to changes in seawater carbonate chemistry.

Continue reading ‘Insignificant effects of elevated CO2 on bacterioplankton community in a eutrophic coastal mesocosm experiment’

Impacts des dépositions atmosphériques de fer sur les assemblages phytoplanctoniques et la production de diméthylsulfure dans le Pacifique Nord-Est contemporain et dans le contexte de l’acidification des océans (in English and French)

Phytoplankton growth is limited by low concentrations of iron (Fe) in about 40% of the world’s oceans. The northeast subarctic Pacific Ocean embodies one of these Fe-limited regions that are termed High Nutrient – Low Chlorophyll (HNLC). Its ecosystem is dominated by small phytoplankton cells, such as Prymnesiophyceae, and is characterized by weak summer concentrations of chlorophyll a and high concentrations of macronutrients. It has repeatedly been shown that Fe additions in HNLC zones, using various artificial forms of Fe (commonly FeSO4), stimulate the growth and modify the structure of planktonic communities by favoring the blooming of large phytoplankton cells such as diatoms. The impacts brought about on the planktonic communities by these Fe additions have the potential of influencing large-scale climate regulating mechanisms, namely the biological carbon pump and the oceanic production of dimethylsulfide (DMS). Dust arising from northern Chinese deserts is well recognized as an important albeit sporadic source of Fe for the northeast Pacific Ocean. Despite their potential importance, the direct influence of these dust deposition events on the planktonic ecosystem of the northeast Pacific has never been studied before. This represents a serious shortcoming considering that, Fe associated with dust is scantily soluble in seawater, the bioavailable proportion of Fe in dust remains unknown, and dust may exert an inhibiting effect on phytoplankton. My thesis thus proposes, firstly, to conduct avant-garde measurements of the fertilization effects of a natural Asian dust gradient on plankton communities of the northeast Pacific. My first experiment shows that the Fe contained in Asian dust is bioavailable and that a deposition event, equivalent to naturally occurring spring depositions in the northeast Pacific, may result in a significant stimulation of nutrient uptake and growth by phytoplankton. My results also demonstrate that the addition of 0,5 mg L-1 of dust may induce as much biomass accumulation as what is observed during large scale fertilizing experiments utilizing FeSO4. However, small-celled phytoplankton assemblages are stimulated by Fe fertilizations, more so through FeSO4 than through dust additions demonstrating the flaws of this proxy in accurately representing Asian dust. In a second step, I focused my attention on an alternative source of atmospheric Fe, specifically volcanic ash. My interest for this subject was instigated by observations of a spectacular bloom occurring in my study region, the northeast Pacific, and associated to the 2008 eruption of the Kasatochi volcano located on one of the Aleutian Islands. I quantified the direct effects of volcanic ash on the plankton community of the northeast Pacific. My results show that the Fe contained in these ashes is also bioavailable for phytoplankton and that this source of Fe may be as important as desert dust in regulating the growth of phytoplankton in this part of the global ocean on a millennial scale. Thirdly, I assessed the manner in which ocean acidification could modulate, on a short timescale, the responses of the plankton communities to natural Fe depositions highlighted in this thesis. In order to do so, I performed dust enrichments in seawater at the contemporary seawater pH of 8.0 and acidified to a pH of 7.8. My results show a reduction in phytoplankton growth rate in the acidified environment with no conspicuous changes to community structure. The additions of dust and ash, as well as the variations in pH, had little significant impacts on the production of DMS or its precursor dimethylsulfoniopropionate (DMSP). This lack of response could likely be attributable to the short timescale (4 days) of investigation carried out. As a whole, the results of this thesis show that Fe contained in various natural atmospheric sources is bioavailable to phytoplankton of the northeast Pacific Ocean. Furthermore, realistic deposition rates may distinctly stimulate phytoplankton growth in the first days following dust storms or volcanic eruptions. Finally, results from the multi-stressor experiments (Fe/acidification) I carried out suggest a demonstrable robustness of surface plankton communities to the pH reduction predicted before the turn of this century.

Continue reading ‘Impacts des dépositions atmosphériques de fer sur les assemblages phytoplanctoniques et la production de diméthylsulfure dans le Pacifique Nord-Est contemporain et dans le contexte de l’acidification des océans (in English and French)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,475 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book