The role of biological rates in the simulated warming effect on oceanic CO2 uptakel

Marine biology plays an important role in the ocean carbon cycle. However, the effect of warming-induced changes in biological rates on oceanic CO2 uptake has been largely overlooked. We use an Earth system model of intermediate complexity to investigate the effect of temperature-induced changes in biological rates on oceanic uptake of atmospheric CO2 and compare it with the effects from warming-induced changes in CO2 solubility and ocean mixing and circulation. Under the representative CO2 concentration pathway RCP 8.5 and its extension, by year 2500, relative to the simulation without warming effect on the ocean carbon cycle, CO2-induced warming reduces cumulative oceanic CO2 uptake by 469 Pg C, of which about 20% is associated with the warming-induced change in marine biological rates. In our simulations, the bulk effect of biological-mediated changes on CO2 uptake is smaller than that mediated by changes in CO2 solubility and ocean mixing and circulation. However, warming-induced changes in individual biological rates, including phytoplankton growth, phytoplankton mortality, and detritus remineralization, are found to affect oceanic CO2 uptake by an amount greater than or comparable to that caused by changes in CO2 solubility and ocean physics. Our simulations, which include only a few temperature-dependent biological processes, demonstrate the important role of biological rates in the oceanic CO2 uptake. In reality, many more complicated biological processes are sensitive to temperature change, and their responses to warming could substantially affect oceanic uptake of atmospheric CO2.

Continue reading ‘The role of biological rates in the simulated warming effect on oceanic CO2 uptakel’

Calcite dissolution kinetics at the sediment-water interface in natural seawater

The absorption, or uptake, of anthropogenic CO2 by the oceans results in a decrease in pH and carbonate ion concentration, [CO32 −]; as a consequence, the saturation state of seawater with respect to CaCO3 minerals (calcite, aragonite) falls, leading to a shallowing of their saturation depths and triggering an increase in their dissolution at the seafloor. Nearly one-third of the seabed is composed of CaCO3-rich sediments, and their dissolution is the ultimate marine sink of anthropogenic CO2. Despite numerous past studies, much confusion and uncertainty still surround our understanding of the rates and kinetics of CaCO3 dissolution at the deep seafloor. Results from in situ studies disagree with laboratory studies, most of which have been carried out under conditions, e.g., mineral suspensions, that are not representative of processes at the seafloor. Herein, we report measurements of the dissolution rate of calcite, formed into synthetic sediment disks by mixing various amounts of this mineral with montmorillonite. These disks were placed in a stirred-flow reactor and exposed to a range of saturation states and shear stress conditions to simulate conditions at the sediment-water interface. The dissolution rates, normalized to the interfacial area of the sediment disks, were linearly dependent on the undersaturation state of the experimental seawater solution and displayed a square-root dependence on the calcite content, under both quiescent and stirred conditions. The rate of release of reaction products from the sediment increased with stirring rate, i.e., shear stress, until it became invariant at higher stirring rates. This latter result argues that calcite dissolution is transport (water-side) controlled for shear stress levels known to exist at the seafloor, which advises a simpler kinetic description of benthic calcite dissolution.

Continue reading ‘Calcite dissolution kinetics at the sediment-water interface in natural seawater’

An evaluation of potentiometric pH sensors in coastal monitoring applications

A wealth of historical coastal water pH data has been collected using potentiometric glass electrodes, but the accuracy and stability of these sensors is poorly understood. Here we compared pH measurements from five potentiometric sensors incorporated into profiling Sea-Bird instrument packages and compared them to spectrophotometric measurements on discrete bottle samples collected at two to three depths associated with each cast. Differences ranged from −0.509 to +0.479 with a mean difference of −0.055 pH units. Ninety-two percent of the measurements were within ± 0.2 pH units, but 1% of the measurements had differences greater than 0.322. Sensor performance was affected by depth, but most of the difference was associated with calibration shortcomings. Sensor drift within a day was negligible; moreover, differences between bottle samples and electrode measurements within a sampling day were smaller than differences across days. Bootstrap analysis indicated that conducting a daily in situ calibration would reduce the mean difference to 0.002 pH units and increase the number of samples within a 0.2 pH unit error to 98%.

Continue reading ‘An evaluation of potentiometric pH sensors in coastal monitoring applications’

Physiological responses of gray mullet Mugil cephalus to low-pH water

We examined changes in the physiological responses of gray mullet Mugil cephalus exposed to acidic seawater (pH 6.0, 6.5, 7.0) and normal seawater (pH 8.0, control) for 15 days. As pH decreased, survival rate and body weight also decreased. Levels of aminotransferase, total protein and triglycerides also differed significantly with changes in pH, presumably due to stress caused by exposure to acidic water. The level of osmotic pressure was significantly higher in the pH 6.0 group than in other groups. Superoxide dismutase was significantly higher in the pH 6.5 and 7.0 groups than in the pH 8.0 group, and glutathione level was lowest in the pH 6.0 group. We conclude that decreasing the pH level of seawater induces a stress response in fish, damaging their ability to control their hematological and osmotic pressure. Antioxidant enzymes are generally sensitive to osmotic stress; in this study, antioxidant activity significantly changed with pH level. These results indicate that physiological stress induced by exposure to acidification reduces survival rates and inhibits growth in M. cephalus.

Continue reading ‘Physiological responses of gray mullet Mugil cephalus to low-pH water’

Release of Version 5 of the Surface Ocean CO2 Atlas – celebrating 10 years of SOCAT!

On behalf of the Surface Ocean CO2 Atlas (SOCAT) scientific community, we are proud to announce the release of SOCAT Version 5! SOCAT is a synthesis activity by the international marine carbon research community (>100 contributors). SOCAT version 5 has 21.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to January 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases of SOCAT. The SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. Celebrating its 10th anniversary in 2017, SOCAT represents a milestone in biogeochemical and climate research, and in informing policy.

Continue reading ‘Release of Version 5 of the Surface Ocean CO2 Atlas – celebrating 10 years of SOCAT!’

Scales and drivers of seasonal pCO2 dynamics and net ecosystem exchange along the coastal waters of southeastern Arabian Sea

The impact of seasonal coastal upwelling on the dynamics of dissolved inorganic carbon (DIC) and sea-air fluxes of CO2 along the coastal waters of Kochi was investigated during 2015, as a part of Ecosystem Modelling Project. The surface water pCO2 varied from 396 to 630 μatm during the study period. Significant inter-seasonal variations were found in the distribution of physico-chemical variables and surface pCO2. An increase of 102.1 μatm of pCO2 was noticed over a two-decade period with a rate of 5.3 μatm y− 1. There was an agreement between the fluxes of CO2 and net ecosystem production (NEP) with respect to the trophic status while NEP was higher than CO2 fluxes by a factor of 3.9. The annual net ecosystem exchange (NEE) was estimated to be 15.02 mmol C m− 2 d− 1 indicating that the coastal waters of Kochi are highly heterotrophic in nature.

Continue reading ‘Scales and drivers of seasonal pCO2 dynamics and net ecosystem exchange along the coastal waters of southeastern Arabian Sea’

Combined effects of elevated pCO2 and warming facilitate Cyanophage infections

Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To test this hypothesis, we grew Plectonema boryanum IU597 under two temperature (25 and 29°C) and two pCO2 (400 and 800 μatm) conditions for 1 year, after which all treatments were re-exposed to control conditions for a period of 3 weeks. At several time points during the 1 year period, and upon re-exposure, we measured various infection characteristics of it associated cyanophage PP, including the burst size, latent period, lytic cycle and the efficiency of plaquing (EOP). As expected, elevated pCO2 promoted growth of P. boryanumequally over the 1 year period, but warming did not. Burst size increased in the warm treatment, but decreased in both the elevated pCO2 and combined treatment. The latent period and lytic cycle both became shorter in the elevated pCO2 and higher temperature treatment, and were further reduced by the combined effect of both factors. Efficiency of plaquing (EOP) decreased in the elevated pCO2 treatment, increased in the warm treatment, and increased even stronger in the combined treatment. These findings indicate that elevated pCO2 enhanced the effect of warming, thereby further promoting the virus infection rate. The re-exposure experiments demonstrate adaptation of the host leading to higher biomass build-up with elevated pCO2 over the experimental period, and lower performance upon re-exposure to control conditions. Similarly, virus burst size and EOP increased when given warm adapted host, but were lower as compared to the control when the host was re-exposed to control conditions. Our results demonstrate that adaptation but particularly physiological acclimation to climate change conditions favored viral infections, while limited host plasticity and slow adaptation after re-exposure to control conditions impeded host biomass build-up and viral infections.

Continue reading ‘Combined effects of elevated pCO2 and warming facilitate Cyanophage infections’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,007,607 hits


Ocean acidification in the IPCC AR5 WG II

OUP book