Posts Tagged 'North Atlantic'



Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO2 world

The Caribbean and Western Atlantic region hosts one of the world’s most diverse geopolitical regions and a unique marine biota distinct from tropical seas in the Pacific and Indian Oceans. While this region varies in human population density, GDP and wealth, coral reefs, and their associated ecosystem services, are central to people’s livelihoods. Unfortunately, the region’s reefs have experienced extensive degradation over the last several decades. This degradation has been attributed to a combination of disease, overfishing, and multiple pressures from other human activities. Furthermore, the Caribbean region has experienced rapid ocean warming and acidification as a result of climate change that will continue and accelerate throughout the 21st century. It is evident that these changes will pose increasing threats to Caribbean reefs unless imminent actions are taken at the local, regional and global scale. Active management is required to sustain Caribbean reefs and increase their resilience to recover from acute stress events. Here, we propose local and regional solutions to halt and reverse Caribbean coral reef degradation under ongoing ocean warming and acidification. Because the Caribbean has already experienced high coral reef degradation, we suggest that this region may be suitable for more aggressive interventions than might be suitable for other regions. Solutions with direct ecological benefits highlighted here build on existing knowledge of factors that can contribute to reef restoration and increased resilience in the Caribbean: (1) management of water quality, (2) reduction of unsustainable fishing practices, (3) application of ecological engineering, and (4) implementing marine spatial planning. Complementary socioeconomic and governance solutions include: (1) increasing communication and leveraging resources through the establishment of a regional reef secretariat, (2) incorporating reef health and sustainability goals into the blue economy plans for the region, and (3) initiating a reef labelling program to incentivize corporate partnerships for reef restoration and protection to sustain overall reef health in the region.

Continue reading ‘Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO2 world’

Impact de l’acidification et du réchauffement sur les communautés planctoniques de l’estuaire du Saint-Laurent et la production de diméthylsulfure (in French)

Anthropogenic carbon dioxide (CO2) emissions have increased since the industrial revolution, leading to modifications in atmospheric CO2 content and an increase in oceanic CO2 partial pressures (pCO2). The uptake of CO2 by the oceans has resulted in a lowering of surface water pH, corresponding to an increase in the acidity of the oceans by ~30 % compared with pre-industrial times. Furthermore, climate change resulting from the accumulation of anthropogenic CO2 in the atmosphere is responsible for the observed warming of sea surface temperatures since the mid 20th century. The fate of planktonic communities in the face of these changes in the marine environment over the next century remains uncertain. Even less understood are the possible interactions of acidification and warming on the production of dimethylsulfide (DMS), a sulfur-containing gas produced by planktonic communities and involved in climate regulation. The aim of this thesis is to determine the impact of heightened pCO2 on the development of the phytoplanktonic blooms in the Lower St. Lawrence Estuary (LSLE), and their production of DMS, as well as to evaluate how concomitant warming could modulate the effects of acidification. Two intricate experiments were carried out during this study. First, a microcosm experiment (~20 L) was conducted in the summer of 2013 to assess the effects of pCO2 on the development of the LSLE spring diatom bloom, paying special attention to the microbial processes governing the production of DMS. Second, a multifactorial mesocosm experiment (~2600 L) was carried out in the fall of 2014 to investigate the combined effects of pCO2 and temperature on the development of the fall bloom in the LSLE and the production of DMS. Results from our microcosm experiment show that the blooming phytoplankton community of the LSLE during spring is resistant to pCO2 increases superior to the expected values for 2100. This resistance likely reflects its adaptation to the estuarine setting, an environment known for rapid and intense fluctuations of pCO2. This first experiment has also highlighted a reduction of the average concentrations of DMS by 15 and 40 % in planktonic assemblages respectively subjected to pCO2 of ~1850 μatm and ~2700 μatm compared to the control (~775 μatm). Parallel incubations have shown, using 35S-DMSPd, that the negative effect of acidification on DMS mostly stemmed from a decrease in the conversion efficiency of DMSP to DMS by bacteria. The second experiment has also highlighted a strong resistance of the diatom Skeletonema costatum to a wide range of pH (~8.0–7.2), and corresponding pCO2 (~90–3000 μatm). In this study, a warming of 5 °C accelerated the development and decline of the bloom, but did not affect the integrated primary production over the duration of the experiment. As in the first experiment, heightened pCO2 resulted in a decrease of average concentrations of DMS of ~66 % in the most acidified mesocosms compared to the least acidified mesocosms at in situ temperature (10 °C). However, the negative effect of an increase in pCO2 on the net production of DMS could be mitigated by a warming of surface waters. Indeed, my results reveal that the net production of DMS was higher at 15 °C compared to 10 °C over the whole pCO2 gradient in our mesocosm study. These novel results suggest that warming of surface waters could mitigate, at least partly, the negative effect of acidification on DMS net production in the LSLE and perhaps in the world’s oceans.

Continue reading ‘Impact de l’acidification et du réchauffement sur les communautés planctoniques de l’estuaire du Saint-Laurent et la production de diméthylsulfure (in French)’

Seasonal DNA methylation variation in the flat tree oyster Isognomon Alatus from a mangrove ecosystem in North Biscayne Bay, Florida

Epigenetic analyses constitute an emerging approach for better understanding of the mechanisms underlying environmental responses and their role during acclimatization and adaptation across diverse ecosystems. The expansion of environmental epigenetic studies to a broader range of ecologically and environmentally relevant organisms will enhance the capability to forecast ecological and evolutionary processes, as well as to facilitate a retrospective assessment of stress exposures in biomonitor organisms through “epigenetic footprinting” analyses. With such purpose, the present study monitored spatial and temporal variation in abiotic parameters (temperature, salinity, pH, and horizontal visibility) over a 2-y period in a mangrove ecosystem located in North Biscayne Bay (North Miami, FL). The obtained data were subsequently compared with epigenetic modifications (global genome-wide DNA methylation levels) in the flat tree oyster Isognomon alatus, used as a sentinel model organism across experimental sites. The obtained results revealed a certain level of seasonality in temporal DNA methylation patterns, which seem to be primarily associated with changes in temperature and horizontal visibility. These results constitute the first long-term study combining spatial and temporal epigenetic analyses in a marine organism in its natural environment, laying the initial groundwork to assess the biomonitoring potential of environmental epigenetic analyses.

Continue reading ‘Seasonal DNA methylation variation in the flat tree oyster Isognomon Alatus from a mangrove ecosystem in North Biscayne Bay, Florida’

Reduced Symbiodiniaceae diversity in Palythoa tuberculosa at a heavily acidified coral reef

Symbiodiniaceae diversity in hosts is known to change with the environment and particularly with temperature and light intensity. However, higher levels of pCO2, as could be expected under future ocean acidification scenarios, have been documented to show little to no effect in influencing the diversity of Symbiodiniaceae in hosts in previous studies. In this study, we examined hypervariable psbAncr sequences to identify the Cladocopium (former Symbiodinium ‘Clade C’) diversity within the zooxanthellate zoantharian Palythoa tuberculosa at an acidified reef in southern Japan. Palythoa tuberculosa were collected from a reef at the volcanic island of Iwotorishima in southern Japan; specimens from a high pCO2 site and from a nearby control (normal pCO2) site (Inoue et al. in Nat Clim Change 3:683–687, 2013). We observed a statistically significant reduction in Cladocopium diversity at the high pCO2 site with only one Cladocopium lineage present, compared to at the control site with two lineages present. Our results demonstrate that higher pCO2 can potentially negatively influence the diversity of host Symbiodiniaceae within anthozoan hosts, an important implication in the face of ongoing ocean acidification and climate change.

Continue reading ‘Reduced Symbiodiniaceae diversity in Palythoa tuberculosa at a heavily acidified coral reef’

Multiple stressor effects on macrobenthic communities in Corpus Christi Bay, Texas, U.S.A.

At any moment in nature, organisms are likely being exposed to multiple stressors, the effects of which are difficult to separate. Often, however, environmental stressors are considered on an individual basis. In southeastern Corpus Christi Bay, TX, declines in benthic macrofaunal community abundance, biomass, diversity, species richness, and species evenness have largely been attributed to the occurrence of hypoxia, a condition of low dissolved oxygen (DO). This study proposes that multiple stressors contribute to these observed benthic macrofaunal declines in southeastern Corpus Christi Bay. Therefore, a 30-year time series of water quality data (salinity, temperature, DO, pH, phosphate, ammonium, nitrite+nitrate, sulfate) and benthic community data (abundance, biomass, species richness, species evenness) was analyzed to describe 1) water quality dynamics of the region and 2) relationships between water quality dynamics and benthic macrofaunal response. Principal component analysis indicated that a large variability in the water quality dataset (63%) could be summarized by three principal components representing a multiple stressor index, a nutrient index, and an acidification index. Seasonality was found to be confounded with the multiple stressor index but not the nutrient or acidification indexes. Spearman rank-order correlations indicated both the multiple stressor and acidification indexes were inversely related to benthic macrofaunal community abundance, biomass, and species richness. A stepwise multiple linear regression analysis on individual water quality variables specified DO, and possibly temperature, to be leading explanatory variables for predicting benthic abundance. Temperature, pH, and nitrite+nitrate were indicated as leading explanatory variables for predicting benthic biomass. Temperature was indicated to be the only leading explanatory variable for predicting species richness. Results demonstrate that multiple stressors, including high temperature, high salinity, and low DO concentrations, are collectively acting on benthic communities in southeastern Corpus Christi Bay.

Continue reading ‘Multiple stressor effects on macrobenthic communities in Corpus Christi Bay, Texas, U.S.A.’

Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region

Coastal and ocean acidification has the potential to cause significant environmental and societal impacts. Monitoring carbonate chemistry parameters over spatial and temporal scales is challenging, especially with limited resources. A lack of monitoring data can lead to a limited understanding of real-world conditions. Without such data, robust experimental and model design is challenging, and the identification and understanding of episodic acidification events is nearly impossible. We present considerations for resource managers, academia, and industry professionals who are currently developing acidification monitoring programs in the Mid-Atlantic region. We highlight the following considerations for deliberation: 1) leverage existing infrastructure to include multiple carbonate chemistry parameters as well as other water quality measurements, 2) direct monitoring efforts in subsurface waters rather than limiting monitoring to surface waters, 3) identify the best available sensor technology for long-term, in-situ monitoring, 4) monitor across a salinity gradient to account for the complexity of estuarine, coastal, and ocean environments, and identify potential areas of enhanced vulnerability, 5) increase sampling frequency to capture variability, 6) consider other drivers (e.g., freshwater discharge, nutrients, physiochemical parameters) that may affect acidification, and 7) conduct or continue monitoring in specific ecological and general regions that may have enhanced vulnerability. Through the incorporation of these considerations, individual monitoring programs can more efficiently and effectively leverage resources and build partnerships for a more comprehensive data collection in the region. While these considerations focus on the Mid-Atlantic region), similar strategies can be used to leverage resources in other locations.

Continue reading ‘Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region’

Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development

Coastal squids lay their eggs on the benthos, leaving them to develop in a dynamic system that is undergoing rapid acidification due to human influence. Prior studies have broadly investigated the impacts of ocean acidification on embryonic squid, but have not addressed the thresholds at which these responses occur or their potential variability. We raised squid, Doryteuthis pealeii (captured in Vineyard Sound, Massachusetts, USA: 41°23.370’N 70°46.418′W), eggs in three trials across the breeding season (May–September, 2013) in a total of six chronic pCO2 exposures (400, 550, 850, 1300, 1900, and 2200 ppm). Hatchlings were counted and subsampled for mantle length, yolk volume, hatching time, hatching success, and statolith morphology. New methods for analysis of statolith shape, rugosity, and surface degradation were developed and are presented (with code). Responses to acidification (e.g., reduced mantle lengths, delayed hatching, and smaller, more degraded statoliths) were evident at ~ 1300 ppm CO2. However, patterns of physiological response and energy management, based on comparisons of yolk consumption and growth, varied among trials. Interactions between pCO2 and hatching day indicated a potential influence of exposure time on responses, while interactions with culture vessel highlighted the substantive natural variability within a clutch of eggs. While this study is consistent with, and expands upon, previous findings of sensitivity of the early life stages to acidification, it also highlights the plasticity and potential for resilience in this population of squid.

Continue reading ‘Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,068 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book