
FAU researchers measured aragonite saturation – a key indicator of water’s ability to support calcifying organisms like clams and oysters – throughout the Indian River Lagoon.
Florida’s Indian River Lagoon (IRL), one of the state’s most ecologically productive estuaries, is facing a growing but invisible threat that could reshape its marine ecosystems. Over the past decade, the lagoon has suffered severe degradation caused by nutrient pollution, excessive freshwater runoff, harmful algal blooms (HABs), and declining water quality. These changes have led to the loss of tens of thousands of acres of seagrass and have negatively impacted shellfish, fish, dolphins, manatees and other key species.
A new study from Florida Atlantic University’s Harbor Branch Oceanographic Institute now reveals that these pressures are also contributing to coastal acidification, a chemical shift in the water that threatens the ability of shell-building marine organisms to grow and thrive.
…
To understand these changes, FAU Harbor Branch researchers studied the IRL from 2016 to 2017, measuring Ωarag and other water chemistry factors. They examined how nutrients, freshwater inputs, and other environmental conditions affect the lagoon’s ability to support shell-building marine life.
The study used two approaches. First, researchers conducted a broad survey across the lagoon, from nutrient-rich northern areas to southern regions affected by freshwater inflows. Second, they did weekly sampling at three central sites with different salinity and land-use conditions: an urban-influenced canal, a river mouth affected by urban and agricultural runoff, and a relatively natural reference site with strong ocean exchange.
Results of the study, published in the journal Marine Pollution Bulletin, revealed clear patterns. Northern sites with high nutrient concentrations and frequent HABs had lower aragonite saturation. Southern sites, influenced by freshwater discharges, also had lower Ωarag, primarily due to reduced salinity and dilution of aragonite. In the weekly surveys, Ωarag was positively correlated with salinity and negatively correlated with nutrient levels, confirming that both freshwater input and nutrient pollution play a role in controlling water chemistry.
Continue reading ‘Shrinking shellfish? Risk of acidic water in the Indian River Lagoon’


