Posts Tagged 'North Atlantic'

Regional and species level responses of Scleractinian corals under global change within the Caribbean Sea

Human-induced global change has caused rapid increases in ocean temperature (warming) and declines in seawater pH (acidification), and are expected to have negative impacts on tropical reef-building corals globally. Abnormally high seawater temperatures disrupt the symbiosis between corals and their algal endosymbiont in a process known as ‘coral bleaching.’ During such bleaching events, calcification rates decline and physiological processes deteriorate. Additionally, corals rely heavily on elevated seawater pH in order to support and maintain production of their calcium carbonate skeletons. Together, changes in ocean temperatures and seawater pH pose serious threats to coral reefs, foundational ecosystems that provide habitat for countless essential fisheries, while also acting as natural buffers from storms and providing major economic support for tropical coastal communities. Identifying how these global scale stressors impact Caribbean coral reefs is critical in understanding community composition and coral abundance on future reefs. This dissertation employs an interdisciplinary suite of techniques to assess the impacts of ocean acidification and warming on the growth and physiology of Caribbean corals to improve understandings of the responses of coral under projected global change, and provide a framework for similar future studies. Through the use of a meta-analysis (Chapter 1), I identified trends in coral calcification throughout the Greater Caribbean Sea in response to experimental ocean acidification and warming, and performed quantitative assessment of experimental design effects on coral calcification rates. I then conducted a 93- day simulated ocean acidification and warming mesocosm experiment to identify growth (Chapter 2, 4) and physiological (Chapter 3) responses of several species of common Caribbean corals. The results from this work highlight the diversity of responses of Caribbean corals to projected global change at individual and species levels, as well as between the coral host and algal endosymbiont. Overall, the variation in growth and physiological responses of these important Caribbean coral species under ocean acidification and warming is critical in predicting the future ‘winners’ and ‘losers’ of Caribbean reefs as global change unfolds.

Continue reading ‘Regional and species level responses of Scleractinian corals under global change within the Caribbean Sea’

ARIOS: An acidification ocean database for the Iberian Upwelling Ecosystem (1976–2018)

A data product of 17,653 discrete samples from 3,357 oceanographic stations combining measurements of pH, alkalinity and other biogeochemical parameters off the North-western Iberian Peninsula from June 1976 to September 2018 is presented in this study. The oceanography cruises funded by 24 projects were primarily carried out in the Ría de Vigo coastal inlet, but also in an area ranging from the Bay of Biscay to the Portuguese coast. The robust seasonal cycles and long-term trends were only calculated along a longitudinal section, gathering data from the coastal and oceanic zone of the Iberian Upwelling System. The pH in the surface waters of these separated regions, which were highly variable due to intense photosynthesis and the remineralization of organic matter, showed an interannual acidification ranging from −0.0016 yr−1 to −0.0032 yr−1 that grew towards the coastline. This result is obtained despite the buffering capacity increasing in the coastal waters further inland as shown by the increase in alkalinity by 1.1±0.7 μmol kg−1 yr−1 and 2.6±1.0 μmol kg−1 yr−1 in the inner and outer Ría de Vigo respectively, driven by interannual changes in the surface salinity of 0.0193±0.0056 psu yr−1 and 0.0426±0.016 psu yr−1 respectively. The loss of the vertical salinity gradient in the long-term trend in the inner ria was consistent with other significant biogeochemical changes such as a lower oxygen concentration and fertilization of the surface waters. These findings seem to be related to a growing footprint of sediment remineralization of organic matter in the surface layer of a more homogeneous water column. Data are available at: (Pérez et al., 2020).

Continue reading ‘ARIOS: An acidification ocean database for the Iberian Upwelling Ecosystem (1976–2018)’

Antagonistic interactions and clutch-dependent sensitivity induce variable responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos and paralarvae

Ocean acidification (OA) and warming seas are significant concerns for coastal systems and species. The Atlantic longfin squid, Doryteuthis pealeii, a core component of the Northwest Atlantic trophic web, has demonstrated impacts, such as reduced growth and delayed development, under high chronic exposure to acidification (2200 ppm), but the combined effects of OA and warming have not been explored in this species. In this study, D. pealeii egg capsules were reared under a combination of several acidification levels (400, 2200, and 3500 ppm) and temperatures (20 and 27°C). Hatchlings were measured for a range of metrics [dorsal mantle length (DML), yolk sac volume (YV), malformation, and hatching success] in three trials over the 2016 breeding season (May – October). Although notable resistance to stressors was seen, highlighting variability within and between clutches, reduced DML and malformation of the embryos occurred at the highest OA exposure. Surprisingly, increased temperatures did not appear to exacerbate OA impacts, although responses were variable. Time to hatching, which increased with acidification, decreased much more drastically under warming and, further, decreased or removed delays caused by acidification. Hatching success, while variable by clutch, showed consistent patterns of greater late stage loss of embryos under acidification and greater early stage loss under warming, highlighting the potential difference in timing between these stressors for this system, i.e., that acidification stress builds up and causes impacts over time within the egg capsule as the embryos grow and respire. High OA-exposed hatchlings from the warmer conditions often showed reduced impacts compared to those reared in ambient temperatures. This may be due to the increased developmental rate and subsequently reduced OA exposure time of embryos in the higher temperature treatment. These results indicate a substantive potential plasticity to multiple stressors during the embryonic development of this species of squid, but do not predict how this species would fare under these future ocean scenarios.

Continue reading ‘Antagonistic interactions and clutch-dependent sensitivity induce variable responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos and paralarvae’

Direct evidence of sediment carbonate dissolution in response to bottom-water acidification in the Gulf of St. Lawrence, Canada

Over the past century, dissolved oxygen concentrations (DO) have decreased and metabolic CO2 has accumulated within in the bottom waters of the Gulf of St. Lawrence (GSL) and Lower St. Lawrence Estuary (LSLE). Oxygen depletion has been attributed primarily to changes in ocean circulation in the northwest Atlantic Ocean, as well as an increase in the flux of organic matter at or near the seafloor and its accompanying biological oxygen demand. The accumulation of metabolic CO2 in these waters has led to their progressive acidification and a decrease in pH (0.3-0.4 pH unit) commensurate to the variation expected for global oceanic surface waters by the end of this century, albeit by a different mechanism (anthropogenic CO2 uptake from the atmosphere). The decrease in bottom-water pH of the GSL and LSLE is accompanied by a decrease in the carbonate ion concentration and the saturation state of the waters with respect to both calcite and aragonite (ΩC and ΩA). Although the Laurentian Trough sediments are mostly devoid of modern calcium carbonate fossils, detrital (Ordovician/Silurian) carbonates, eroded from Anticosti Island, accumulate on the seafloor. Evidence of carbonate mineral dissolution in the sediments of the Laurentian Trough is examined and supported by pore-water data and vertical variations of their inorganic carbon content. Historical, solid-phase profile data are used to estimate temporal variations of the sedimentary calcite dissolution rates and document the anthropogenic modification of the sediment record.

Continue reading ‘Direct evidence of sediment carbonate dissolution in response to bottom-water acidification in the Gulf of St. Lawrence, Canada’

Trace metal accumulation in the commercial mussel M. galloprovincialis under future climate change scenarios


•The increase in CO2 alone did not display biological or chemical changes in mussels.

•At 25 °C byssus strength and condition index of Galician mussel decreased.

•The increase in temperature amplified metal bioaccumulation in mussels.


The current trend of climatic alterations will accelerate the modification of the ocean system by, among other aspects, changing the metal speciation and its bioavailability which may have an impact in their accumulation by marine organisms. Understanding the impact of these potential changes is essential for future risk assessment of metal contamination. In the present study, we selected the species Mediterranean mussel (Mytilus galloprovincialis) as the main European aquaculture production bivalve and due to its widespread use for biomonitoring purposes. A long-term test (2 months) was carried out to explore the impact that global change in the marine environment (warming and CO2 increase) may exert on the accumulation of dissolved trace metals (Cu, Co, Pb, Cd, Cr, As and Ni) in different body parts of mussels (foot and soft tissue).

Studied mussels were collected at two different climatic locations (Atlantic and Mediterranean Sea) and exposed to unspiked, unpolluted seawater from the Vigo Ria (NW Iberian Peninsula). Results showed that under the global change conditions proposed in this study (1100 pCO2 and 25 °C), the increase in temperature resulted in a lower condition index and byssus strength for mussels from Atlantic Sea, while Mediterranean sea mussels, adapted to higher temperatures, did not show remarkable variations. According to trace metals accumulation in different body parts of the studied mussels, it was observed that the effect of increasing CO2 alone did not show to have an impact in the bioaccumulation, but the combined stressors (increase in CO2 and temperature) may lead to an increase in the bioaccumulation for some elements. The increase in temperature resulted in a decrease of the Cu content of foot tissue (byssus gland) in mussels from Atlantic Sea, which is in accordance with the lower byssus strength observed under such conditions. Our results indicate that the expected seawater temperature increase, which will be produced gradually during next decades, should be further study to ensure the species adaptability and aquaculture production.

Continue reading ‘Trace metal accumulation in the commercial mussel M. galloprovincialis under future climate change scenarios’

Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the Eastern oyster (Crassostrea virginica)

Early evidence suggests that DNA methylation can mediate phenotypic responses of marine calcifying species to ocean acidification (OA). Few studies, however, have explicitly studied DNA methylation in calcifying tissues through time. Here, we examined the phenotypic and molecular responses in the extrapallial fluid and mantle (fluid and tissue at the calcification site) in the Eastern oyster (Crassostrea virginica) exposed to experimental OA over 80 days. Oysters were reared under three experimental pCO2 treatments (‘control’, 580 uatm; ‘moderate OA’, 1000 uatm; ‘high OA’, 2800 uatm) and sampled at 6 time points (24 hours – 80 days). We found that high OA initially induced changes in the pH of the extrapallial fluid (pHEPF) relative to the external seawater, but the magnitude of this difference was highest at 9 days and diminished over time. Calcification rates were significantly lower in the high OA treatment compared to the other treatments. To explore how oysters regulate their extrapallial fluid, gene expression and DNA methylation were examined in the mantle-edge tissue of oysters from day 9 and 80 in the control and high OA treatments. Mantle tissue mounted a significant global molecular response (both in the transcriptome and methylome) to OA that shifted through time. Although we did not find individual genes that were significantly differentially expressed to OA, the pHEPF was correlated with the eigengene expression of several co-expressed gene clusters. A small number of OA-induced differentially methylated loci were discovered, which corresponded with a weak association between OA-induced changes in genome-wide gene body DNA methylation and gene expression. Gene body methylation, however, was not significantly correlated with the eigengene expression of pHEPF correlated gene clusters. These results suggest that in C. virginica, OA induces a subtle response in a large number of genes, but also indicates that plasticity at the molecular level may be limited. Our study highlights the need to re-assess the plasticity of tissue-specific molecular responses in marine calcifiers, as well as the role of DNA methylation and gene expression in mediating physiological and biomineralization responses to OA.

Continue reading ‘Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the Eastern oyster (Crassostrea virginica)’

Testing multiple climate stressors at the cold range limit of a marine calcifier

Coastal marine ecosystems have been identified as a particularly high risk from global climate change. Laboratory mesocosm experiments with model organisms can be useful in elucidating the effects of multiple climate change stressors on marine species. Here I examine the combined effects of marine heatwaves (MHWs) and ocean acidification (OA) on early embryonic development of the sea urchin Arbacia punctulata taken from its cold (northern) range limit in the Northwest Atlantic. I observed additive effects of MHWs and OA on developmental rates, with rates enhanced by MHWs and hindered by OA as compared to ambient conditions. Hence, MHWs mitigated a negative effect of OA on development of the species at its cold range limit. My results provide an improved understanding of how MHWs and OA can combine to affect the sensitive early life-history stages of calcifying marine invertebrates and may be useful in predicting future shifts in species distributions.

Continue reading ‘Testing multiple climate stressors at the cold range limit of a marine calcifier’

Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling

Uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has acidified the ocean and threatened the health of marine organisms and their ecosystems. In coastal waters, acidification is often enhanced by CO2 and acids produced under high rates of biological respiration. However, less is known about buffering processes that counter coastal acidification in eutrophic and seasonally hypoxic water bodies, such as the Chesapeake Bay. Here, we use carbonate chemistry, mineralogical analyses and geochemical modelling to demonstrate the occurrence of a bay-wide pH-buffering mechanism resulting from spatially decoupled calcium carbonate mineral cycling. In summer, high rates of photosynthesis by dense submerged aquatic vegetation at the head of the bay and in shallow, nearshore areas generate high pH, an elevated carbonate mineral saturation state and net alkalinity uptake. Calcium carbonate particles produced under these conditions are subsequently transported downstream into corrosive subsurface waters, where their dissolution buffers pH decreases caused by aerobic respiration and anthropogenic CO2. Because this pH-buffering mechanism would be strengthened by further nutrient load reductions and associated submerged aquatic vegetation recovery, our findings suggest that the reduction of nutrient inputs into coastal waters will not only reduce eutrophication and hypoxia, but also alleviate the severity of coastal ocean acidification.

Continue reading ‘Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling’

Controls on surface water carbonate chemistry along North American ocean margins

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.

Continue reading ‘Controls on surface water carbonate chemistry along North American ocean margins’

Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system

Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.

Continue reading ‘Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,356,889 hits


Ocean acidification in the IPCC AR5 WG II

OUP book