Posts Tagged 'fish'

Coastal pH variability and the eco-physiological and behavioural response of a coastal fish species in light of future ocean acidification

Ocean acidification (OA) is a global phenomenon referring to a decrease in ocean pH and a perturbation of the seawater carbonate system due to ever-increasing atmospheric CO2 concentrations. In coastal environments, identifying the impacts of OA is complex due to the multiple contributors to pH variability by coastal processes, such as freshwater inflow, upwelling, hydrodynamic processes, and biological activity. The aim of this PhD study was to quantify the local processes occurring in a temperate coastal embayment, Algoa Bay in South Africa, that contribute to pH and carbonate chemistry variability over time (monthly and 24-hour) and space (~10 km) and examine how this variability impacts a local fish species, Diplodus capensis, also commonly known as ‘blacktail’. Algoa Bay, known for its complex oceanography, is an interesting location in which to quantify carbonate chemistry variability. To assess this variability, monitoring sites were selected to coincide with the Algoa Bay Sentinel Site long-term ecological research (LTER) and continuous monitoring (CMP) programmes. The average pH at offshore sites in the bay was 8.03 ± 0.07 and at inshore sites was 8.04 ± 0.15. High pH variability (~0.55–0.61 pH units) was recorded at both offshore (>10 m depth) and inshore sites (intertidal surf zones). Many sites in the bay, especially the atypical site at Cape Recife, exhibit higher than the average pH levels (>8.04), suggesting that pH variability may be biologically driven. This is further evidenced by high diurnal variability in pH (~0.55 pH units). Although the specific drivers of the high pH variability in Algoa Bay could not be identified, baseline carbonate chemistry conditions were identified, which is necessary information to design and interpret biological experiments. Long-term, continuous monitoring is required to improve understanding of the drivers of pH variability in understudied coastal regions, like Algoa Bay.

Continue reading ‘Coastal pH variability and the eco-physiological and behavioural response of a coastal fish species in light of future ocean acidification’

Natural CO2 seeps reveal adaptive potential to ocean acidification in fish

Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. Whilst many species are challenged by reduced pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared to those from ambient CO2 sites. Up‐regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up‐regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes which would allow a fine‐tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced pH environment could provide for adaptive potential to near‐future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.

Continue reading ‘Natural CO2 seeps reveal adaptive potential to ocean acidification in fish’

Ocean acidification but not elevated spring warming threatens a European Seas predator


  • Treatments in marine climate research often ignore important, natural variation
  • Fish embryos were exposed to stable versus warming temperatures (T) and high pCO2
  • Development, hatching and metabolism of a predatory fish (garfish) were examined
  • Increased spring warming benefitted garfish but stable high T and pCO2 were lethal
  • Allospecific prey of garpike have adapted suggesting future, trophodynamic change


Ocean acidification has the potential to negatively affect marine ecosystems by influencing the development and metabolism of key members of food webs. The garfish, Belone belone, is an ecologically important predator in European regional seas and it remains unknown how this species will be impacted by projected changes in climate. We artificially fertilized and reared garfish embryos until hatch at present (400 μatm) and future (1300 μatm) pCO2 levels within three temperature treatments, i.e. two daily warming regimes and one constant high temperature (17°C). For the two warming treatments, embryos were fertilized at 13°C and experienced 0.1 or 0.3°C/day warming. The 0.1°C/day treatment served as control: 13°C was the in situ temperature of parental fish in the Southwest Baltic Sea and 0.1°C/day is the average warming rate experienced by embryos of this population in nature. Survival was drastically reduced at both future pCO2 and at the constant high temperature while the highest survival in any treatment was observed at 0.3°C/day warming. The proportion of embryos with morphological deformities increased with elevated pCO2 but not temperature. Hatch characteristics and physiological measures such as heart rate and critical thermal ranges, however, were not affected by pCO2 but were influenced by temperature. Our results suggest that garfish in the Baltic Sea will benefit from projected increased rates of spring warming but not the concomitant increase in pCO2. Previous studies on the impacts of ocean acidification on resident fishes in the Baltic Sea indicate that this piscivorous fish is at higher risk compared to its prey which may have broader implications for the future trophodynamic structure and function of the coastal food web.

Continue reading ‘Ocean acidification but not elevated spring warming threatens a European Seas predator’

Tissue comparison of transcriptional response to acute acidification stress of barramundi Lates calcarifer in coastal and estuarine areas


  • Assessed tissues response of barramundi in acidification stress by RNA-seq analysis
  • Acidification inhibited the immune function of barramundi in different tissues.
  • Provided insights for susceptible physiological processes to acidification stress


In order to explore the common and unique physiological changes in tissues of juvenile barramundi Lates calcarifer in acidified water environment, RNA sequence analysis was used to analyze the molecular responses of liver, head kidney, and gill of juvenile barramundi in pH 7.4 and pH 8.1 seawater environment. The number of differential expression genes identified in liver, head kidney and gill were 860, 388 and 1792, respectively. Through functional enrichment analysis, the differential expression genes common to the three tissues were all related to immunity. Among the unique differential genes in the liver, pathways related to digestion, endocrine, and metabolism were enriched. Among the unique differential expression genes in gill, pathways related to genetic information processing, immunity and metabolism were enriched. The findings of the present study uncover the transcriptional changes in fish correspond to environmental pH change, and provide a better understanding on the biological process at molecular level to environmental pH adapting. This work highlights that assessments for the potential of estuarine fishes to cope with environmental pH change to develop the future conservation strategies.

Continue reading ‘Tissue comparison of transcriptional response to acute acidification stress of barramundi Lates calcarifer in coastal and estuarine areas’

Risk assessment for key socio-economic and ecological species in a sub-arctic marine ecosystem under combined ocean acidification and warming

The Arctic may be particularly vulnerable to the consequences of both ocean acidification (OA) and global warming, given the faster pace of warming and acidification. Here, we use the Atlantis ecosystem model to assess how the trophic network of marine fishes and invertebrates in the Icelandic waters is responding to the combined pressures of OA and warming. We develop an approach which allows us to focus on species of economic (catch-value), social (number of participants in fisheries), or ecological (keystone species) importance. We parameterize the model with literature-determined ranges of sensitivity to OA and warming for different species and functional groups in the Icelandic waters. We found divergent species responses to warming and acidification levels; (mainly) planktonic groups and forage fish benefited while (mainly) benthic groups and predatory fish decreased under warming and acidification scenarios. Assuming conservative harvest rates for the largest catch-value species, Atlantic cod, we see that the population is projected to remain stable under even the harshest acidification and warming scenario. Further, for the scenarios where the model projects reductions in biomass of Atlantic cod, other species in the ecosystem increase, likely due to a reduction in competition and predation. These results highlight the interdependencies of multiple global change drivers and their cascading effects on trophic organization, and the supply of an important species from a socio-economic perspective in the Icelandic fisheries.

Continue reading ‘Risk assessment for key socio-economic and ecological species in a sub-arctic marine ecosystem under combined ocean acidification and warming’

Does acidification lead to impairments on oxidative status and survival of orange clownfish Amphiprion percula juveniles?

The nitrification process in recirculating aquaculture systems can reduce water pH. Fish can also be exposed to water acidification during transport, an important feature in the aquarium industry, as live fish can be kept in a closed environment for more than 24 h during overseas aerial transportation. Therefore, it is important to study the responses of fish to acidic environments. We investigated the impacts of acute exposure to decreasing pH levels in orange clownfish Amphiprion percula juveniles on their survival and oxidative stress status. Fish were exposed to pH 5, 6, 7, and 8 for 96 h. We observed a significant reduction in survival (85%) and protein damage as measured by P-SH (protein thiol) for fish maintained at pH 5. Despite no effects on survival or oxidative damage, fish exposed to pH 6 showed an increase in their antioxidant defense systems, demonstrating this pH level could not be suitable for them as well. Furthermore, there were no negative effects for fish kept at pH 7, compared to those maintained at pH 8 during this short-term evaluation.

Continue reading ‘Does acidification lead to impairments on oxidative status and survival of orange clownfish Amphiprion percula juveniles?’

Primary, secondary, and tertiary stress responses of juvenile seahorse Hippocampus reidi exposed to acute acid stress in brackish and seawater


• Activity of antioxidant enzymes was harmed in seahorse juveniles exposed to acidic environment in brackish water.

• Lower tolerance for acidification in brackish water triggered lipid peroxidation in seahorse juveniles.

• Seahorse juvenile survival was not influenced by pH neither in brackish nor in sea water.


Seahorse Hippocampus reidi is a vulnerable species, inhabiting estuarine and coastal waters. The safety of acidic environments for fish has been considered in terms of ocean acidification in nature and decreasing pH in intensive aquaculture systems. This study aimed to investigate the effects of acute exposition (96 h) of juvenile seahorses to different pH (5, 6, 7, and 8) in brackish (BW – salinity 11) or seawater (SW – salinity 33). For that, we studied the responses of cortisol, oxidative stress, and survival, thus covering primary, secondary, and tertiary stress responses. In SW, cortisol levels were not altered for fish maintained at pH 5 and 8. However, in BW, cortisol was higher for fish kept at pH 5. Regarding secondary stress responses, only GST activity increased with acidification in SW. However, acidification in BW caused biochemical alterations at enzymatic level (SOD, GST, GPx) and glutathione metabolism, accompanied by reduction of antioxidant capacity (TEAC) and increased lipid peroxidation (TBARS). Survival was always above 90% and it did not differ significantly among pH levels. Our results suggest that H. reidi juveniles are more vulnerable to acidic exposure in BW than in SW.

Continue reading ‘Primary, secondary, and tertiary stress responses of juvenile seahorse Hippocampus reidi exposed to acute acid stress in brackish and seawater’

Ideas and perspectives: when ocean acidification experiments are not the same, repeatability is not tested (update)

Can experimental studies on the behavioural impacts of ocean acidification be trusted? That question was raised in early 2020 when a high-profile paper failed to corroborate previously observed responses of coral reef fish to high CO2. New information on the methodologies used in the “replicated” studies now provides a plausible explanation: the experimental conditions were substantially different. High sensitivity to test conditions is characteristic of ocean acidification research; such response variability shows that effects are complex, interacting with many other factors. Open-minded assessment of all research results, both negative and positive, remains the best way to develop process-based understanding. As in other fields, replication studies in ocean acidification are most likely to contribute to scientific advancement when carried out in a spirit of collaboration rather than confrontation.

Continue reading ‘Ideas and perspectives: when ocean acidification experiments are not the same, repeatability is not tested (update)’

Transcriptional and catalytic responsiveness of the Antarctic fish Trematomus bernacchii antioxidant system toward multiple stressors

Ocean-warming and acidification jeopardize Antarctic marine species, adapted to cold and constant conditions and naturally exposed to high pro-oxidant pressures and cadmium (Cd) bioavailability. The aim of this study was to investigate if projected temperature increase and pH reduction may affect the accumulation and the effects of Cd in the rockcod Trematomus bernacchii. Organisms were exposed for 14 days to six scenarios, combining environmental or increased temperature (−1 °C, +1 °C) and control or reduced pH (8.05, 7.60), either with or without Cd (40 µg/L). Responses in liver and gills were analyzed at different levels, including mRNA and functional measurements of metallothioneins and of a wide battery of antioxidants, integrated with the evaluation of the total antioxidant capacity and onset of oxidative damages. In the gills, metallothioneins and mRNA of antioxidant genes (nrf2keap1catgpx1) increased after Cd exposure, but such effects were softened by warming and acidification. Antioxidants showed slighter variations at the enzymatic level, while Cd caused glutathione increase under warming and acidified scenarios. In the liver, due to higher basal antioxidant protection, limited effects were observed. Genotoxic damage increased under the combined stressors scenario. Overall results highlighted the modulation of the oxidative stress response to Cd by multiple stressors, suggesting the vulnerability of T. bernacchii under predicted ocean change scenarios.

Continue reading ‘Transcriptional and catalytic responsiveness of the Antarctic fish Trematomus bernacchii antioxidant system toward multiple stressors’

Independent effects of seawater pH and high PCO2 on olfactory sensitivity in fish: possible role of carbonic anhydrase

Ocean acidification may alter olfactory-driven behaviour in fish by direct effects on the peripheral olfactory system; olfactory sensitivity is reduced in CO2-acidified seawater. The current study tested whether this is due to elevated PCO2 or the consequent reduction in seawater pH and, if the former, investigate the possible involvement of carbonic anhydrase, the enzyme responsible for the hydration of CO2 and production of carbonic acid. Olfactory sensitivity to amino acids was assessed by extracellular multi-unit recording from the olfactory nerve of the gilthead seabream (Sparus auratus L,) in normal seawater (pH ∼8.2), and after acute exposure to acidified seawater (pH ∼7.7, but normal PCO2; ∼340 µatm) and high PCO2 seawater (∼1400 µatm) at normal pH (∼8.2). Reduced pH in the absence of elevated PCO2 caused reduction in olfactory sensitivity to L-serine, L-leucine, L-arginine and L-glutamine, but not L-glutamic acid. Increased PCO2 in the absence of changes in pH caused reduced olfactory sensitivity to L-serine, L-leucine and L-arginine, including increases in their thresholds of detection, but had no effect on sensitivity to L-glutamine and L-glutamic acid. Inclusion of 1 mM acetazolamide (a membrane-permeant inhibitor of carbonic anhydrase) in the seawater reversed the inhibition of olfactory sensitivity to L-serine caused by high PCO2. Ocean acidification may reduce olfactory sensitivity by reduction in seawater pH and intracellular pH (of olfactory receptor neurones); the former by reducing odorant-receptor affinity, and the latter by reducing the efficiency of olfactory transduction. The physiological role of carbonic anhydrase in the olfactory receptor neurones remains to be explored.

Continue reading ‘Independent effects of seawater pH and high PCO2 on olfactory sensitivity in fish: possible role of carbonic anhydrase’

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,451,105 hits


Ocean acidification in the IPCC AR5 WG II

OUP book