Posts Tagged 'North Atlantic'

Carbonate chemistry variability in the East coast of Gran Canaria island

1.1. Carbonate system variability: Marine acidification
In a natural occurring way, there have always been great variability of greenhouse gases concentration in the atmosphere (carbon dioxide, nitrous oxide, methane). Those oscillations have always presented a quite constant range over the last 650 thousand years before the Industrial Revolution. From then on, in 1750, the greenhouse gases’ concentrations have suffered a sharp increase due to emissions from anthropogenic activities (Joos and Spahni, 2007).

Continue reading ‘Carbonate chemistry variability in the East coast of Gran Canaria island’

Long‐term changes of carbonate chemistry variables along the North American East Coast

Decadal variability of carbonate chemistry variables has been studied for the open ocean using observations and models, but less is known about the variations in the coastal ocean due to observational gaps and the more complex environments. In this work, we use a Bayesian‐neural‐network approach to reconstruct surface carbonate chemistry variables for the Mid‐Atlantic Bight (MAB) and the South Atlantic Bight (SAB) along the North American East Coast from 1982 to 2015. The reconstructed monthly time series data suggest that the rate of fCO2 increase in the MAB (18 ± 1 μatm per decade) is faster than those in the SAB (14 ± 1 μatm per decade) and the open ocean (14 ± 1 μatm per decade). Correspondingly, pH decreases faster in the MAB. The observed stagnation in the aragonite saturation state, Ωarag decrease during 2005–2015 in the MAB, is attributed to the intrusion of water from southern and offshore regions with high Ωarag, which offsets the decrease expected from anthropogenic CO2 uptake. Furthermore, seasonal asymmetry in the evolution of long‐term change leads to the faster change in the amplitudes of the seasonal cycle in carbonate chemistry variables in coastal waters than those in the open ocean. In particular, the increase in the seasonal‐cycle amplitude of dissolved inorganic carbon in the MAB is 2.9 times larger than that of the open ocean. This leads to the faster increase in the season‐cycle amplitude of Ωarag and earlier occurrence of undersaturation in coastal waters as acidification continues.

Continue reading ‘Long‐term changes of carbonate chemistry variables along the North American East Coast’

Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord

Environmental change can have a significant impact on biogeochemical cycles at high latitudes and be particularly important in ecologically valuable fjord ecosystems. Seasonality in biogeochemical cycling in a sub-Arctic fjord of northern Norway (Kaldfjorden) was investigated from October 2016 to September 2018. Monthly changes in total inorganic carbon (CT), alkalinity (AT), major nutrients and calcium carbonate saturation (Ω) were driven by freshwater discharge, biological production and mixing with subsurface carbon-rich coastal water. Stable oxygen isotope ratios indicated that meteoric water (snow melt, river runoff, precipitation) had stratified and freshened surface waters, contributing to 81% of the monthly CT deficit in the surface layer. The timing and magnitude of freshwater inputs played an important role in Ω variability, reducing AT and CT by dilution. This dilution effect was strongly counteracted by the opposing effect of primary production that dominated surface water Ω seasonality. The spring phytoplankton bloom rapidly depleted nitrate and CT to drive highest Ω (~2.3) in surface waters. Calcification reduced AT and CT, which accounted for 21% of the monthly decrease in Ω during a coccolithophore bloom. Freshwater runoff contributed CT, AT and silicates of terrestrial origin to the fjord. Lowest surface water Ω (~1.6) resulted from organic matter remineralisation and mixing into subsurface water during winter and spring. Surface waters were undersaturated with respect to atmospheric CO2, resulting in modest uptake of –0.32 ± 0.03 mol C m–2 yr–1. Net community production estimated from carbon drawdown was 14 ± 2 g C m–2 yr–1 during the productive season. Kaldfjorden currently functions as an atmospheric CO2 sink of 3.9 ± 0.3 g C m–2 yr–1. Time-series data are vital to better understand the processes and natural variability affecting biogeochemical cycling in dynamic coastal regions and thus better predict the impact of future changes on important fjord ecosystems.

Continue reading ‘Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord’

Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature

As CO2 levels in Earth’s atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and nitrogen assimilation metabolites while suppressing the abundance of stress-related metabolites. Overall metabolome differences between populations suggest that some eelgrass phenotypes may be better suited than others to cope with an increasingly hot and sour sea. Our results suggest that seagrass populations will respond variably, but overall positively, to increasing CO2 concentrations, generating negative feedbacks to climate change.

Continue reading ‘Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature’

Effects of nearshore processes on carbonate chemistry dynamics and ocean acidification

Time series from open ocean fixed stations have robustly documented secular changes in carbonate chemistry and long-term ocean acidification (OA) trends as a direct response to increases in atmospheric carbon dioxide (CO2). However, few high-frequency coastal carbon time series are available in reef systems, where most affected tropical marine organisms reside. Seasonal variations in carbonate chemistry at Cheeca Rocks (CR), Florida, and La Parguera (LP), Puerto Rico, are presented based on 8 and 10 years of continuous, high-quality measurements, respectively. This dissertation synthesizes autonomous and bottle observations to model carbonate chemistry and to understand how physical and biological processes affect seasonal carbonate chemistry at both locations. The autonomous carbonate chemistry and oxygen observations are used to examine a mass balance approach using a 1-D model to determine net rates of ecosystem calcification and production (NEC and NEP) from communities close (<5km) to the buoys. The results provide evidence to suggest that seasonal response between benthic metabolism and seawater chemistry at LP is attenuated relative to that at CR because their differences in benthic cover and how benthic metabolism modifies the water chemistry. Simple linear trends cannot explain the feedback between metabolism and reef water chemistry using long-term observations over natural variations. The effects of community production on partial pressure of CO2 (pCO2sw) make these interactions complex at short- and long-term scales. Careful consideration should be taken when inferring local biogeochemical processes, given that pCO2sw (and presumably pH) respond on much shorter time and local scales than dissolved inorganic carbon (DIC) and total alkalinity (TA). The observations highlight the need for more comprehensive observing systems that can reliably measure both the fast-response (pCO2sw, pH) and slow-response (DIC) carbon pools.

Continue reading ‘Effects of nearshore processes on carbonate chemistry dynamics and ocean acidification’

Hypoxia and acidification, individually and in combination, disrupt herbivory and reduce survivorship of the gastropod, Lacuna vincta

Acidification and deoxygenation are two consequences of climate change that also co-occur in eutrophied coastal zones and can have deleterious effects on marine life. While the effects of hypoxia on marine herbivores have been well-studied, how ocean acidification combined with hypoxia affects herbivory is poorly understood. This study examined how herbivory and survival by the gastropod Lacuna vincta grazing on the macroalgae Ulva rigida was influenced by hypoxia and ocean acidification, alone and in combination, with and without food limitation. Experiments exposed L. vincta to a range of environmentally realistic dissolved oxygen (0.7 – 8 mg L–1) and pH (7.3 – 8.0 total scale) conditions for 3 – 72 h, with and without a starvation period and quantified herbivory and survival. While acidified conditions (pH < 7.4) reduced herbivory when combined with food limitation, low oxygen conditions (< 4 mg L–1) reduced herbivory and survival regardless of food supply. When L. vincta were starved and grazed in acidified conditions herbivory was additively reduced, whereas starvation and hypoxia synergistically reduced grazing rates. Overall, low oxygen had a more inhibitory effect on herbivory than low pH. Shorter exposure times (9, 6, and 3 h) were required to reduce grazing at lower DO levels (∼2.4, ∼1.6, and ∼0.7 mg L–1, respectively). Herbivory ceased entirely following a three-hour exposure to DO of 0.7 mg L–1 suggesting that episodes of diurnal hypoxia disrupt grazing by these gastropods. The suppression of herbivory in response to acidified and hypoxic conditions could create a positive feedback loop that promotes ‘green tides’ whereby reduced grazing facilitates the overgrowth of macroalgae that cause nocturnal acidification and hypoxia, further disrupting herbivory and promoting the growth of macroalgae. Such feedback loops could have broad implications for estuarine ecosystems where L. vincta is a dominant macroalgal grazer and will intensify as climate change accelerates.

Continue reading ‘Hypoxia and acidification, individually and in combination, disrupt herbivory and reduce survivorship of the gastropod, Lacuna vincta’

The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities

The oceanic uptake of atmospheric carbon dioxide (CO2) emitted by human activities alters the seawater carbonate system. Here, the chemical status of the Northeast Atlantic is examined by means of a high-quality database of carbon variables based on the GO-SHIP A25 section (1997–2018). The increase of atmospheric CO2 leads to an increase in ocean anthropogenic carbon (Cant) and a decrease in carbonate that is unequivocal in the upper and mid-layers (0–2,500 m depth). In the mid-layer, the carbonate content in the Northeast Atlantic is maintained by the interplay between the northward spreading of recently conveyed Mediterranean Water with excess of carbonate and the arrival of subpolar-origin waters close to carbonate undersaturation. In this study we show a progression to undersaturation with respect to aragonite that could compromise the conservation of the habitats and ecosystem services developed by benthic marine calcifiers inhabiting that depth-range, such as the cold-water corals (CWC) communities. For each additional ppm in atmospheric pCO2 the waters surrounding CWC communities lose carbonate at a rate of − 0.17 ± 0.02 μmol kg−1 ppm−1. The accomplishment of global climate policies to limit global warming below 1.5–2 ℃ will avoid the exhaustion of excess carbonate in the Northeast Atlantic.

Continue reading ‘The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities’

Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic

Highlights

  • The bivalve Ervilia castanea was studied at volcanic CO2 seeps and reference sites.
  • Abundance, size and net-calcification were inversely related to CO2 levels.
  • Large individuals were scarce or absent at high CO2 sites.
  • Recruitment of this bivalve was highest at the CO2 seeps.
  • Abundance and size of E. castanea were positively correlated with Chl-a in sediment.

Abstract

Sites with naturally high CO2 conditions provide unique opportunities to forecast the vulnerability of coastal ecosystems to ocean acidification, by studying the biological responses and potential adaptations to this increased environmental variability. In this study, we investigated the bivalve Ervilia castanea in coastal sandy sediments at reference sites and at volcanic CO2 seeps off the Azores, where the pH of bottom waters ranged from average oceanic levels of 8.2, along gradients, down to 6.81, in carbonated seawater at the seeps. The bivalve population structure changed markedly at the seeps. Large individuals became less abundant as seawater CO2 levels rose and were completely absent from the most acidified sites. In contrast, small bivalves were most abundant at the CO2 seeps. We propose that larvae can settle and initially live in high abundances under elevated CO2 levels, but that high rates of post-settlement dispersal and/or mortality occur. Ervilia castanea were susceptible to elevated CO2 levels and these effects were consistently associated with lower food supplies. This raises concerns about the effects of ocean acidification on the brood stock of this species and other bivalve molluscs with similar life history traits.

Continue reading ‘Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic’

Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic

Highlights

  • The bivalve Ervilia castanea was studied at volcanic CO2 seeps and reference sites.
  • Abundance, size and net-calcification were inversely related to CO2 levels.
  • Large individuals were scarce or absent at high CO2 sites.
  • Recruitment of this bivalve was highest at the CO2 seeps.
  • Abundance and size of E. castanea were positively correlated with Chl-a in sediment.

 

Abstract

Sites with naturally high CO2 conditions provide unique opportunities to forecast the vulnerability of coastal ecosystems to ocean acidification, by studying the biological responses and potential adaptations to this increased environmental variability. In this study, we investigated the bivalve Ervilia castanea in coastal sandy sediments at reference sites and at volcanic CO2 seeps off the Azores, where the pH of bottom waters ranged from average oceanic levels of 8.2, along gradients, down to 6.81, in carbonated seawater at the seeps. The bivalve population structure changed markedly at the seeps. Large individuals became less abundant as seawater CO2 levels rose and were completely absent from the most acidified sites. In contrast, small bivalves were most abundant at the CO2 seeps. We propose that larvae can settle and initially live in high abundances under elevated CO2 levels, but that high rates of post-settlement dispersal and/or mortality occur. Ervilia castanea were susceptible to elevated CO2 levels and these effects were consistently associated to lower food supplies. This raises concerns about the effects of ocean acidification on the brood stock of this species and other bivalve molluscs of similar life history traits.

 

Continue reading ‘Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic’

The impact of intertidal areas on the carbonate system of the southern North Sea (update)

The coastal ocean is strongly affected by ocean acidification because of its shallow water depths, low volume, and the closeness to terrestrial dynamics. Earlier observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the southern part of the North Sea, a northwest European shelf sea, revealed lower acidification effects than expected. It has been assumed that anaerobic degradation and subsequent TA release in the adjacent back-barrier tidal areas (Wadden Sea) in summertime is responsible for this phenomenon. In this study the exchange rates of TA and DIC between the Wadden Sea tidal basins and the North Sea and the consequences for the carbonate system in the German Bight are estimated using a 3D ecosystem model. The aim of this study is to differentiate the various sources contributing to observed high summer TA in the southern North Sea. Measured TA and DIC in the Wadden Sea are considered as model boundary conditions. This procedure acknowledges the dynamic behaviour of the Wadden Sea as an area of effective production and decomposition of organic material. According to the modelling results, 39 Gmol TA yr−1 were exported from the Wadden Sea into the North Sea, which is less than a previous estimate but within a comparable range. The interannual variabilities in TA and DIC, mainly driven by hydrodynamic conditions, were examined for the years 2001–2009. Dynamics in the carbonate system are found to be related to specific weather conditions. The results suggest that the Wadden Sea is an important driver for the carbonate system in the southern North Sea. On average 41 % of TA inventory changes in the German Bight were caused by riverine input, 37 % by net transport from adjacent North Sea sectors, 16 % by Wadden Sea export, and 6 % were caused by internal net production of TA. The dominant role of river input for the TA inventory disappears when focusing on TA concentration changes due to the corresponding freshwater fluxes diluting the marine TA concentrations. The ratio of exported TA versus DIC reflects the dominant underlying biogeochemical processes in the Wadden Sea. Whereas aerobic degradation of organic matter played a key role in the North Frisian Wadden Sea during all seasons of the year, anaerobic degradation of organic matter dominated in the East Frisian Wadden Sea. Despite the scarcity of high-resolution field data, it is shown that anaerobic degradation in the Wadden Sea is one of the main contributors of elevated summer TA values in the southern North Sea.

Continue reading ‘The impact of intertidal areas on the carbonate system of the southern North Sea (update)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,013 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book