Posts Tagged 'North Atlantic'



Acid–base physiology over tidal periods in the mussel Mytilus edulis: size and temperature are more influential than seawater pH

Ocean acidification (OA) studies to date have typically used stable open-ocean pH and CO2 values to predict the physiological responses of intertidal species to future climate scenarios, with few studies accounting for natural fluctuations of abiotic conditions or the alternating periods of emersion and immersion routinely experienced during tidal cycles. Here, we determine seawater carbonate chemistry and the corresponding in situ haemolymph acid–base responses over real time for two populations of mussel (Mytilus edulis) during tidal cycles, demonstrating that intertidal mussels experience daily acidosis during emersion. Using these field data to parameterize experimental work we demonstrate that air temperature and mussel size strongly influence this acidosis, with larger mussels at higher temperatures experiencing greater acidosis. There was a small interactive effect of prior immersion in OA conditions (pHNBS 7.7/pCO2 930 µatm) such that the haemolymph pH measured at the start of emersion was lower in large mussels exposed to OA. Critically, the acidosis induced in mussels during emersion in situ was greater (ΔpH approximately 0.8 units) than that induced by experimental OA (ΔpH approximately 0.1 units). Understanding how environmental fluctuations influence physiology under current scenarios is critical to our ability to predict the responses of key marine biota to future environmental changes.

Continue reading ‘Acid–base physiology over tidal periods in the mussel Mytilus edulis: size and temperature are more influential than seawater pH’

Indirect effects of ocean warming and acidification on the realized recruitment of Agaricia agaricites

Over the past few decades, coral cover has declined worldwide due to overfishing, disease, and storms, and these effects have been exacerbated by ocean warming and acidification. Corals are extremely susceptible to these changes because they are already living close to their thermal and aragonite saturation thresholds. Ocean warming and acidification (OAW) may also impact coral survival and growth by impacting their settlement cues. Coral larvae use crustose coralline algae (CCA) and their associated biofilms as cues for settlement, i.e., habitat selection. Settlement cues can also be negatively affected by increased water temperature and acidity. It was hypothesized that the impacts of OAW on settlement substrate can further threaten coral persistence by altering/inhibiting larval settlement and potentially decreasing the post-settlement survival and growth of coral recruits. In this study, we 1) assessed the effect of substrate quality (substrate conditioned in ambient or OAW conditions) on settlement of A. agaricites larvae, 2) determined the effect of substrate quality on post-settlement survival and growth of A. agaricites recruits, and 3) determined the effect of ocean warming and acidification on the post-settlement survival and growth of A. agaricites recruits. Aragonite settlement tiles were placed offshore for one month to accrue CCA and associated biofilms, and were then conditioned in either ambient (29°C, 8.2 pH) or predicted future oceanic conditions (31°C, 7.9 pH) conditions for 7 – 10 days. Agaricia agaricites larvae were then introduced to the settlement tiles, and their settlement percentage was calculated. Once a week for 12 weeks after larval settlement, the size, survival, and pigmentation of A. agaricites recruits was recorded. Larvae settled marginally more on optimally conditioned tiles than on tiles previously exposed to OAW conditions (p=0.053). The survival of coral recruits in OAW conditions was greatly reduced, their growth was very limited, and they became paler over time. When reared in ambient conditions, recruits on OAW treated substrate initially displayed higher survival rates than recruits on ambient treated substrate. After 3 weeks in ambient conditions, however, survival rates were similar for recruits on ambient and OAW treated substrate; their growth curves were very similar, and coral recruits became more pigmented over time. Ocean warming and acidification conditions not only directly impacted the growth, survival, and pigmentation of A. agaricites recruits, but it also indirectly affected larval 5 settlement by likely altering microbial composition in bacterial biofilms on the settlement tiles. These results indicate that future conditions of ocean warming and acidification can be deleterious for A. agaricites, particularly after settlement. If the early life stages of scleractinian corals are negatively affected by OAW conditions, successful recruitment throughout the Caribbean and Florida Reef Tract could decrease. As a result, recovery from disturbances could be hindered, thus compromising the sustainability of many coral species and other marine ecosystems that depend on coral reefs for protection, habitat, and food.

Continue reading ‘Indirect effects of ocean warming and acidification on the realized recruitment of Agaricia agaricites’

Ecological and physiological constraints of deep-sea corals in a changing environment

Deep-water or cold-water corals are abundant and highly diverse, greatly increase habitat heterogeneity and species richness, thereby forming one of the most significant ecosystems in the deep sea. Despite this remote location, they are not removed from the different anthropogenic disturbances that commonly impact their shallow-water counterparts. The global decrease in seawater pH due to increases in atmospheric CO2 are changing the chemical properties of the seawater, decreasing the concentration of carbonate ions that are important elements for different physiological and ecological processes. Predictive models forecast a shoaling of the carbonate saturation in the water column due to OA, and suggest that cold-water corals are at high risk, since large areas of suitable habitat will experience suboptimal conditions by the end of the century. The main objective of this study was to explore the fate of the deep-water coral community in time of environmental change. To better understand the impact of climate change this study focused in two of the most important elements of dee-sea coral habitat, the reef forming coral Lophelia pertusa and the octocoral community, particularly the gorgonian Callogorgia delta. By means of controlled experiments, I examined the effects of long and short-term exposures to seawater simulating future scenarios of ocean acidification on calcification and feeding efficiency. Finally In order to understand how the environment influences the community assembly, and ultimately how species cope with particular ecological filters, I integrated different aspects of biology such functional diversity and ecology into a more evolutionary context in the face of changing environment. My results suggest that I) deep-water corals responds negatively to future OA by lowering the calcification rates, II) not all individuals respond in the same way to OA with high intra-specific variability providing a potential for adaptation in the longterm III) there is a disruption in the balance between accretion and dissolution that in the long term can shift from net accretion to net dissolution, and IV) there is an evolutionary implication for certain morphological features in the coral community that can give an advantage under stresfull conditions. Nevertheless, the suboptimal conditions that deepwater corals will experience by the end of the century could potentially threaten their persistence, with potentially negative consequences for the future stability of this already fragile ecosystem.

Continue reading ‘Ecological and physiological constraints of deep-sea corals in a changing environment’

Benthic alkalinity and DIC fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes

Estuarine regions are generally considered a net source of atmospheric CO2 as a result of the high organic carbon (OC) mineralization rates in the water column and their sediments. Yet, the intensity of anaerobic respiration processes in the sediments tempered by the reoxidation of reduced metabolites controls the net production of alkalinity from sediments that may partially buffer the metabolic CO2 generated by OC respiration. In this study, a benthic chamber was deployed in the Rhône River prodelta and the adjacent continental shelf (Gulf of Lions, NW Mediterranean) to assess the fluxes of total alkalinity (TA) and dissolved inorganic carbon (DIC) from the sediment. Concurrently, in situ O2 and pH microprofiles, electrochemical profiles, pore water and solid composition were measured in surface sediments to identify the main biogeochemical processes controlling the net production of alkalinity in these sediments. The benthic fluxes of TA and DIC, ranging between 14 and 74mmolm−2d−1 and 18 and 78mmolm−2d−1, respectively, were up to 8 times higher than the DOU fluxes (10.4±0.9mmolm−2d−1) close to the river mouth, but their intensity decreased offshore, as a result of the decline in OC inputs. Low nitrate concentrations and strong pore water sulfate gradients indicated that the majority of the TA and DIC was produced by sulfate and iron reduction. Despite the complete removal of sulfate from the pore waters, dissolved sulfide concentrations were low due to the precipitation and burial of iron sulfide minerals (12.5mmolm−2d−1 near the river mouth), while soluble organic-Fe(III) complexes were concurrently found throughout the sediment column. The presence of organic-Fe(III) complexes together with low sulfide concentrations and high sulfate consumption suggests a dynamic system driven by the variability of the organic and inorganic particulate input originating from the river. By preventing reduced substances from being reoxidized, the precipitation and burial of iron sulfide decouples the iron and sulfur cycles from oxygen, therefore allowing a flux of alkalinity out of the sediments. In these conditions, the sediment provides a source of alkalinity to the bottom waters which mitigates the effect of the benthic DIC flux on the carbonate chemistry of coastal waters.

Continue reading ‘Benthic alkalinity and DIC fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes’

Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris

The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.

Continue reading ‘Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris’

Ocean warming and acidification may challenge the riverward migration of glass eels

The dramatic decline of European eel (Anguilla anguilla) populations over recent decades has attracted considerable attention and concern. Furthermore, little is known about the sensitivity of the early stages of eels to projected future environmental change. Here, we investigated, for the first time, the potential combined effects of ocean warming (OW; Δ + 4°C; 18°C) and acidification (OA; Δ − 0.4 pH units) on the survival and migratory behaviour of A. anguilla glass eels, namely their preference towards riverine cues (freshwater and geosmin). Recently arrived individuals were exposed to isolated and combined OW and OA conditions for 100 days, adjusting for the salinity gradients associated with upstream migration. A two-choice test was used to investigate migratory activity and shifts in preference towards freshwater environments. While OW decreased survival and increased migratory activity, OA appears to hinder migratory response, reducing the preference for riverine cues. Our results suggest that future conditions could potentially favour an early settlement of glass eels, reducing the proportion of fully migratory individuals. Further research into the effects of climate change on eel migration and habitat selection is needed to implement efficient conservation plans for this critically endangered species.

Continue reading ‘Ocean warming and acidification may challenge the riverward migration of glass eels’

pH regulation and tissue coordination pathways promote calcium carbonate bioerosion by excavating sponges

Coral reefs are threatened by a multitude of environmental and biotic influences. Among these, excavating sponges raise particular concern since they bore into coral skeleton forming extensive cavities which lead to weakening and loss of reef structures. Sponge bioerosion is achieved by a combination of chemical dissolution and mechanical chip removal and ocean acidification has been shown to accelerate bioerosion rates. However, despite the ecological relevance of sponge bioerosion, the exact chemical conditions in which dissolution takes place and how chips are removed remain elusive. Using fluorescence microscopy, we show that intracellular pH is lower at etching sites compared to ambient seawater and the sponge’s tissue. This is realised through the extension of filopodia filled with low intracellular pH vesicles suggesting that protons are actively transported into this microenvironment to promote CaCO3 dissolution. Furthermore, fusiform myocyte-like cells forming reticulated pathways were localised at the interface between calcite and sponge. Such cells may be used by sponges to contract a conductive pathway to remove chips possibly instigated by excess Ca2+ at the boring site. The mechanism underlying CaCO3 dissolution by sponges provides new insight into how environmental conditions can enhance dissolution and improves predictions of future rates of coral dissolution due to sponge activity.

Continue reading ‘pH regulation and tissue coordination pathways promote calcium carbonate bioerosion by excavating sponges’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,181,012 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book