Posts Tagged 'North Atlantic'

Fish brain development in a changing ocean

Unravelling how marine species invest in brain tissues (or brain regions) matching the fitness-relevant cognitive demands dictated by a changing environment is a priority in climate change-related (ocean warming and acidification) research. Within this context, this dissertation aimed to assess the combined effects of ocean warming (Δ 4 °C) and acidification (Δ 700 μatm pCO2 and Δ 0.4 pH) in the brain development (brain/body mass ratio and brain macro-region growth) of several juvenile fish species from different climate regions. Namely: three species adapted to a more stable (tropical) environment (clown anemonefish Amphiprion ocellaris, orchid dottyback Pseudochromis fridmani and neon goby Elacatinus oceanops), and other three adapted to a less stable (more seasonal; temperate) environment (seabream Diplodus sargus, flatfish Solea senegalensis and meagre Argyrosomus regius). The results show that the temperate species used in this study are only affected by ocean acidification in both total brain and specific brain regions, while the used tropical species are affected by ocean acidification, ocean warming and also by the interaction of ocean warming and ocean acidification. In fact, both total brain and every brain-region except for Telencephalon are affected by future conditions of ocean warming and ocean acidification differently according to each species. The lack of responses to ocean warming by the temperate species is here attributed to the widespread latitudinal distribution of those species, and thus the adaptation to a wider temperature range than tropical species. Curiously, all the significant interactions between the two studied stressors are antagonistic interactions with a cross-tolerance mechanism, meaning that under those interactions, the brain weight is closer to control levels than under each of the stressors separately. Possible behavioural and ecological implications of those results are also discussed. Despite the distinct dichotomic pattern between temperate and tropical habitats, the results among fish species and specific brain macro-regions do not exhibit a subjacent pattern. These different results highlight the idea of species-specific phenotypic responses to these climate change-related stressors.

Continue reading ‘Fish brain development in a changing ocean’

Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches

High-latitude cold-water coral reefs are particularly vulnerable to climate change due to enhanced CO2 uptake in these regions. To evaluate their physiological functioning and potential application as pH archives, we retrieved both recent and fossil samples of Lophelia pertusa along the Norwegian margin from Oslofjord (59°N), over to Trondheimsfjord, Sula and Lopphavet (70.6°N). Boron isotope analyses (δ11B) were undertaken using solution-based and laser ablation multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS; LA-ICP-MS), and secondary ion mass spectrometry (SIMS). Epi-fluorescence microscopy was employed to provide a rapid pre-screening routine for structure-specific subsampling in the coral skeleton. This integrated approach enabled us to assess heterogeneities within single specimens, as well as to investigate the role of local environmental influences including recent and past variations. All three mass spectrometry methods show substantial differences in the δ11B of the theca wall (TW) and the centres of calcification (COC’s). Micro-bulk subsamples milled from the theca wall of modern specimens originating from different habitats but with comparable seawater pH (8–8.16) gave consistent δ11B values averaging 26.7 (±0.2‰, 2σ, n = 4), while COC subsamples systematically deviated towards lower B/Ca (by ~40%) and depleted δ11B values (minimum 22.7 ± 0.3‰, 2σ), implying a difference of at least 4‰ between TW and COC. SIMS and LA-ICP-MS measurements identified much larger internal heterogeneities with maximum variation of ~10‰ between the distinct skeletal structures; minimal SIMS δ11B values of ~17.3 ± 1.2‰ (2σ) were associated with the pure COC material. Our findings may be interpreted in terms of the occurrence of two main, but likely different, biomineralisation mechanisms in L. pertusa, with the COC’s generally exhibiting minimal pH up-regulation, potentially supporting the use of bicarbonate in the early stages of biomineralisation. Furthermore, we highlight the potential utility of L. pertusa for palaeo-proxy studies if targeting the compositionally homogenous TW zones devoid of COC admixtures, which appear to provide highly reproducible measurements.

Continue reading ‘Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches’

Respuesta transgeneracional a la acidificación marina del copépodo Acartia Tonsa Dana, 1849 (in Spanish)

La acidificación oceánica producida por el aumento de la concentración de dióxido de carbono en el océano representa una amenaza para los ecosistemas marinos, porque provoca una disminución del pH y una alteración en la química del agua de mar. El copépodo calanoide marino Acartia tonsa Dana, 1849 es una especie ecológica y socioeconómicamente importante. Este trabajo se centra en cómo afecta el pH ácido al copépodo A. tonsa, determinando la tasa de supervivencia, reproducción y desarrollo a diferentes tratamientos de pH, e intenta averiguar si se produce una respuesta transgeneracional para contrarrestar los efectos de la acidificación oceánica.

Continue reading ‘Respuesta transgeneracional a la acidificación marina del copépodo Acartia Tonsa Dana, 1849 (in Spanish)’

Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures

Oceans are warming and pH levels are decreasing as a consequence of increasing levels of dissolved CO2 concentrations. The CO2 emissions are predicted to be produce in greater and faster changes in the ocean than any other event in geological and historical records over the past 300 million years. Marine organisms will need to respond to multiple stressors but the potential consequences of global change-related effects in fish are not fully understood. Since fish are affected by many biotic and abiotic environmental variables, including temperature and CO2 fluctuations, it is critical to investigate how these variables may affect physiological and biochemical processes. We investigated the effects of elevated CO2 levels (pH of 8.0, which served as a control, or 7.6, which is predicted for the year 2100) combined with exposure to different temperatures (5, 10, 12, 14, 16, and 18 C ) in the Atlantic halibut (Hippoglossus hippoglossus) during a three month experiment. We assessed effects on antioxidant and cholinesterase enzymes (AChE and BChE), and CYP1A enzyme activities (EROD). The treatments resulted in oxidative stress, and damage was evident in the form of protein carbonyls which were consistently higher in the elevated CO2-treated fish at all temperatures. Analyses of antioxidant enzymes did not show the same results, suggesting that the exposure to elevated CO2 increased ROS formation but not defences. The antioxidant defence system was insufficient, and the resulting oxidative damage could impact physiological function of the halibut on a cellular level.

Continue reading ‘Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures’

Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates

We investigated how future ocean conditions, and specifically the interaction between temperature and CO2, might affect marine aggregate formation and physical properties. Initially, mesocosms filled with coastal seawater were subjected to three different treatments of CO2 concentration and temperature: (1) 750 ppm CO2, 16°C, (2) 750 ppm CO2, 20°C, and (3) 390 ppm CO2, 16°C. Diatom-dominated phytoplankton blooms were induced in the mesocosms by addition of nutrients. In aggregates produced in roller tanks using seawater taken from the mesocosms during different stages of the bloom, we measured sinking velocity, size, chlorophyll a, particulate organic carbon and nitrogen, and exopolymer particle content; excess density and mass were calculated from the sinking velocity and size of the aggregates. As has been seen in previous experiments, no discernable differences in overall nutrient uptake, chlorophyll-a concentration, or exopolymer particle concentrations could be related to the acidification treatment in the mesocosms. In addition, in the aggregates formed during the roller tank experiments (RTEs), we observed no statistically significant differences in chemical composition among the treatments during Pre-Bloom, Bloom, and Post-Bloom periods. However, physical characteristics were different and showed a synergistic effect of warmer temperature and higher CO2 during the Pre-Bloom period; at this time, temperature had a larger effect than CO2 on aggregate sinking velocity. In RTEs with warmer and acidified treatment (future conditions), aggregates were larger, heavier, and settled faster than aggregates formed at present-day or only acidified conditions. During the Post-Bloom, however, aggregates formed under present and future conditions had similar physical properties. In acidified tanks at ambient temperature, aggregates were slower, smaller and less dense than those formed at the same temperature but under present CO2 or under warmer and acidified conditions. Thus, the sinking velocity of aggregates formed in acidified tanks at ambient temperature was slower than the other two cases. Our findings point out the potential of ocean acidification and warming to modify physical properties of sinking aggregates but also emphasize the need of future experiments investigating multiple environmental stressors to clarify the importance of each factor.

Continue reading ‘Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates’

Controls on carbonate system dynamics in a coastal plain estuary: a modelling study

The study of acidification in Chesapeake Bay is challenged by the complex spatial and temporal patterns of estuarine carbonate chemistry driven by highly variable freshwater and nutrient inputs. A new module was developed within an existing coupled hydrodynamic‐biogeochemical model to understand the underlying processes controlling variations in the carbonate system. We present a validation of the model against a diversity of field observations, which demonstrated the model’s ability to reproduce large‐scale carbonate chemistry dynamics of Chesapeake Bay. Analysis of model results revealed that hypoxia and acidification were observed to co‐occur in mid‐bay bottom waters and seasonal cycles in these metrics were regulated by aerobic respiration and vertical mixing. Calcium carbonate dissolution was an important buffering mechanism for pH changes in late summer, leading to stable or slightly higher pH values in this season despite persistent hypoxic conditions. Model results indicate a strong spatial gradient in air‐sea CO2 fluxes, where the heterotrophic upper bay was a strong CO2source to atmosphere, the mid bay was a net sink with much higher rates of net photosynthesis, and the lower bay was in a balanced condition. Scenario analysis revealed that reductions in riverine nutrient loading will decrease the acid water volume (pH <7.5) as a consequence of reduced organic matter generation and subsequent respiration, while bay‐wide dissolved inorganic carbon (DIC) increased and pH declined under scenarios of continuous anthropogenic CO2 emission. This analysis underscores the complexity of carbonate system dynamics in a productive coastal plain estuary with large salinity gradients.

Continue reading ‘Controls on carbonate system dynamics in a coastal plain estuary: a modelling study’

Divergent responses of Atlantic cod to ocean acidification and food limitation

In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) was found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35‐36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2‐treatments (ambient: 503 μatm, elevated: 1179 μatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments, will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life‐stages of fish.

Continue reading ‘Divergent responses of Atlantic cod to ocean acidification and food limitation’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,051 hits


Ocean acidification in the IPCC AR5 WG II

OUP book