Posts Tagged 'North Atlantic'

Higher temperature, increased CO2, and changing nutrient ratios alter the carbon metabolism and induce oxidative stress in a cosmopolitan diatom

Phytoplankton are responsible for about 90% of the oceanic primary production, largely supporting marine food webs, and actively contributing to the biogeochemical cycling of carbon. Yet, increasing temperature and pCO2, along with higher dissolved nitrogen: phosphorus ratios in coastal waters are likely to impact phytoplankton physiology, especially in terms of photosynthetic rate, respiration, and dissolved organic carbon (DOC) production. Here, we conducted a full-factorial experiment to identify the individual and combined effects of temperature, pCO2, and N : P ratio on the antioxidant capacity and carbon metabolism of the diatom Phaeodactylum tricornutum. Our results demonstrate that, among these three drivers, temperature is the most influential factor on the physiology of this species, with warming causing oxidative stress and lower activity of antioxidant enzymes. Furthermore, the photosynthetic rate was higher under warmer conditions and higher pCO2, and, together with a lower dark respiration rate and higher DOC exudation, generated cells with lower carbon content. An enhanced oceanic CO2 uptake and an overall stimulated microbial loop benefiting from higher DOC exudation are potential longer-term consequences of rising temperatures, elevated pCO2 as well as shifted dissolved N : P ratios.

Continue reading ‘Higher temperature, increased CO2, and changing nutrient ratios alter the carbon metabolism and induce oxidative stress in a cosmopolitan diatom’

Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae

Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth and photosynthesis and alter DOC production, but responses across taxa and regions are widely varied and difficult to predict. Focusing on algal taxa from two different functional groups on Caribbean coral reefs, we exposed fleshy (Dictyota spp.) and calcifying (Halimeda tuna) macroalgae to ambient and low seawater pH for 25 days in an outdoor experimental system in the Florida Keys. We quantified algal growth, calcification, photophysiology, and DOC production across pH treatments. We observed no significant differences in the growth or photophysiology of either species between treatments, except for lower chlorophyll b concentrations in Dictyota spp. in response to low pH. We were unable to quantify changes in DOC production. The tolerance of Dictyota and Halimeda to near-future seawater carbonate chemistry and stability of photophysiology, suggests that acidification alone is unlikely to change biogeochemical processes associated with algal photosynthesis in these species. Additional research is needed to fully understand how taxa from these functional groups sourced from a wide range of environmental conditions regulate photosynthesis (via carbon uptake strategies) and how this impacts their DOC production. Understanding these species-specific responses to future acidification will allow us to more accurately model and predict the indirect impacts of macroalgae on coral health and reef ecosystem processes.

Continue reading ‘Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae’

The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean

Gelatinous zooplankton are increasingly recognized to play a key role in the ocean’s biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Continue reading ‘The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean’

French coastal network for carbonate system monitoring: the CocoriCO2 dataset

Since the beginning of the industrial revolution, atmospheric carbon dioxide (CO2) concentrations have risen steadily and have induced a decrease of the averaged surface ocean pH by 0.1 units, corresponding to an increase in ocean acidity of about 30 %. In addition to ocean warming, ocean acidification poses a tremendous challenge to some marine organisms, especially calcifiers. The need for long-term oceanic observations of pH and temperature is a key element to assess the vulnerability of marine communities and ecosystems to these pressures. Nearshore productive environments, where a large majority of shellfish farming activities are conducted, are known to present pH levels as well as amplitudes of daily and seasonal variations that are much larger than those observed in the open ocean. Yet, to date, there are very few coastal observation sites where these parameters are measured simultaneously and at high frequency.

To bridge this gap, an observation network was initiated in 2021 in the framework of the CocoriCO2 project. Six sites were selected along the French Atlantic and Mediterranean coastlines based on their importance in terms of shellfish production and the presence of high- and low-frequency monitoring activities. At each site, autonomous pH sensors were deployed both inside and outside shellfish production areas, next to high-frequency CTD (conductivity- temperature-depth) probes operated through two operating monitoring networks. pH sensors were set to an acquisition rate of 15 min and discrete seawater samples were collected biweekly in order to control the quality of pH data (laboratory spectrophotometric measurements) as well as to measure total alkalinity and dissolved inorganic carbon concentrations for full characterization of the carbonate system. While this network has been up and running for more than two years, the acquired dataset has already revealed important differences in terms of pH variations between monitored sites related to the influence of diverse processes (freshwater inputs, tides, temperature, biological processes). Data are available at (Petton et al., 2023a).

Continue reading ‘French coastal network for carbonate system monitoring: the CocoriCO2 dataset’

The modulating role of natural variability in the biological response to ocean acidification

Ocean acidification (OA) is the consequence of the uptake of excess carbon dioxide from the atmosphere. Along the coastal zone, ocean acidification is influenced by other processes such as biology and currents, leading to high levels of natural variability in pH. While the impact of pH on marine organisms is better resolved, the modulating role of this natural variability is poorly understood. This master’s thesis aimed at evaluating diel pH fluctuations using the larval stages of the brittle star Amphiura filiformis. Results revealed the importance of acknowledging pH variations with individuals exhibiting higher fitness. Diel analyses also underscored the existence of an intrinsic circadian cycle where larvae would grow more during the daytime than nighttime, possibly explained by better conditions encountered during the day. In addition, we demonstrated a carryover effect that could also be associated with a stage sensitivity. We suggest that future studies should integrate natural variations and delve into the different species’ adaptations as they have an important role in the biological responses to upcoming OA.

Continue reading ‘The modulating role of natural variability in the biological response to ocean acidification’

Complex dynamics of coral gene expression responses to low pH across species

Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges (‘Ojo’; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoidesPorites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.

Continue reading ‘Complex dynamics of coral gene expression responses to low pH across species’

Linking physiological effects of environmental stressors from cellular to whole-organismal levels in the early-life history stages of Crassostrea virginica (eastern oyster)

The Eastern oyster, Crassostrea virginica (Gmelin, 1791), is an ecologically and economically important species that resides in dynamic coastal ecosystems along the East and Gulf coasts of the United States. The success of oyster populations depends on the recruitment of their early life stages, which are especially vulnerable to environmental stress due to high developmental energy demands. As climate change continues, it is necessary to anticipate how the early life stages of the Eastern oyster will respond to environmental stressors under ecologically relevant scenarios. Therefore, the goal of this dissertation was to understand how the early life stages of C. virginica are physiologically affected by multiple global climate change stressors from a holistic perspective by incorporating local environmental data, observations across three life stages (i.e., carryover effects), responses from two important types of Eastern oysters, and physiological metrics from the cellular to whole-organism levels. To achieve this goal, chapter two observes the relative importance of three environmental tolerance mechanisms (selective mortality, carryover effects, and phenotypic plasticity) in shaping the performance of juvenile oysters in response to salinity exposures during the larval stage. Findings from this chapter indicate that typical differences in salinity among successive larval cultures in shellfish hatcheries likely do not impact performance as juveniles; rather, phenotypic plasticity likely underpins juvenile oyster performance as their physiology correlated with environmental conditions during the juvenile phase, not the larval exposures. Chapter three investigates carryover effects in more detail to explore how multiple global climate change stressors, ocean acidification and ocean warming, might affect the physiology of larval C. virginica, if those effects carry over to impact the performance of juvenile oysters and lastly, if those carryover effects change under different future environmental scenarios. Conditions of ocean acidification and ocean warming did affect the larval stage of the Eastern oyster and carry over into the juvenile stage, though these effects were nuanced and context dependent. Specifically, carryover effects from conditions of acidification were more persistent and negative, whereas warming had more fleeting carryover, and cross-tolerant, effects that were generally positive. Continuing to observe the effects of ocean acidification and ocean warming on the Eastern oyster, chapter four compares the larval responses of wild and selectively bred oysters. C. virginica larvae from wild and selectively bred oysters responded differently to conditions of acidification, but not warming. Furthermore, wild oyster larvae may be more resilient in the face of ongoing climate change. Despite exhibiting more lethal and negative effects of acidified conditions early in the larval stage, wild oyster larvae compensated for these earlier negative effects, while larvae from selectively bred oysters began showing signs of stress towards the end of the experiment. Lastly, exploring the development of carryover effects, chapter five observes how conditions of acidification during the settlement stage (i.e., settlement and metamorphosis) carried over to impact the juvenile stage. No detectable carryover effects were found, even though conditions of acidification negatively affected tissue growth at the beginning of the settlement stage. Overall, while Eastern oysters are able to withstand environmental stress to some degree, there were sub-lethal and carryover effects from multiple global climate change stressors identified in this dissertation that could have consequences for both wild and selectively bred populations in the future. The results from this dissertation will support subsequent studies to accurately predict the future success of wild oyster populations (e.g., effects to recruitment) and aquaculture production based on their physiological performances in the face of ongoing climate change.

Continue reading ‘Linking physiological effects of environmental stressors from cellular to whole-organismal levels in the early-life history stages of Crassostrea virginica (eastern oyster)’

Impacts of long-term exposure to ocean acidification and warming on three-spined stickleback (Gasterosteus aculeatus) growth and reproduction

The warming and acidification of surface waters as predicted by the IPCC leads aquatic species to face major multifaceted changes in their environment. Although teleosts have efficient regulatory systems to cope with these changes, such changes clearly have the potential to impact their physiological functions. Hence, it is crucial to estimate the ability of teleost fishes to cope with multi-stresses to predict how they will deal with future environments. In this context, we investigated the joint effect of warming and acidification on three-spined stickleback (Gasterosteus aculeatus) from the juvenile stage to adulthood, focusing on parameters linked to growth, sexual maturation, and reproduction. Juvenile sticklebacks were split in 2 climate scenarios: a “Current” scenario corresponding to the current seasonal physico-chemical parameters of the water of the “Rade de Brest” in France, and a “RCP8.5” scenario with a warming of 3 °C and an acidification of 0.4 pH units. After 7 months, fish in the RCP8.5 scenario reached the same size and mass as those in the Current scenario, but they needed greater amounts of food to reach satiety. Furthermore, the mortality rate over the experiment was higher in the RCP8.5 scenario. Muscle lipid content, an indicator of energy reserves, was lower in females in the RCP8.5 scenario, suggesting an increased need for energy to maintain homeostasis and other physiological functions or a divergence in energy allocation strategy. Moreover, females exhibited lower sexual maturation and egg quality under the RCP8.5 scenario, which could have contributed to the lower fertilisation rate observed. Males were more resilient to the RCP8.5 scenario, exhibiting only a trend for lower kidney somatic index scores. Altogether, these results suggest a delay and/or an inhibition of gametogenesis and maturation in fish in warmed and acidified waters. The analysis of blood sex steroid concentrations, brain gene expression profiles, and physiological indexes did not allow us to discriminate between a delay and an inhibition of maturation in the RCP8.5 scenario. Overall, these findings clearly indicate that there is a long-term global impact of combined acidification and warming on the mortality and reproductive performance of three-spined stickleback.

Continue reading ‘Impacts of long-term exposure to ocean acidification and warming on three-spined stickleback (Gasterosteus aculeatus) growth and reproduction’

Localized inshore warming, acidification, and elevated particulate organic matter across a coupled mangrove, seagrass, and coral reef ecosystem in La Parguera, Puerto Rico

Global declines in mangroves, seagrasses, and corals threaten the provisioning of ecosystem services to coastal communities. However, potential feedbacks between these ecosystems are poorly understood owing to a lack of studies exploring functional links between these frequently coupled nearshore tropical ecosystems. To better understand these links, we sampled seawater temperature, salinity, and pH in addition to particulate organic carbon, particulate organic nitrogen, and their respective stable isotope composition (δ13C and δ15N) monthly from July 2018 to June 2019 at sites ranging from inshore to offshore in La Parguera Natural Reserve, Puerto Rico. We observed persistent, year-round warmer, more acidic, and higher particulate organic matter seawater at the most inshore Bioluminescent Bay station compared to sites further offshore. Particulate organic carbon values ranged from a maximum of 764 mg/m3 at the most inshore station to a minimum of 53.96 mg/m3 at the most offshore station while particulate organic nitrogen ranged from 166 mg/m3 at the most inshore station to 6.39 mg/m3 at the most offshore station. Biogeochemical variability across spatial scales largely followed gradients in biological and physical controls, with limited differences between the more offshore coral reef sites and the most intense biogeochemical modification occurring in the shallowest and most nearshore stations. Limited temporal variability was observed for most parameters except for seasonal variations in temperature, salinity, and pH. Particulate organic matter stable isotope composition were slightly enriched at inshore stations and suggested a mixture of primarily marine allochthonous and autochthonous organic matter sources. The importance of heterotrophy for coral resilience to warming and acidification suggests this localized nutrition-rich albeit warmer and acidified waters in nearshore mangrove and seagrass ecosystems is an important functional link to nearshore corals with the potential to modulate coral resilience to ocean warming and acidification.

Continue reading ‘Localized inshore warming, acidification, and elevated particulate organic matter across a coupled mangrove, seagrass, and coral reef ecosystem in La Parguera, Puerto Rico’

Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools (update)

Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification and likely already impacting marine ecosystems. In particular, there is concern that coastal, benthic calcifying organisms will be negatively affected by ocean acidification, a hypothesis largely supported by laboratory studies. The inter-relationships between carbonate chemistry and marine calcifying communities in situ are complex, and natural mesocosms such as tidal pools can provide useful community-level insights. In this study, we manipulated the carbonate chemistry of intertidal pools to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC) at emersion. Adding CO2 at the start of the tidal emersion to simulate future acidification (+1500 µatm pCO2, target pH 7.5) modified net production and calcification rates in the pools. By day, pools were fertilized by the increased CO2 (+20 % increase in NCP, from 10 to 12 mmol O2 m−2 h−1), while there was no measurable impact on NCC. During the night, pools experienced net community dissolution (NCC < 0), even under present-day conditions, when waters were supersaturated with regard to aragonite. Adding CO2 to the pools increased nocturnal dissolution rates by 40 % (from −0.7 to −1.0 mmol CaCO3 m−2 h−1) with no consistent impact on nocturnal community respiration. Our results suggest that ocean acidification is likely to alter temperate intertidal community metabolism on sub-daily timescales, enhancing both diurnal community production and nocturnal calcium carbonate dissolution.

Continue reading ‘Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools (update)’

Combination of RNAseq and RADseq to identify physiological and adaptive responses to acidification in the eastern oyster (Crassostrea virginica)

Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.

Continue reading ‘Combination of RNAseq and RADseq to identify physiological and adaptive responses to acidification in the eastern oyster (Crassostrea virginica)’

Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods

The effects of ocean acidification (OA) on coccolithophore’s photosynthesis, calcification rates, and growth have been extensively studied. However, how the intracellular Ca2+, mechanical properties and chemical composition of the coccoliths are affected by OA have not yet been investigated. This study tries to fill these gaps using Emiliania huxleyi as a model coccolithophore. When the seawater pCO2 increased from 400 μatm to 1200 μatm, the intracellular Ca2+ and coccolith area were reduced by 66% and 36%, respectively. Single-cell mapping by atomic force microscopy revealed that the modulus and hardness of coccolith decreased from 23.6 ± 0.2 GPa to 12.0 ± 5.5 GPa and from 0.53 ± 0.15 GPa to 0.20 ± 0.06 GPa, respectively. Additionally, the proportional organic matter and silicon in the coccolith surfaces increased with pCO2. The copepods Acartia pacifica fed on more E. huxleyi grown at higher pCO2. Our study implies that OA could change coccolithophore’s competitive interactions with other phytoplankton and ultimately influence carbon export to the deep ocean.

Continue reading ‘Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods’

Structurally stable but functionally disrupted marine microbial communities under a future climate change scenario: potential importance for nitrous oxide emissions


  • No effect of OW and OA on the composition and α diversity of microbial biofilms.
  • OW promoting nitrous oxide emissions of microbial biofilms.
  • OA decreasing nitrous oxide emissions of microbial biofilms.
  • An overriding impact of OA over OW on microbial biofilm nitrous oxide emissions.


The blue mussel Mytilus edulis is a widespread and abundant bivalve species along the North Sea with high economic and ecological importance as an engineer species. The shell of mussels is intensively colonized by microbial organisms that can produce significant quantities of nitrous oxide (N2O), a potent greenhouse gas. To characterize the impacts of climate change on the composition, structure and functioning of microbial biofilms on the shell surface of M. edulis, we experimentally exposed them to orthogonal combinations of increased seawater temperature (20 vs. 23 °C) and decreased pH (8.0 vs. 7.7) for six weeks. We used amplicon sequencing of the 16S rRNA gene to characterize the alpha and beta diversity of microbial communities on the mussel shell. The functioning of microbial biofilms was assessed by measuring aerobic respiration and nitrogen emission rates. We did not report any significant impacts of climate change treatments on the diversity of mussel microbiomes nor on the structure of these communities. Lowered pH and increased temperature had antagonistic effects on the functioning of microbial communities with decreased aerobic respiration and N2O emission rates of microbial biofilms in acidified seawater compared to increased rates in warmer conditions. An overriding impact of acidification over warming was finally observed on N2O emissions when the two factors were combined. Although acidification and warming in combination significantly reduced N2O biofilm emissions, the promotion of aquaculture activities in coastal waters where shellfish do not normally occur at high biomass and density could nonetheless result in unwanted emissions of this greenhouse gas in a near future.

Continue reading ‘Structurally stable but functionally disrupted marine microbial communities under a future climate change scenario: potential importance for nitrous oxide emissions’

The time series at the Strait of Gibraltar as a baseline for long-term assessment of vulnerability of calcifiers to ocean acidification

The assessment of the saturation state (Ω) for calcium carbonate minerals (aragonite and calcite) in the ocean is important to determine if calcifying organisms have favourable or unfavourable conditions to synthesize their carbonated structures. This parameter is largely affected by ocean acidification, as the decline in seawater pH causes a decrease in carbonate ion concentration, which in turn, lowers Ω. This work examines temporal trends of seawater pH, ΩAragonite and ΩCalcite in major Atlantic and Mediterranean water masses that exchange in the Strait of Gibraltar: North Atlantic Central Water (NACW), Levantine Intermediate Water (LIW) and Western Mediterranean Deep Water (WMDW) using accurate measurements of carbonate system parameters collected in the area from 2005-2021. Our analysis evidences a gradual reduction in pH in the three water mases during the monitoring period, which is accompanied by a decline in Ω for both minerals. The highest and lowest decreasing trends were found in the NACW and LIW, respectively. Projected long-term changes of Ω for future increases in atmospheric CO2 under the IPCC AR6 Shared Socio-economic Pathway “fossil-fuel-rich development” (SSP5-8.5) indicate that critical conditions for calcifiers with respect to aragonite availability will be reached in the entire water column of the region before the end of the current century, with a corrosive environment (undersaturation of carbonate) expected after 2100.

Continue reading ‘The time series at the Strait of Gibraltar as a baseline for long-term assessment of vulnerability of calcifiers to ocean acidification’

Impacts of glacial and sea-ice meltwater, primary production, and ocean CO2 uptake on ocean acidification state of waters by the 79 North Glacier and northeast Greenland shelf

The waters adjacent to the Nioghalvfjerdsbræ (79 North Glacier, 79NG) are influenced by Greenland Ice Sheet (GrIS) melt, sea-ice meltwater, and waters on the adjacent northeast Greenland shelf (NEGS). We investigated ocean acidification (OA) variables and the role of freshening, primary production, and air-sea CO2 exchange in Dijmphna Sound (DS) and on the NEGS in the summers of 2012 and 2016. The upper 150 m consisted of Polar Water with Arctic origin that was divided into a fresh surface layer (SL<50 m) and a cold halocline layer (CHL, 50 to 150 m). The layer below 150 m was of Atlantic origin. The SL freshwater was larger in 2012 than in 2016, mainly originated from local 79NG (and GrIS) runoff in DS, whereas on the NEGS in both years, it was mainly from sea-ice melt. The lowest aragonite saturation state (ΩAr) of 1.13 was found in the SL in 2012. Biological CO2 drawdown at primary production caused increased ΩAr in SL, which compensated for most of the ΩAr decrease due to the freshwater dilution of carbonate ions reducing total alkalinity, hence preventing corrosive conditions. This was most pronounced near the 79NG front in 2012, where surface stratification was most pronounced coinciding with large glacial meltwater fractions. Freshening decreased ΩAr by 0.4 at the 79NG front was compensated by biological CO2 drawdown by ~0.5. In 2016, a well-mixed water column in DS and NEGS, with dilution by sea-ice meltwater, caused less compensation on ΩAr by biological CO2 drawdown than in 2012. In future with changing climate and changing ocean chemistry, the increased meltwater effects may overcome the alleviating effects of biological CO2 drawdown on OA with unfavorable conditions for calcifying organisms. However, our study also suggests that primary production may be stimulated by stratification from surface meltwater. In addition, Atlantification and subglacial discharge may result in upwelling of inorganic nutrients that could promote primary production.

Continue reading ‘Impacts of glacial and sea-ice meltwater, primary production, and ocean CO2 uptake on ocean acidification state of waters by the 79 North Glacier and northeast Greenland shelf’

Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: insights from an experimental approach

The urgent need to remediate ocean acidification has brought attention to the ability of marine macrophytes (seagrasses and seaweeds) to take up carbon dioxide (CO2) and locally raise seawater pH via primary production. This physiological process may represent a powerful ocean acidification mitigation tool in coastal areas. However, highly variable nearshore environmental conditions pose uncertainty in the extent of the amelioration effect. We developed experiments in aquaria to address two interconnected goals. First, we explored the individual capacities of four species of marine macrophytes (Ulva lactucaZostera marinaFucus vesiculosus and Saccharina latissima) to ameliorate seawater acidity in experimentally elevated pCO2. Second, we used the most responsive species (i.e., Slatissima) to assess the effects of high and low water residence time on the amelioration of seawater acidity in ambient and simulated future scenarios of climate change across a gradient of irradiance. We measured changes in dissolved oxygen, pH, and total alkalinity, and derived resultant changes to dissolved inorganic carbon (DIC) and calcium carbonate saturation state (Ω). While all species increased productivity under elevated CO2Slatissima was able to remove DIC and alter pH and Ω more substantially as CO2 increased. Additionally, the amelioration of seawater acidity by Slatissima was optimized under high irradiance and high residence time. However, the influence of water residence time was insignificant under future scenarios. Finally, we applied predictive models as a function of macrophyte biomass, irradiance, and residence time conditions in ambient and future climatic scenarios to allow projections at the ecosystem level. This research contributes to understanding the biological and physical drivers of the coastal CO2 system.

Continue reading ‘Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: insights from an experimental approach’

From reproductive behaviour to responses to predators: ocean acidification does not impact the behaviour of an herbivorous marine gastropod


  • OA does not have any significant effect on the behavioural repertoire of adult abalone.
  • No change in the expression of genes involved in sensory performance and behaviour was detected.
  • The ecological niche of this species probably allows it to be relatively resilient to OA.


Ocean acidification (OA), which reduces ocean pH and leads to substantial changes in seawater carbonate chemistry, may strongly impact organisms, especially those with carbonate skeletons. In marine molluscs, while the physiological effects of OA are well known, with a reduction of growth and shell calcification, there are few studies on behavioural effects. A large marine gastropod, Haliotis tuberculata, was exposed to ambient (pHT 8.0) or low pH (pHT 7.7) during a 5-month experiment. Because animal fitness can be affected through various behavioural changes, a broad spectrum of behavioural parameters was investigated, including situations involving no stress, responses to predators, righting to evaluate indirectly the level of energy reserves, and finally, reproductive behaviour. In addition, we measured the expression profile of the GABA A-like and serotonin receptor genes, often described as central neuromodulators of sensory performance and behaviour and known to be affected by OA in molluscs. No significant effect of low pH as compared to ambient pH was observed on abalone behaviour for any of these behavioural traits or gene expressions after either one week or several months of exposure to OA. The significance tests were corroborated by estimating the size of pH effects. The behaviour of this mollusc appears not to be affected by pH decrease expected by the end of the century, suggesting some resilience of the species to OA at the adult stage. This is probably related to the ecological niche of this abalone, where important pH variations can be observed at tidal, diurnal or seasonal scales.

Continue reading ‘From reproductive behaviour to responses to predators: ocean acidification does not impact the behaviour of an herbivorous marine gastropod’

Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification

Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05–0.07 and 0.07–0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×–5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.

Continue reading ‘Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification’

Investigating the effect of silicate and calcium based ocean alkalinity enhancement on diatom silicification

Gigatonne-scale atmospheric carbon dioxide removal (CDR) will almost certainly be needed to supplement the emission reductions required to keep global warming between 1.5–2 °C. Ocean alkalinity enhancement (OAE) is an emerging marine CDR method with the addition of pulverized minerals to the surface ocean being one widely considered approach. A concern of this approach is the potential for dissolution products released from minerals to impact phytoplankton communities. We conducted an experiment with 10 pelagic mesocosms (M1–M10) in Raunefjorden, Bergen, Norway to assess the implications of simulated silicate- and calcium-based mineral OAE on a coastal plankton community. Five mesocosms (M1, M3, M5, M7 and M9) were enriched with silicate (~75 µmol L-1 Na2SiO3), alkalinity along a gradient from 0 to ~600 µmol kg-1, and magnesium in proportion to alkalinity additions. The other five mesocosms (M2, M4, M6, M8, M10) were enriched with alkalinity along the same gradient and calcium in proportion to alkalinity additions. The experiment explored many components of the plankton community, from microbes to fish larvae, and here we report on the influence of mineral based OAE on diatom silicification. Macronutrients (nitrate and phosphate) limited silicification at the onset of the experiment until nutrient additions on day 26. Silicification was significantly greater in the silicate-based mineral treatments, with silicate concentrations limiting silicification in the calcium-based treatment. The degree of silicification varied significantly between genera, and genera specific silicification also varied significantly between alkalinity mineral sources, with the exception of CylindrothecaPseudo-nitzschia was the only genus affected by alkalinity, whereby silicification increased with increasing alkalinity during some periods of the experiment. No other genera displayed significant changes in silicification as a result of alkalinity increases between 0 and 600 µmol kg-1 above natural levels. Nor did we observe any indication of interactive effects between simulated mineral dissolution products and changes in carbonate chemistry. Previous experiments have provided evidence of alkalinity effects on diatoms underscoring the necessity for further studies under a range of boundary/environmental conditions to extract a more robust pattern of diatom responses to OAE. In summary, our findings suggest limited genus-specific impacts of alkalinity on diatoms, while also highlighting the importance of understanding the full breadth of different OAE approaches, their risks, co-benefits, and potential for interactive effects.

Continue reading ‘Investigating the effect of silicate and calcium based ocean alkalinity enhancement on diatom silicification’

Subtle effect of ocean acidification on the larval development of the Nudibranch aeolidiella glauca (Nudibranchia, Gastropoda)

The body of knowledge on ocean acidification gives a better understanding of biological sensitivity to low pH. Key parameters such as life-history strategies or local adaptation were identified as keys to predict species sensitivity and resolve previously some of the unexplained species- and population-specific differences. Encapsulation has been suggested as one of these keys as it exposed the embryo to low pH conditions, or ontogenetic hypercapnia, leading to physiological adaptation. We tested this hypothesis on the nudibranch Aeolidiella glauca by exposing their egg-strings containing large number of eggs to two different pH (8.1 and 7.3). The fertilized eggs developed 1 egg-cell, over early cleavage up to morula, blastula, gastrula, rhomboid-shaped rotating gastrula, early rotating veliger larvae with developed shell, to free-swimming well developed veliger larvae. Despite a corrosive environment, the exposure to low pH had no significant effect on the developmental rate. The only significant effects were a slightly smaller and narrower shell in larvae raised at low pH as compared to the high pH. Our results showed a remarkable resilient to low pH in a calcifying mollusc and support the idea that ontogenic hypercapnia is leading to low sensitivity to ocean acidification.

Continue reading ‘Subtle effect of ocean acidification on the larval development of the Nudibranch aeolidiella glauca (Nudibranchia, Gastropoda)’

  • Reset


OA-ICC Highlights