Job opportunity: OA-ICC Associate Project Officer

Organization: NAEL-Radioecology Laboratory

Primary Location: Monaco-IAEA Environment Laboratories in Monaco

Application Deadline: 14 October 2020

Main Purpose: As a member of a team reporting to the Laboratory Head and Project Manager of the Peaceful Uses Initiative (PUI) project “Ocean Acidification International Coordination Center (OA-ICC)”, the Associate Project Officer (Radioecology Laboratory) provides assistance in project management, reporting and analytical support within the different working areas, with the objective of effective, efficient, and timely implementation of the project.

Continue reading ‘Job opportunity: OA-ICC Associate Project Officer’

Acclimatization drives differences in reef-building coral calcification rates

Coral reefs are susceptible to climate change, anthropogenic influence, and environmental stressors. However, corals in Kāneʻohe Bay, Hawaiʻi have repeatedly shown resilience and acclimatization to anthropogenically-induced rising temperatures and increased frequencies of bleaching events. Variations in coral and algae cover at two sites—just 600 m apart—at Malaukaʻa fringing reef suggest genetic or environmental differences in coral resilience between sites. A reciprocal transplant experiment was conducted to determine if calcification (linear extension and dry skeletal weight) for dominant reef-building species, Montipora capitata and Porites compressa, varied between the two sites and whether or not parent colony or environmental factors were responsible for the differences. Despite the two sites representing distinct environmental conditions with significant differences between temperature, salinity, and aragonite saturation, M. capitata growth rates remained the same between sites and treatments. However, dry skeletal weight increases in P. compressa were significantly different between sites, but not across treatments, with linear mixed effects model results suggesting heterogeneity driven by environmental differences between sites and the parent colonies. These results provide evidence of resilience and acclimatization for M. capitata and P. compressa. Variability of resilience may be driven by local adaptations at a small, reef-level scale for P. compressa in Kāneʻohe Bay.

Continue reading ‘Acclimatization drives differences in reef-building coral calcification rates’

Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model

Brachiopods present a key fossil group for Phanerozoic palaeo-environmental and palaeo-oceanographical reconstructions, owing to their good preservation and abundance in the geological record. Yet to date, hardly any geochemical proxies have been calibrated in cultured brachiopods and only little is known on the mechanisms that control the incorporation of various key elements into brachiopod calcite. To evaluate the feasibility and robustness of multiple Element/Ca ratios as proxies in brachiopods, specifically Li/Ca, B/Ca, Na/Ca, Mg/Ca, Sr/Ca, Ba/Ca, as well as Li/Mg, we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years with closely monitored ambient conditions, carbonate system parameters and elemental composition of the culture medium. The experimental setup comprised of two control aquariums (pH0 = 8.0 and 8.15, T = 10 °C) and treatments where pCO2 − pH (pH1 = 7.6 and pH2 = 7.35), temperature (T = 16 °C) and chemical composition of the culture medium were manipulated. Our results indicate that the incorporation of Li and Mg is strongly influenced by temperature, growth effects as well as carbonate chemistry, complicating the use of Li/Ca, Mg/Ca and Li/Mg ratios as straightforward reliable proxies. Boron partitioning varied greatly between the treatments, however without a clear link to carbonate system parameters or other environmental factors. The partitioning of both Ba and Na varied between individuals, but was not systematically affected by changes in the ambient conditions. We highlight Sr as a potential proxy for DIC, based on a positive trend between Sr partitioning and carbonate chemistry in the culture medium. To explain the observed dependency and provide a quantitative framework for exploring elemental variations, we devise the first biomineralisation model for brachiopods, which results in a close agreement between modelled and measured Sr distribution coefficients. We propose that in order to sustain shell growth under increased DIC, a decreased influx of Ca2+ to the calcifying fluid is necessary, driving the preferential substitution of Sr2+ for Ca2+ in the crystal lattice. Finally, we conducted micro-computed tomography analyses of the shells grown in the different experimental treatments. We present pore space – punctae – content quantification that indicates that shells built under increased environmental stress, and in particular elevated temperature, contain relatively more pore space than calcite, suggesting this parameter as a potential novel proxy for physiological stress and even environmental conditions.

Continue reading ‘Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model’

Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula


  • Measured respiration and excretion of the Antarctic pteropod Limacina.
  • Analyzed effects of future temperature and food conditions on pteropod metabolism.
  • Highest metabolism occurred under higher temperatures with less response to food.
  • Metabolic ratios of C, N, and P were all below the canonical Redfield ratio.
  • Pteropod metabolism responsive to ocean change, affecting biogeochemical cycles.


Pteropods (pelagic snails) are abundant zooplankton in the Southern Ocean where they are important grazers of phytoplankton, prey for higher trophic levels, and sensitive to environmental change. The Western Antarctic Peninsula (WAP) is a highly dynamic and productive region that has undergone rapid warming, but little is known about how environmental changes there will affect pteropod physiology. In this study, the effects of warming seawater temperatures and shifting food availability on Limacina helicina antarctica metabolism (respiration and excretion) were determined by conducting shipboard experiments that exposed pteropods to a range of temperatures and phytoplankton (food) concentrations. Highest respiration (up to 69 μmol O2 gDW−1 h−1) and usually highest excretion rates occurred under higher temperature with more limited metabolic response to food concentration, indicating these factors do not always have an additive effect on pteropod metabolism. The proportion of dissolved organic matter (DOM) to total organic and inorganic dissolved constituents was high and was also significantly affected by shifts in temperature and food. Dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP) were on average 27, 51, and 11.5% of the total C, N, and P metabolized, respectively. The proportion of total N excreted as DON and the proportion of total P excreted as DOP were significantly affected by a combination of shifting temperature and food concentrations. There were no effects of temperature or food on DOC excretion (mean 8.79 μmol C gDW−1 h−1; range 0.44 to 44) as a proportion of total C metabolized. Metabolic O2:N ratio ranged from 2 to 9 and decreased significantly with increasing temperature and food, indicating a shift toward increased protein catabolism. Metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which has implications for phytoplankton nutrient uptake and bacterial production. Respiration rates at ambient conditions of other WAP pteropods, and excretion rates for Clio pyramidata, were also measured, with respiration rates ranging from 24.39 (Spongiobranchaea australis) to 28.86 (L. h. antarctica) μmol O2 gDW−1 h−1. Finally, a CO2 perturbation experiment measuring L. h. antarctica metabolism under pre-industrial and elevated dissolved pCO2 conditions showed no significant change in mean L. h. antarctica respiration or excretion rates with higher pCO2. These insights into the metabolic response of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula’

A regional neural network approach to estimate water-column nutrient concentrations and carbonate system variables in the Mediterranean Sea: CANYON-MED

A regional neural network-based method, “CANYON-MED” is developed to estimate nutrients and carbonate system variables specifically in the Mediterranean Sea over the water column from pressure, temperature, salinity, and oxygen together with geolocation and date of sampling. Six neural network ensembles were developed, one for each variable (i.e., three macronutrients: nitrates (NO−33-), phosphates (PO3−443-) and silicates (SiOH4), and three carbonate system variables: pH on the total scale (pHT), total alkalinity (AT), and dissolved inorganic carbon or total carbon (CT), trained using a specific quality-controlled dataset of reference “bottle” data in the Mediterranean Sea. This dataset is representative of the peculiar conditions of this semi-enclosed sea, as opposed to the global ocean. For each variable, the neural networks were trained on 80% of the data chosen randomly and validated using the remaining 20%. CANYON-MED retrieved the variables with good accuracies (Root Mean Squared Error): 0.73 μ–1 for NO−33-, 0.045 μ–1 for PO3−443- and 0.70 μ–1 for Si(OH)4, 0.016 units for pHT, 11 μ–1 for AT and 10 μ–1 for CT. A second validation on the ANTARES independent time series confirmed the method’s applicability in the Mediterranean Sea. After comparison to other existing methods to estimate nutrients and carbonate system variables, CANYON-MED stood out as the most robust, using the aforementioned inputs. The application of CANYON-MED on the Mediterranean Sea data from autonomous observing systems (integrated network of Biogeochemical-Argo floats, Eulerian moorings and ocean gliders measuring hydrological properties together with oxygen concentration) could have a wide range of applications. These include data quality control or filling gaps in time series, as well as biogeochemical data assimilation and/or the initialization and validation of regional biogeochemical models still lacking crucial reference data. Matlab and R code are available at https://

Continue reading ‘A regional neural network approach to estimate water-column nutrient concentrations and carbonate system variables in the Mediterranean Sea: CANYON-MED’

Physiological resilience of pink salmon to naturally occurring ocean acidification

Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.

Continue reading ‘Physiological resilience of pink salmon to naturally occurring ocean acidification’

New edition of the “Ocean Acidification Report” by Global Ocean Health

The “Ocean Acidification Report” is a timely compilation of news from the front lines of ocean acidification research, legislation, resources, and profiles from the waterfront.

The September 2020 edition covers topic such as Climate Change Effects on Aquaculture, Changes in Fish Communities under OA, 10-year OA Roadmap Released, Coral Reefs, Carbon Myths & Realities and more.

Continue reading ‘New edition of the “Ocean Acidification Report” by Global Ocean Health’

Reversing ocean acidification is doable, if we have the political will | Opinion

A new study has found that ocean acidification is damaging the shells of young Dungeness crab off the Oregon coast. TNS

Ocean acidification, one of many devastating effects of the warming earth, has been well-documented. It’s no longer up for debate. We now know that this process is adversely affecting many of the species that are the cornerstone of major oceanic ecosystems.

The public has been focusing on recent hurricanes in the Gulf of Mexico, along with massive wildfires and record heat waves in the West, as dangers of global warming. However, what has been ignored is the other danger, the increasing atmospheric carbon dioxide concentrations — the increasing acidification of our oceans!

Continue reading ‘Reversing ocean acidification is doable, if we have the political will | Opinion’

An extreme decline effect in ocean acidification ecology

Ocean acidification – deceasing oceanic pH resulting from the uptake of excess atmospheric CO2 – is expected to affect marine life in the future. Among the possible consequences, a series of studies on coral reef fishes suggested that the direct effects of acidification on fish behaviour will be the most catastrophic. Recent studies documenting a lack of effect of experimental ocean acidification on fish behaviour, however, call this dire prediction into question. Here, we critically assess the past decade of ocean acidification research regarding direct effects on fish behaviour. Using a meta-analysis, we provide quantitative evidence that the research to date on this topic is strongly characterized by a phenomenon known as the “decline effect”, where large effects have all but disappeared over a decade. The decline effect in this field cannot be explained biologically, but is strongly associated with well-known biases to which the process of science is generally prone. We contend that ocean acidification does not have as much of a direct impact on fish behaviour as previously thought, and we advocate for improved approaches to minimize the potential for a decline effect in future avenues of research.

Continue reading ‘An extreme decline effect in ocean acidification ecology’

Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic


  • The bivalve Ervilia castanea was studied at volcanic CO2 seeps and reference sites.
  • Abundance, size and net-calcification were inversely related to CO2 levels.
  • Large individuals were scarce or absent at high CO2 sites.
  • Recruitment of this bivalve was highest at the CO2 seeps.
  • Abundance and size of E. castanea were positively correlated with Chl-a in sediment.


Sites with naturally high CO2 conditions provide unique opportunities to forecast the vulnerability of coastal ecosystems to ocean acidification, by studying the biological responses and potential adaptations to this increased environmental variability. In this study, we investigated the bivalve Ervilia castanea in coastal sandy sediments at reference sites and at volcanic CO2 seeps off the Azores, where the pH of bottom waters ranged from average oceanic levels of 8.2, along gradients, down to 6.81, in carbonated seawater at the seeps. The bivalve population structure changed markedly at the seeps. Large individuals became less abundant as seawater CO2 levels rose and were completely absent from the most acidified sites. In contrast, small bivalves were most abundant at the CO2 seeps. We propose that larvae can settle and initially live in high abundances under elevated CO2 levels, but that high rates of post-settlement dispersal and/or mortality occur. Ervilia castanea were susceptible to elevated CO2 levels and these effects were consistently associated with lower food supplies. This raises concerns about the effects of ocean acidification on the brood stock of this species and other bivalve molluscs with similar life history traits.

Continue reading ‘Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,375,751 hits


Ocean acidification in the IPCC AR5 WG II

OUP book