Response of corals Acropora pharaonis and Porites lutea to changes in pH and temperature in the Gulf

Coral reefs are harboring a large part of the marine biodiversity and are important ecosystems for the equilibrium of the oceans. As a consequence of anthropogenic CO2 emission, a drop in pH and an increase in seawater temperature is observed in the Gulf coastal waters that potentially threaten coral assemblages. An experimental study was conducted on two species of corals to assess the effect of ocean warming and ocean acidification on the net calcification rate. Two pH conditions 8.2 and 7.5 and three temperatures, 22.5, 27.5 and 32.5 °C, were considered. Net calcification rates were measured using 45Ca radiotracer. Both temperature and pH had a significant effect on net calcification rates following a similar pattern for both species. The highest calcification rate was observed at low temperature and high pH. Increased temperature and decreased pH led to a decrease in net calcification rates. An interactive effect was observed as the effect of pH decreased with increasing temperature. However, the two species of coral were able to calcify in all the tested combination of temperature and pH suggesting that they are adapted to short term changes in temperature and pH. Ability to calcify even at a high temperature of 32.5 °C that is identical to the summertime Gulf seawater temperature under both the ambient and low pH condition with no mortalities, raises a question: are these corals adapted to high seawater temperatures and low pH? More in-depth assessments will be required to confirm if this is an adaptation to higher temperatures in Persian Gulf corals.

Continue reading ‘Response of corals Acropora pharaonis and Porites lutea to changes in pH and temperature in the Gulf’

Carbonic anhydrase as a biomarker of global and local impacts: insights from calcifying animals

The emission of greenhouse gases has grown in unprecedented levels since the beginning of the industrial era. As a result, global climate changes, such as heightened global temperature and ocean acidification, are expected to negatively impact populations. Similarly, industrial and urban unsustainable development are also expected to impose local impacts of their own, such as environmental pollution with organic and inorganic chemicals. As an answer, biomarkers can be used in environmental programs to assess these impacts. These tools are based in the quantification of biochemical and cellular responses of target species that are known to respond in a sensitive and specific way to such stresses. In this context, carbonic anhydrase has shown to be a promising biomarker candidate for the assessment of global and local impacts in biomonitoring programs, especially in marine zones, such as coral reefs, considering the pivotal role of this enzyme in the calcification process. Therefore, the aim of this review is to show the recent advances in the carbonic anhydrase research and the reasons why it can be considered as a promising biomarker to be used for calcifying organisms.

Continue reading ‘Carbonic anhydrase as a biomarker of global and local impacts: insights from calcifying animals’

Acidification detrimental to ocean health: Pasifika Future

Ocean health is challenged in numerous ways from marine litter to the warming seas.

Academic and Head of Marine Studies at USP, Dr. Stuart Kininmonth explains that another nasty inclusion is acidification.

Speaking at the first Pasifika Future series on Healthy Oceans
co-hosted by the World Bank and USP, Dr. Kininmonth says with the effects of climate change more evident, Pacific communities now find themselves at the front-line of a storm on the horizon.

Continue reading ‘Acidification detrimental to ocean health: Pasifika Future’

Effects of elevated CO2 on growth, calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae)

We studied the effects of elevated CO2 concentrations on cell growth, calcification, and spectral variation in the sensitivity of photosynthesis to inhibition by solar radiation in the globally important coccolithophore Emiliania huxleyi. Growth rates and chlorophyll a content per cell showed no significant differences between elevated (800 ppmv) and ambient (400 ppmv) CO2 conditions. However, the production of organic carbon and the cell quotas for both carbon and nitrogen, increased under elevated CO2 conditions, whilst particulate inorganic carbon production rates decreased under the same conditions. Biometric analyses of cells showed that coccoliths only presented significant differences due to treatments in the central area width. Most importantly, the size of the coccosphere decreased under elevated CO2 conditions. The susceptibility of photosynthesis to inhibition by ultraviolet radiation (UVR) was estimated using biological weighting functions (BWFs) and a model that predicts photosynthesis under photosynthetically active radiation and UVR exposures. BWF results demonstrated that the sensitivity of photosynthesis to UVR was not significantly different between E. huxleyi cells grown under elevated and present CO2 concentrations. We propose that the acclimation to elevated CO2 conditions involves a physiological mechanism of regulation and allocation of energy and metabolites in the cell, which is also responsible for altering the sensitivity to UVR. In coccolithophores, this mechanism might be affected by the decrease in the calcification rates.

Continue reading ‘Effects of elevated CO2 on growth, calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae)’

Mechanisms involving sensory pathway steps inform impacts of global climate change on ecological processes

Human-caused environmental change will have significant non-lethal and indirect impacts on organisms due to altered sensory pathways, with consequences for ecological interactions. While a growing body of work addresses how global ocean change can impair the way organisms obtain and use information to direct their behavior, these efforts have typically focused on one step of the pathway (e.g., reception of a cue/signal), one sensory modality (e.g., visual), or one environmental factor (e.g., temperature). An integrated view of how aspects of environmental change will impact multiple sensory pathways and related ecological processes is needed to better anticipate broader consequences for marine ecosystems. Here, we present a conceptual synthesis of effects of global change on marine sensory ecology, based on a literature review. Our review supports several predictions for how particular sensory pathway steps – production, transmission, and reception/processing of cues/signals – are affected by environmental change. First, the production and reception/processing of multiple modalities of cues/signals are vulnerable to multiple global change stressors, indicating that there are generalizable mechanisms by which environmental change impairs these pathways steps, leading to altered sensory pathway outcomes. Factors that enhance organismal stress as a whole may amplify impacts to these sensory pathways. Second, global change factors tend to affect specific modalities of cue/signal transmission. Consequently, local impacts on ecological processes linked with cue/signal transmission will vary depending on environmental stressor(s) present and the corresponding sensory modality. Finally, because many ecological and evolutionary interactions rely on sensory processing, impairment of sensory pathways may frequently underpin impacts of global ocean change on marine ecosystems. Effects on individual sensory processes will integrate to shape processes like mating, predation, and habitat selection, and we highlight new insights on impacts to ecological interactions by employing our mechanistic conceptual framework.

Continue reading ‘Mechanisms involving sensory pathway steps inform impacts of global climate change on ecological processes’

The potential impact of underwater exhausted CO2 from innovative ships on invertebrate communities

Liquefied natural gas (LNG) powered ships equipped with an underwater exhaust system to reduce the ship’s water resistance could form a future generation of energy-efficient ships. The potential consequences of the underwater exhaust gas to the local ecosystems are still unknown. Especially, the CO2 levels may locally exceed estimated future global levels. The present study exposes marine communities to a wide range of CO2 dosages, resulting in pH 8.6–5.8 that was remained for 49 days. We found that the zooplankton and benthic community were adversely affected by high CO2 exposure levels. In detail, (1) between pH 6.6 and 7.1 polychaete worms became the dominating group of the benthic community and their larvae dominated the zooplankton group. (2) Due to the reduced grazing pressure and the flux of nutrients from decaying organic material planktonic microalgae (phytoplankton) stared blooming at the highest exposure level. The periphyton (fouling microalgae) community was not able to take advantage under these conditions. (3) Marine snails’ (periwinkle) shell damage and high mortality were observed at pH < 6.6. However, the growth of the surviving periwinkles was not directly related to pH, but was positively correlated with the availability of periphyton and negatively correlated with the polychaete worm density that most likely also used the periphyton as food source. Our result indicates that the impact of underwater exhaust gasses depends on various factors including local biological and abiotic conditions, which will be included in future research.

Continue reading ‘The potential impact of underwater exhausted CO2 from innovative ships on invertebrate communities’

C-CAN webinar: genetics of larval fitness in the Pacific oyster: responses to acidified seawater and temporally dynamic selection processes

Date/time: Wednesday, July 17, 2019 at 1pm PT (4pm EST)

Presented by Dr. Evan Durland, Tjärnö – Sven Lovén Centre for Marine Sciences, University of Gothenburg, Sweden and hosted by Teri King, Washington Sea Grant.

Description: The Pacific oyster is the most widely farmed shellfish species worldwide and represents the backbone of a $250M/year shellfish industry in the Pacific Northwest United States (PNW). Oysters are highly fecund, capable of producing tens of millions of offspring per spawning event but larvae routinely suffer low rates of survival to juvenile stage. Over the past decade in the PNW, ocean acidification (OA) has additionally reduced survival of larval oysters, both for those spawned in commercial hatcheries for aquaculture operations and, likely, in naturalized oyster populations in this region. A considerable amount of research has focused on the physiological impacts of low pH/high pCO2 seawater on shell formation and the early development of oyster larvae but relatively little, by contrast, is known about the chronic effects of acidified seawater on larval development and survival through to settled juvenile ‘spat’. Furthermore, the effect that larval development and survival in acidified seawater has on the genetic composition of oyster larvae largely unknown.

This webinar will focus on recent work investigating the genetic components of larval oyster survival, both in ‘normal’ and OA seawater conditions. This work combines broad, stock-based, comparisons of larval fitness through settlement stage from domesticated and ‘wild’ stocks of oysters in the PNW along with highly resolved temporal patterns of genetic change during larval development. By integrating the results from several scopes of investigation, we can begin to gain a more comprehensive view of the prominent role that genetics plays in determining not only the overall survival rates of oyster larvae but how complex mechanisms of genetic selection also may accommodate an increased adaptive potential for this species to persist in challenging aquatic environments.

Continue reading ‘C-CAN webinar: genetics of larval fitness in the Pacific oyster: responses to acidified seawater and temporally dynamic selection processes’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,580 hits


Ocean acidification in the IPCC AR5 WG II

OUP book