Posts Tagged 'community composition'

Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles

Ocean acidification (OA) is expected to alter plankton community structure in the future ocean. This, in turn, could change the composition of sinking organic matter and the efficiency of the biological carbon pump. So far, most OA experiments involving entire plankton communities have been conducted in meso- to eutrophic environments. However, recent studies suggest that OA effects may be more pronounced during prolonged periods of nutrient limitation. In this study, we investigated how OA-induced changes in low-nutrient adapted plankton communities of the subtropical North Atlantic Ocean may affect particulate organic matter (POM) standing stocks, POM fluxes, and POM stoichiometry. More specifically, we compared the elemental composition of POM suspended in the water column to the corresponding sinking material collected in sediment traps. Three weeks into the experiment, we simulated a natural upwelling event by adding nutrient-rich deep-water to all mesocosms, which induced a diatom-dominated phytoplankton bloom. Our results show that POM was more efficiently retained in the water column in the highest CO2 treatment levels (>800 μatm pCO2) subsequent to this bloom. We further observed significantly lower C:N and C:P ratios in post-bloom sedimented POM in the highest CO2 treatments, suggesting that degradation processes were less pronounced. This trend is most likely explained by differences in micro- and mesozooplankton abundance during the bloom and post-bloom phase. Overall, this study shows that OA can indirectly alter POM fluxes and stoichiometry in subtropical environments through changes in plankton community structure.

Continue reading ‘Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles’

Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean


• In a future scenario, attenuation by DOM outcompetes its physico-chemical role.
• Global change conditions will favor growth and photosynthesis of nanoplankton.
• Global change favors growth and photosynthesis of nano- as compared to microplankton.


We evaluated the dual role of DOM (i.e., as a source of inorganic nutrients and as an absorber of solar radiation) on a phytoplankton community of the western South Atlantic Ocean. Using a combination of microcosms and a cluster approach, we simulated the future conditions of some variables that are highly influenced by global change in the region. We increased nutrients (i.e., anthropogenic input) and dissolved organic matter (DOM), and we decreased the pH, to assess their combined impact on growth rates (μ), species composition/abundance and size structure, and photosynthesis (considering in this later also the effects of light quality i.e., with and without ultraviolet radiation). We simulated two Future conditions (Fut) where nutrients and pH were similarly manipulated, but in one the physical role of DOM (Futout) was assessed whereas in the other (Futin) the physico-chemical role was evaluated; these conditions were compared with a control (Present condition, Pres). The μ significantly increased in both Fut conditions as compared to the Pres, probably due to the nutrient addition and acidification in the former. The highest μ were observed in the Futout, due to the growth of nanoplanktonic flagellates and diatoms. Cells in the Futin were photosynthetically less efficient as compared to those of the Futout and Pres, but these physiological differences, also between samples with or without solar UVR observed at the beginning of the experiment, decreased with time hinting for an acclimation process. The knowledge of the relative importance of both roles of DOM is especially important for coastal areas that are expected to receive higher inputs and will be more acidified in the future.

Continue reading ‘Dual role of DOM in a scenario of global change on photosynthesis and structure of coastal phytoplankton from the South Atlantic Ocean’

Ocean acidification changes the structure of an Antarctic coastal protistan community (update)

Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm) increased in abundance with low to moderate fCO2 (343–634 µatm) but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

Continue reading ‘Ocean acidification changes the structure of an Antarctic coastal protistan community (update)’

Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.

Continue reading ‘Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption’

Plankton responses to ocean acidification: the role of nutrient limitation


• Ocean acidification increases phytoplankton standing stock.
• This increase is more pronounced in smaller-sized taxa.
• Primary consumers reac differently depending on nutrient availability.
• Bacteria and micro-heterotrophs benefited under limiting conditions.
• In general, heterotrophs are negatively affected at nutrient replete periods.


In situ mesocosm experiments on the effect of ocean acidification (OA) are an important tool for investigating potential OA-induced changes in natural plankton communities. In this study we combined results from various in-situ mesocosm studies in two different ocean regions (Arctic and temperate waters) to reveal general patterns of plankton community shifts in response to OA and how these changes are modulated by inorganic nutrient availability. Overall, simulated OA caused an increase in phytoplankton standing stock, which was more pronounced in smaller-sized taxa. This effect on primary producers was channelled differently into heterotroph primary consumers depending on the inorganic nutrient availability. Under limiting conditions, bacteria and micro-heterotrophs benefited with inconsistent responses of larger heterotrophs. During nutrient replete periods, heterotrophs were in general negatively affected, although there was an increase of some mesozooplankton developmental stages (i.e. copepodites). We hypothesize that changes in phytoplankton size distribution and community composition could be responsible for these food web responses.

Continue reading ‘Plankton responses to ocean acidification: the role of nutrient limitation’

Predictable ecological response to rising CO2 of a community of marine phytoplankton

Rising atmospheric CO2 and ocean acidification are fundamentally altering conditions for life of all marine organisms, including phytoplankton. Differences in CO2 related physiology between major phytoplankton taxa lead to differences in their ability to take up and utilize CO2. These differences may cause predictable shifts in the composition of marine phytoplankton communities in response to rising atmospheric CO2. We report an experiment in which seven species of marine phytoplankton, belonging to four major taxonomic groups (cyanobacteria, chlorophytes, diatoms, and coccolithophores), were grown at both ambient (500 μatm) and future (1,000 μatm) CO2 levels. These phytoplankton were grown as individual species, as cultures of pairs of species and as a community assemblage of all seven species in two culture regimes (high‐nitrogen batch cultures and lower‐nitrogen semicontinuous cultures, although not under nitrogen limitation). All phytoplankton species tested in this study increased their growth rates under elevated CO2 independent of the culture regime. We also find that, despite species‐specific variation in growth response to high CO2, the identity of major taxonomic groups provides a good prediction of changes in population growth and competitive ability under high CO2. The CO2‐induced growth response is a good predictor of CO2‐induced changes in competition (R2 > .93) and community composition (R2 > .73). This study suggests that it may be possible to infer how marine phytoplankton communities respond to rising CO2 levels from the knowledge of the physiology of major taxonomic groups, but that these predictions may require further characterization of these traits across a diversity of growth conditions. These findings must be validated in the context of limitation by other nutrients. Also, in natural communities of phytoplankton, numerous other factors that may all respond to changes in CO2, including nitrogen fixation, grazing, and variation in the limiting resource will likely complicate this prediction.

Continue reading ‘Predictable ecological response to rising CO2 of a community of marine phytoplankton’

Future warming and acidification result in multiple ecological impacts to a temperate coralline alga

Coralline algae are a crucial component of reef systems, stabilising reef substrate, providing habitat and contributing to accretion. Coralline algae and their surface microbial biofilms are also important as settlement cues for marine invertebrates, yet few studies address the impact of future environmental conditions on interactions between coralline algae, reef microbes and settlement by larvae of marine invertebrates. We exposed the temperate coralline algal species Amphiroa gracilis to warming and/or acidification scenarios for 21 days. Algae became bleached but photosystem II (PSII) function was not measurably impacted. Settlement by larvae of the sea urchin Heliocidaris erythrogramma was reduced and the structure of the prokaryotic community associated with A. gracilis was altered. Coralline algae in ambient conditions were dominated by Alphaproteobacteria from the Rhodobacteraceae including Loktonella; those under warming were dominated by Bacteroidetes and Verrucomicrobia; acidification resulted in less Loktonella and more Planctomycetes; and a combination of warming and acidification caused increases in Bacteroidetes, Verrucomicrobia and the Alphaproteobacteria family Hyphomonadaceae. These experiments indicate that predicted future environmental change may reduce the ability of some temperate reef coralline algae and associated reef microbes to facilitate settlement of invertebrate larvae as well as having a direct impact to algae via bleaching.

Continue reading ‘Future warming and acidification result in multiple ecological impacts to a temperate coralline alga’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,076,601 hits


Ocean acidification in the IPCC AR5 WG II

OUP book