Archive Page 2

Predator prey interactions between predatory gastropod Reishia clavigera, barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under ocean acidification

Since the response to ocean acidification is species specific, differences in responses between predator and prey will alter their interactions, hence affect the population dynamics of both species. Changes in predator prey interactions between a predatory muricid gastropod Reishia clavigera and its prey, the barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under three pCO2 levels (380, 950, and 1250 μatm) were investigated. The searching time for barnacles increased and the ability to locate them decreased at higher pCO2 levels. The movement speed and the prey consumption rate, however, were independent of pCO2. There was no preference towards either B. variabilis or A. amphitrite amphitrite regardless of pCO2. Exposure experiments involving multiple generations are suggested to assess transgenerational effects of ocean acidification and the potential compensation responses before any realistic predictions on the long term changes of population dynamics of the interacting species can be made.

Continue reading ‘Predator prey interactions between predatory gastropod Reishia clavigera, barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under ocean acidification’

Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes

Highlights

• Increased algal densities reduce photosynthesis and respiration of Ulva conglobata.

• Algal density mediates the interactive effect of increased temperature and lowered pH.

• Altered temperature and pH oppositely affect photosynthetic rate and saturation light.

Abstract

Growing of macroalgae increases their biomass densities in natural habitats. To explore how the altered algal density impacts their photosynthetic responses to changes of environmental factors, we compared the photosynthesis versus irradiance characteristics of a marine green macroalga Ulva conglobata under low [2.0 g fresh weight (FW) L−1], medium (6.0 g FW L−1) and high biomass densities (12.0 g FW L−1), and under a matrix of temperatures (20, 25, 30 and 35 °C) and pH levels (7.8, 8.2 and 8.6). Increased algal densities decreased the photosynthetic O2 evolution rate among all combined temperature and pH treatments, in parallel with the decrease of light-utilizing efficiency (α, the initial slope) and maximum photosynthetic rate (Pmax) and the increase of light saturation point (EK). Rising temperature interacted with lowered pH to increase the α under low but not under high algal densities. Rising temperature increased the Pmax and decreased the EK under low algal density, but not under high density. Lowered pH promoted the Pmax and EK under all three algal densities. The increased temperature enhanced the dark respiration (Rd) and light compensation point (EC), while the altered pH showed a limited effect. Moreover, the increased algal density reduced the Rd, and had a limited effect on the EC. In addition, our results indicate that changing algal densities caused the complex photophysiological changes in responses to the temperature and pH changes, and these complex responses resolved into a close relation between Rd and Pmax across the matrix of temperatures and pH levels.

Continue reading ‘Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes’

Hydrologic controls on CO2 chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of Mexico

Estuaries are generally considered a source of CO2 to the atmosphere, although with significant uncertainties in magnitude and controlling factors between and within estuaries. We studied four northwestern Gulf of Mexico estuaries that experience extreme hydrologic conditions between April 2014 and February 2017 to determine the role of dry/wet cycle on estuarine CO2 system. Annual air–water CO2 flux ranged from 2.7 to 35.9 mol·C·m−2·yr−1; CO2 flux declined by approximately an order of magnitude along with declining river discharge. Episodic flooding made CO2 flux differ between dry (−0.7 to 20.9 mmol·C·m−2·d−1) and wet (11.6–170.0 mmol·C·m–2·d–1) conditions. During wet condition, increases in dissolved inorganic carbon (DIC) and total alkalinity (TA) significantly elevated CO2 degassing. Furthermore, ventilation of river‐borne CO2 strengthened degassing when estuaries became overwhelmingly river‐dominated. During flood relaxation, all estuaries experienced heightened productivity, evidenced by DIC and TA consumption in the mid‐salinity range (10–30). When prolonged drought led to hypersalinity (>36.5), biogeochemical and evaporative effects enhanced DIC and TA consumption and CO2 degassing. Due to flooding and high wind speeds, these estuaries were a strong CO2 source during spring and summer. Then they transitioned to a weak CO2 source or sink during the fall. Low temperatures further depressed CO2 efflux during winter except when a pulse of freshwater input occurred. This study demonstrates that changes in the hydrologic condition of estuaries, such as dry/wet cycle and river discharge gradient, will greatly alter air–water CO2 flux and estuarine contribution to the global carbon budget.

Continue reading ‘Hydrologic controls on CO2 chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of Mexico’

Climate shapes population variation in dogwhelk predation on foundational mussels

Trait variation among populations is important for shaping ecological dynamics. In marine intertidal systems, seawater temperature, low tide emersion temperature, and pH can drive variation in traits and affect species interactions. In western North America, Nucella dogwhelks are intertidal drilling predators of the habitat-forming mussel Mytilus californianus. Nucella exhibit local adaptation, but it is not known to what extent environmental factors and genetic structure contribute to variation in prey selectivity among populations. We surveyed drilled mussels at sites across Oregon and California, USA, and used multiple regression and Mantel tests to test the effects of abiotic factors and Nucella neutral genetic relatedness on the size of mussels drilled across sites. Our results show that Nucella at sites characterized by higher and less variable temperature and pH drilled larger mussels. Warmer temperatures appear to induce faster handling time, and more stable pH conditions may prolong opportunities for active foraging by reducing exposure to repeated stressful conditions. In contrast, there was no significant effect of genetic relatedness on prey size selectivity. Our results emphasize the role of climate in shaping marine predator selectivity on a foundation species. As coastal climates change, predator traits will respond to localized environmental conditions, changing ecological interactions.

Continue reading ‘Climate shapes population variation in dogwhelk predation on foundational mussels’

Rutgers leads $1.5 million project for ocean acidification monitoring

Grace Saba, assistant professor in the Department of Marine and Coastal Sciences (DMCS), is the lead principal investigator  and John Wilkin, professor in DMCS, is co-principal investigator of $1,499,895 million project observing ocean acidification on the U.S. Northeast Shelf, from the Mid-Atlantic to the Gulf of Maine. (photo by Rutgers University)

NEW BRUNSWICK, N.J. — Grace Saba, assistant professor in the Department of Marine and Coastal Sciences (DMCS), is the lead principal investigator and John Wilkin, professor in DMCS, is co-principal investigator of $1,499,895 million project observing ocean acidification on the U.S. Northeast Shelf, from the Mid-Atlantic to the Gulf of Maine.

The project, “Optimizing Ocean Acidification Observations for Model Parameterization in the Coupled Slope Water System of the U.S. Northeast Large Marine Ecosystem,” is funded by the NOAA’s Ocean Acidification Program (OAP), which has teamed up with the U.S. Integrated Ocean Observing System (IOOS®) to fund a total of four projects aimed at improving the observing system design for characterizing ocean acidification.

Continue reading ‘Rutgers leads $1.5 million project for ocean acidification monitoring’

The impacts of climate change on the biomechanics of animals: themed issue article: biomechanics and climate change

Anthropogenic climate change induces unprecedented variability in a broad range of environmental parameters. These changes will impact material properties and animal biomechanics, thereby affecting animal performance and persistence of populations. Climate change implies warming at the global level, and it may be accompanied by altered wind speeds, wave action, ocean circulation, acidification as well as increased frequency of hypoxic events. Together, these environmental drivers affect muscle function and neural control and thereby movement of animals such as bird migration and schooling behaviour of fish. Altered environmental conditions will also modify material properties of animals. For example, ocean acidification, particularly when coupled with increased temperatures, compromises calcified shells and skeletons of marine invertebrates and byssal threads of mussels. These biomechanical consequences can lead to population declines and disintegration of habitats. Integrating biomechanical research with ecology is instrumental in predicting the future responses of natural systems to climate change and the consequences for ecosystem services such as fisheries and ecotourism.

Continue reading ‘The impacts of climate change on the biomechanics of animals: themed issue article: biomechanics and climate change’

Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.

Continue reading ‘Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,316,137 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book