Posts Tagged 'fish'

Limits and patterns of acid-base regulation during elevated environmental CO2 in fish


• High aquatic CO2 may pose challenges to extra- and intra-cellular pH regulation in fish

• In this review we discuss the putative limits to extracellular pH regulation in fish and how some species use a strategy referred to as ‘preferential intracellular pH regulation’ to maintain pH homeostasis during exposure to CO2 tensions beyond their capacity for extracellular pH regulation.


Aquatic CO2 tensions may exceed 30–60 Torr (ca. 30,000–79,000 μatm, respectively; hypercarbia) in some environments inducing severe acid-base challenges in fish. Typically, during exposure to hypercarbia blood pH (pHe) is initially reduced and then compensated in association with an increase in plasma HCO3– in exchange for Cl−. Typically, intracellular pH (pHi) is reduced and recovery is to some degree coupled to pHe recovery (coupled pH regulation). However, during acute hypercarbia, pHe recovery has been proposed to be limited by an “apparent upper bicarbonate threshold”, restricting complete pHe recovery to below 15 Torr PCO2. At PCO2 values beyond that which fish can compensate pHe, some fish are able to fully protect pHi despite large sustained reductions in pHe (preferential pHi regulation) and can tolerate PCO2 > 45 Torr. This review discusses pHe and pHi regulation during exposure to hypercarbia starting with modeling the capacity and theoretical limit to pHe compensation in 19 studies. Next, we discuss how fish compensate severe acute hypercarbia exposures beyond the putative limit of pHe compensation using preferential pHi regulation which has recently been observed to be common among fish subjected to severe hypercarbia. Finally, we consider the evolution of pH regulatory strategies in vertebrates, including how the presence of preferential pHi regulation in embryonic reptiles may indicate that it is an embryonic trait that is either lost or retained in adult vertebrates and may have served as an exaptation for evolutionary transitions during vertebrate evolution.

Continue reading ‘Limits and patterns of acid-base regulation during elevated environmental CO2 in fish’

A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals

• Mangrove habitats are more resilient to climate change than other habitats.

• Climate change might have positive effects on mangrove-root species communities.

• Using mesocosms we show that an increase of 1.2 °C leads to community homogenisation.

• Warming also led to diversity loss and flattening of mangrove root epibiont communities.

• Juvenile fish altered their use of mangrove habitats under warming and acidification.

Global climate stressors, like ocean warming and acidification, contribute to the erosion of structural complexity in marine foundation habitats by promoting the growth of low-relief turf, increasing grazing pressure on structurally complex marine vegetation, and by directly affecting the growth and survival of foundation species. Because mangrove roots are woody and their epibionts are used to ever-changing conditions in highly variable environments, mangrove habitats may be more resilient to global change stressors than other marine foundation species. Using a large-scale mesocosm experiment, we examined how ocean warming and acidification, under a reduced carbon emission scenario, affect the composition and structural complexity of mangrove epibiont communities and the use of mangrove habitat by juvenile fishes. We demonstrate that even a modest increase in seawater temperature of 1.2 °C leads to the homogenisation and flattening of mangrove root epibiont communities. Warming led to a 24% increase in the overall cover of algal epibionts on roots but the diversity of the epibiont species decreased by 33%. Epibiont structural complexity decreased owing to the shorter stature of weedy algal turfs which prospered under elevated temperature. Juvenile fishes showed alterations in mangrove habitat use with ocean warming and acidification, but these were independent of changes to the root epibiont community. We reveal that the quality of apparently resilient mangrove habitats and their perceived value as habitat for associated fauna are still vulnerable under a globally reduced carbon emission scenario.

Continue reading ‘A future 1.2 °C increase in ocean temperature alters the quality of mangrove habitats for marine plants and animals’

Testing the adaptive potential of yellowtail kingfish to ocean warming and acidification

Estimating the heritability and genotype by environment (GxE) interactions of performance-related traits (e.g., growth, survival, reproduction) under future ocean conditions is necessary for inferring the adaptive potential of marine species to climate change. To date, no studies have used quantitative genetics techniques to test the adaptive potential of large pelagic fishes to the combined effects of elevated water temperature and ocean acidification. We used an experimental approach to test for heritability and GxE interactions in morphological traits of juvenile yellowtail kingfish, Seriola lalandi, under current-day and predicted future ocean conditions. We also tracked the fate of genetic diversity among treatments over the experimental period to test for selection favoring some genotypes over others under elevated temperature and CO2. Specifically, we reared kingfish to 21 days post hatching (dph) in a fully crossed 2 × 2 experimental design comprising current-day average summer temperature (21°C) and seawater pCO2 (500 μatm CO2) and elevated temperature (25°C) and seawater pCO2 (1,000 μatm CO2). We sampled larvae and juveniles at 1, 11, and 21 dph and identified family of origin of each fish (1,942 in total) by DNA parentage analysis. The animal model was used to estimate heritability of morphological traits and test for GxE interactions among the experimental treatments at 21 dph. Elevated temperature, but not elevated CO2 affected all morphological traits. Weight, length and other morphological traits in juvenile yellowtail kingfish exhibited low but significant heritability under current day and elevated temperature. However, there were no measurable GxE interactions in morphological traits between the two temperature treatments at 21 dph. Similarly, there was no detectable change in any of the measures of genetic diversity over the duration of the experiment. Nonetheless, one family exhibited differential survivorship between temperatures, declining in relative abundance between 1 and 21 dph at 21°C, but increasing in relative abundance between 1 and 21 dph at 25°C. This suggests that this family line could perform better under future warming than in current-day conditions. Our results provide the first preliminary evidence of the adaptive potential of a large pelagic fisheries species to future ocean conditions.

Continue reading ‘Testing the adaptive potential of yellowtail kingfish to ocean warming and acidification’

Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream

The effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Sparus aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.

Continue reading ‘Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream’

Fish facing global change: are early stages the lifeline?

• The potential benefits of plasticity depend on several factors.

• Further knowledge of concurrent effects of several environmental factors is needed.

• It is also crucial to pursue and deepen transgenerational work.

• Models should take phenotypic plasticity into greater account.

The role of phenotypic plasticity in the acclimation and adaptive potential of an organism to global change is not currently accounted for in prediction models. The high plasticity of marine fishes is mainly attributed to their early stages, during which morphological, structural and behavioural functions are particularly sensitive to environmental constraints. This developmental plasticity can determine later physiological performances and fitness, and may further affect population dynamics and ecosystem functioning. This review asks the essential question of what role early stages play in the ability of fish to later cope with the effects of global change, considering three key environmental factors (temperature, hypoxia and acidification). After having identified the carry-over effects of early exposure reported in the literature, we propose areas that we believe warrant the most urgent attention for further research to better understand the role of developmental plasticity in the responses of marine organisms to global change.

Continue reading ‘Fish facing global change: are early stages the lifeline?’

Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification

Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.

Continue reading ‘Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification’

Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish

Increased levels of dissolved carbon dioxide (CO2) drive ocean acidification and have been predicted to increase the energy use of marine fishes via physiological and behavioural mechanisms. This notion is based on a theoretical framework suggesting that detrimental effects on energy use are caused by plasma acid–base disruption in response to hypercapnic acidosis, potentially in combination with a malfunction of the gamma aminobutyric acid type A (GABAA) receptors in the brain. However, the existing empirical evidence testing these effects primarily stems from studies that exposed fish to elevated CO2 for a few days and measured a small number of traits. We investigated a range of energetic traits in juvenile spiny chromis damselfish (Acanthochromis polyacanthus) over 3 months of acclimation to projected end-of-century CO2 levels (~ 1000 µatm). Somatic growth and otolith size and shape were unaffected by the CO2 treatment across 3 months of development in comparison with control fish (~ 420 µatm). Swimming activity during behavioural assays was initially higher in the elevated CO2 group, but this effect dissipated within ~ 25 min following handling. The transient higher activity of fish under elevated CO2 was not associated with a detectable difference in the rate of oxygen uptake nor was it mediated by GABAA neurotransmitter interference because treatment with a GABAA antagonist (gabazine) did not abolish the CO2 treatment effect. These findings contrast with several short-term studies by suggesting that end-of-century levels of CO2 may have negligible direct effects on the energetics of at least some species of fish.

Continue reading ‘Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,182 hits


Ocean acidification in the IPCC AR5 WG II

OUP book