Posts Tagged 'community composition'

Effect of seawater temperature, pH, and nutrients on the distribution and character of low abundance shallow water benthic foraminifera in the Galápagos

In order to help predict the effects of anthropogenic stressors on shallow water carbonate environments, it is important to focus research on regions containing natural oceanographic gradients, particularly with respect to interactions between oceanography and ecologically sensitive carbonate producers. The Galápagos Archipelago, an island chain in the eastern equatorial Pacific, spans a natural nutrient, pH, and temperature gradient due to the interaction of several major ocean currents. Further, the region is heavily impacted by the El Niño—Southern Oscillation (ENSO) and the Galápagos exhibited widespread coral bleaching and degradation following the strong ENSO events of 1982–1983 and 1997–1998. These findings are coupled with reports of unusually low abundances of time-averaged benthic foraminiferal assemblages throughout the region. Foraminifera, shelled single-celled protists, are sensitive to environmental change and rapidly respond to alterations to their surrounding environment, making them ideal indicator species for the study of reef water quality and health. Here, statistical models and analyses were used to compare modern shallow water benthic foraminiferal assemblages from 19 samples spanning the Galápagos Archipelago to predominant oceanographic parameters at each collection site. Fisher α diversity indices, Ternary diagrams, Canonical Correspondence Analysis, regression tree analysis and FORAM-Index (FI; a single metric index for evaluating water quality associated with reef development) implied a combined impact from ENSO and upwelling from Equatorial Undercurrent (EUC) waters to primarily impact foraminiferal abundances and drive assemblage patterns throughout the archipelago. For instance, repeated ENSO temperature anomalies might be responsible for low foraminiferal density, while chronically high nutrients and low aragonite saturation and low pH—induced by EUC upwelling and La Niña anomalies—likely inhibited post-ENSO recovery, and caused foraminiferal assemblages to exhibit a heterotrophic dominance in the southern archipelago. What resulted are low FI values in the southern collection sites, indicating environments not conducive to endosymbiont development and/or recovery.

Continue reading ‘Effect of seawater temperature, pH, and nutrients on the distribution and character of low abundance shallow water benthic foraminifera in the Galápagos’

Little lasting impact of the Paleocene-Eocene Thermal Maximum on shallow marine molluscan faunas

Global warming, acidification, and oxygen stress at the Paleocene-Eocene Thermal Maximum (PETM) are associated with severe extinction in the deep sea and major biogeographic and ecologic changes in planktonic and terrestrial ecosystems, yet impacts on shallow marine macrofaunas are obscured by the incompleteness of shelf sections. We analyze mollusk assemblages bracketing (but not including) the PETM and find few notable lasting impacts on diversity, turnover, functional ecology, body size, or life history of important clades. Infaunal and chemosymbiotic taxa become more common, and body size and abundance drop in one clade, consistent with hypoxia-driven selection, but within-clade changes are not generalizable across taxa. While an unrecorded transient response is still possible, the long-term evolutionary impact is minimal. Adaptation to already-warm conditions and slow release of CO2 relative to the time scale of ocean mixing likely buffered the impact of PETM climate change on shelf faunas.

Continue reading ‘Little lasting impact of the Paleocene-Eocene Thermal Maximum on shallow marine molluscan faunas’

High-resolution time-series reveals seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA)

There is a growing awareness of the ecological and biogeochemical importance of fungi in coastal marine systems, while highly diverse fungi have been discovered in these marine systems, still little is known about their seasonality and associated drivers in coastal waters. Here, we examined fungal communities over three years of weekly samples at a dynamic, temperate coastal site (Piver’s Island Coastal Observatory (PICO), Beaufort NC USA). Fungal 18S rRNA gene abundance, OTU richness and Shannon’s diversity exhibited prominent seasonality. Fungi 18S rRNA gene copies peak in abundance during the summer and fall, with positive correlations with chlorophyll a, SiO4 and oxygen saturation. Diversity (measured using Internal Transcribed Spacer: ITS libraries) was highest during winter and lowest during summer; it was linked to temperature, pH, chlorophyll a, insolation, salinity, and DIC. Fungal community ITS libraries were dominated throughout the year by Ascomycota with contributions from Basidiomycota, Chytridiomycota and Mucoromycotina, with seasonal patterns linked to water temperature, light, and the carbonate system. Network analysis revealed that while co-occurrence and exclusion existed within fungal network, exclusion dominated the fungi and phytoplankton network, in contrast with reported pathogenic and nutritional interactions between marine phytoplankton and fungi. Compared with the seasonality of bacterial community in the same samples, the timing, extent and associated environmental variables for fungi community are unique. These results highlighted the fungal seasonal dynamics in coastal water and improve our understanding of the ecology of planktonic fungi.

Continue reading ‘High-resolution time-series reveals seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA)’

Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone

Rising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at a biogeographic boundary. Marine communities exposed to mean levels of pCO2 predicted by 2050 experienced periods of low aragonite saturation and high dissolved inorganic carbon. These two factors combined to cause marked community shifts and a major decline in biodiversity, including the loss of key habitat-forming species, with even more extreme community changes expected by 2100. Our results provide empirical evidence that near-future levels of pCO2 shift sub-tropical ecosystems from carbonate to fleshy algal dominated systems, accompanied by biodiversity loss and major simplification of the ecosystem.

Continue reading ‘Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical−temperate transition zone’

Coralline algal skeletal mineralogy affects grazer impacts

In macroalgal‐dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant–herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by global change, making changes in plant–herbivore interactions hard to predict. Coralline algae lay down a calcium carbonate skeleton, which serves as protection from grazing and is preserved in archival samples. Here, we compare grazing damage and intensity to coralline algae in situ over 4 decades characterized by changing seawater acidity. While grazing intensity, herbivore abundance and identity remained constant over time, grazing wound width increased together with Mg content of the skeleton and variability in its mineral organization. In one species, decreases in skeletal organization were found concurrent with deeper skeletal damage by grazers over time since the 1980s. Thus, in a future characterized by acidification, we suggest coralline algae may be more prone to grazing damage, mediated by effects of variability between individuals and species.

Continue reading ‘Coralline algal skeletal mineralogy affects grazer impacts’

Effects of estuarine acidification on an oyster-associated community in New South Wales, Australia

Many of the features that make estuaries among the most productive natural systems on earth also make them prone to acidification. Understanding the effects of estuarine acidification on different components of an ecological community is an important step in identifying indicators of ecosystem degradation. This study examined the impact of estuarine acidification, as a result of acid sulfate soil runoff, on wild Sydney rock oysters Saccostrea glomerata and their associated epifaunal communities in estuaries experiencing acid sulfate soil runoff in New South Wales, Australia. The responses of oysters and their invertebrate epifaunal communities to chronic acidification (greater than 6 mo; represented by oyster source site conditions) were assessed by examining the differences in oyster communities associated with moderate acidification (3.5 km from the source of acidification) or low acidification (8.2 km from the source). Oysters from moderate- or low-acidification sites were transplanted to a site with high exposure to acidification (less than 3 km from the source) or back to their original source sites (control) to mimic episodic acidification (2 wk). Epifaunal mussels Xenostrobus securis and limpets Patelloida mimula showed a negative association with oyster mortality, suggesting that these communities are closely tied to oyster survival. Oyster-associated epifaunal communities exposed to both chronic and episodic acidification were significantly different from communities with low exposure. Epifaunal communities exposed to episodic acidification were significantly less diverse than the control. Spionid and syllid worms were significantly less abundant and the mussel X. securis was significantly more abundant on oysters with moderate exposure or chronic exposure to acidification, as compared with communities from areas with low exposure to acidification. The mussel X. securis and the snail Bembicium auratum were significantly less abundant in oyster communities that were exposed to episodic acidification, as compared with the control. In systems where community composition depends on a single habitat-forming species, maintaining resistance may rely on the ability of that species to persist in the face of environmental stress.

Continue reading ‘Effects of estuarine acidification on an oyster-associated community in New South Wales, Australia’

Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification


• Niche segregation allows species to co-exist and maintain diversity.
• Ocean acidification could modify niche availability and niche segregation.
• Natural CO2 vents showed altered microhabitat availability and fish abundances.
• Competitively dominant fishes increased in density but others decreased.
• Fish species diversity decreases due to niche alteration under elevated CO2.


Niche segregation allows competing species to capture resources in contrasting ways so they can co-exist and maintain diversity, yet global change is simplifying ecosystems and associated niche diversity. Whether climate perturbations alter niche occupancy among co-occurring species and affect species diversity is a key, but unanswered question. Using CO2 vents as natural analogues of ocean acidification, we show that competing fish species with overlapping diets are partially segregated across microhabitat niches and differently-orientated substrata under ambient CO2 conditions. Under elevated CO2, benthic microhabitats experienced a significant increase in non-calcifying turf and fleshy algae but a sharp reduction in calcareous algae. The increased availability of turf and fleshy algae supported increased densities of a competitively dominant species, whilst the reduction in calcifying algal microhabitats decreased densities of several subordinate species. The change in microhabitat availability also drove an increased overlap in microhabitat use among competing fishes at the vents, associated with a reduced fish species richness on horizontal substrates. We conclude that loss of preferred microhabitat niches, exacerbated by population proliferation of competitively dominant species, can drive population losses of less common and subordinate species, and reduce local species richness. The indirect effects of ocean acidification on microhabitat availability can therefore impair maintenance of species populations, and drive changes in local community and biodiversity patterns.


Continue reading ‘Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,505 hits


Ocean acidification in the IPCC AR5 WG II

OUP book