Posts Tagged 'fish'

Fish brain development in a changing ocean

Unravelling how marine species invest in brain tissues (or brain regions) matching the fitness-relevant cognitive demands dictated by a changing environment is a priority in climate change-related (ocean warming and acidification) research. Within this context, this dissertation aimed to assess the combined effects of ocean warming (Δ 4 °C) and acidification (Δ 700 μatm pCO2 and Δ 0.4 pH) in the brain development (brain/body mass ratio and brain macro-region growth) of several juvenile fish species from different climate regions. Namely: three species adapted to a more stable (tropical) environment (clown anemonefish Amphiprion ocellaris, orchid dottyback Pseudochromis fridmani and neon goby Elacatinus oceanops), and other three adapted to a less stable (more seasonal; temperate) environment (seabream Diplodus sargus, flatfish Solea senegalensis and meagre Argyrosomus regius). The results show that the temperate species used in this study are only affected by ocean acidification in both total brain and specific brain regions, while the used tropical species are affected by ocean acidification, ocean warming and also by the interaction of ocean warming and ocean acidification. In fact, both total brain and every brain-region except for Telencephalon are affected by future conditions of ocean warming and ocean acidification differently according to each species. The lack of responses to ocean warming by the temperate species is here attributed to the widespread latitudinal distribution of those species, and thus the adaptation to a wider temperature range than tropical species. Curiously, all the significant interactions between the two studied stressors are antagonistic interactions with a cross-tolerance mechanism, meaning that under those interactions, the brain weight is closer to control levels than under each of the stressors separately. Possible behavioural and ecological implications of those results are also discussed. Despite the distinct dichotomic pattern between temperate and tropical habitats, the results among fish species and specific brain macro-regions do not exhibit a subjacent pattern. These different results highlight the idea of species-specific phenotypic responses to these climate change-related stressors.

Continue reading ‘Fish brain development in a changing ocean’

Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma

Highlights

• Adverse effects of elevated CO2 varied cross developmental stages of marine medaka.

• Embryo developmental delay to elevated CO2 showed in concentration-dependent manner.

• Middle stage of development was the most sensitive period to CO2 exposure for mortality.

• Despite transfer to clean water, CO2 exposed embryos could not be recovered.

• Key symptoms by elevated CO2 exposure encompassed mortality and cardiac edema.

Abstract

The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0–4 d (early stage), 4–8 d (middle stage), and 8–12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.

Continue reading ‘Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma’

Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures

Oceans are warming and pH levels are decreasing as a consequence of increasing levels of dissolved CO2 concentrations. The CO2 emissions are predicted to be produce in greater and faster changes in the ocean than any other event in geological and historical records over the past 300 million years. Marine organisms will need to respond to multiple stressors but the potential consequences of global change-related effects in fish are not fully understood. Since fish are affected by many biotic and abiotic environmental variables, including temperature and CO2 fluctuations, it is critical to investigate how these variables may affect physiological and biochemical processes. We investigated the effects of elevated CO2 levels (pH of 8.0, which served as a control, or 7.6, which is predicted for the year 2100) combined with exposure to different temperatures (5, 10, 12, 14, 16, and 18 C ) in the Atlantic halibut (Hippoglossus hippoglossus) during a three month experiment. We assessed effects on antioxidant and cholinesterase enzymes (AChE and BChE), and CYP1A enzyme activities (EROD). The treatments resulted in oxidative stress, and damage was evident in the form of protein carbonyls which were consistently higher in the elevated CO2-treated fish at all temperatures. Analyses of antioxidant enzymes did not show the same results, suggesting that the exposure to elevated CO2 increased ROS formation but not defences. The antioxidant defence system was insufficient, and the resulting oxidative damage could impact physiological function of the halibut on a cellular level.

Continue reading ‘Oxidative stress and biomarker responses in the Atlantic halibut after long term exposure to elevated CO2 and a range of temperatures’

Divergent responses of Atlantic cod to ocean acidification and food limitation

In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) was found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35‐36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2‐treatments (ambient: 503 μatm, elevated: 1179 μatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments, will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life‐stages of fish.

Continue reading ‘Divergent responses of Atlantic cod to ocean acidification and food limitation’

Effects of ocean acidification on the transcriptome of larval Atlantic cod and impacts of parental acclimation

Ocean acidification, caused by the uptake of carbon dioxide (CO2) from the atmosphere, is impacting many marine organisms. This dissertation investigated the effects of direct exposure and parental acclimation to simulated ocean acidification on the larval stages of Atlantic cod (Gadus morhua, L.). For this, ocean acidification levels predicted for the year 2100 were applied on cod eggs from hatch to 36 days post hatch in in vivo laboratory experiments. The direct exposure experiment clearly showed that Atlantic cod larvae were severely affected by simulated ocean acidification on a phenotypic level (chapter 1). Changes in growth, bone and gill development as well as increased frequency of organ damages were observed under predicted ocean acidification levels compared to controls. Then, the underlying molecular phenotype was assessed, using whole transcriptome sequencing (RNA-Seq), to couple transcriptomic mechanisms to the observed phenotypes (chapter 2). Transcriptome analysis revealed 1413 differentially expressed genes in late larval stages, corresponding to the observed changes in growth and developmental patterns, leading to the conclusion that these changes represent an accelerated development under ocean acidification. Surprisingly, only few genes (3 and 16, respectively) were differentially expressed in the early larval stages. An experiment set to address the effects of long-term parental acclimation (5 month) was performed to assess whether or not this kind of acclimation can mediate the identified detrimental direct effects on the larvae (chapter 3). However, none of the previously observed phenotypes under ocean acidification were found in this experiment, making it impossible to draw any conclusion on the effectiveness of parental acclimation on larval susceptibility to simulated ocean acidification. A concluding meta-analysis between experiments shows that the larvae of Atlantic Cod are to be considered vulnerable to simulated ocean acidification.

Continue reading ‘Effects of ocean acidification on the transcriptome of larval Atlantic cod and impacts of parental acclimation’

Elevated CO2 impairs olfactory‐mediated neural and behavioral responses and gene expression in ocean‐phase coho salmon (Oncorhynchus kisutch)

Elevated concentrations of CO2 in seawater can disrupt numerous sensory systems in marine fish. This is of particular concern for Pacific salmon because they rely on olfaction during all aspects of their life including during their homing migrations from the ocean back to their natal streams. We investigated the effects of elevated seawater CO2 on coho salmon (Oncorhynchus kisutch) olfactory‐mediated behavior, neural signaling, and gene expression within the peripheral and central olfactory system. Ocean‐phase coho salmon were exposed to three levels of CO2, ranging from those currently found in ambient marine water to projected future levels. Juvenile coho salmon exposed to elevated CO2 levels for 2 weeks no longer avoided a skin extract odor that elicited avoidance responses in coho salmon maintained in ambient CO2 seawater. Exposure to these elevated CO2 levels did not alter odor signaling in the olfactory epithelium, but did induce significant changes in signaling within the olfactory bulb. RNA‐Seq analysis of olfactory tissues revealed extensive disruption in expression of genes involved in neuronal signaling within the olfactory bulb of salmon exposed to elevated CO2, with lesser impacts on gene expression in the olfactory rosettes. The disruption in olfactory bulb gene pathways included genes associated with GABA signaling and maintenance of ion balance within bulbar neurons. Our results indicate that ocean‐phase coho salmon exposed to elevated CO2 can experience significant behavioral impairments likely driven by alteration in higher‐order neural signal processing within the olfactory bulb. Our study demonstrates that anadromous fish such as salmon may share a sensitivity to rising CO2 levels with obligate marine species suggesting a more wide‐scale ecological impact of ocean acidification.

Continue reading ‘Elevated CO2 impairs olfactory‐mediated neural and behavioral responses and gene expression in ocean‐phase coho salmon (Oncorhynchus kisutch)’

Physiological responses of whitespotted bamboo shark (Chiloscyllium plagiosum) to high CO2 levels

Sharks have been roaming the planet for 400 million years and are vital elements for the health of our oceans. Due to occurring changes in the food-web and anthropogenic pressure from fishing and habitat degradation, sharks populations are now declining sharply. Ocean acidification, caused by continuous release of carbon dioxide (CO2) to the atmosphere, may represent an additional threat. Among other effects, it may cause physiological disturbances in the organisms and threaten marine ecosystems as we know them, especially the most vulnerable life stages. Hence, the present study focus on the effects that ocean acidification may have on the fitness, metabolism and swimming performance of juvenile whitespotted bamboo sharks (Chiloscyllium plagiosum). After hatching, sharks were placed in either control (pCO2 ~ 400 μatm, pH = 8.0) or high CO2 (pCO2 ~ 900 μatm, pH = 7.7) conditions, according to the pH levels expected by the end of the century. After an exposure of 45 days, several ecologically important traits were tested, namely their fitness [(i) Fulton condition], metabolic capacity [(i) routine metabolic rate (RMR), (ii) maximum metabolic rate (MMR), (iii) aerobic scope (AS)] and swimming performance [(i) maximum reached velocity, (ii) percentage of time swimming, (iii) number of bursts and (vi) pre and (vii) post-stress ventilation rates]. No changes were observed in their fitness, metabolism and the majority of the swimming performance end-points. Nevertheless, regarding the swimming performance, there was a decrease of the duration of swimming events and a decrease in the post-swimming ventilation rates. Over the past years, these cartilaginous fish have been coping with oscillations in the seawater chemistry and thus appear to be resilient to OA. However, this species’ conservation status is of concern, assessed as Near Threatened, and even the sub-lethal effects observed in this study may potentially reduce the organism’s overall fitness and ultimately impact population dynamics.

Continue reading ‘Physiological responses of whitespotted bamboo shark (Chiloscyllium plagiosum) to high CO2 levels’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,051 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book