Posts Tagged 'Mediterranean'

Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain

Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans.

Continue reading ‘Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain’

Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents

Highlights

• Coral microbiomes contribute to host acclimatization to environmental change.

• Natural CO2 gradients are a model of global change-induced ocean acidification.

• Non-symbiotic coral Astroides calycularis survives in a natural acidified site.

• Calycularis mucus microbiome is the most affected by low pH conditions.

• Low pH conditions induce changes in microbiome supporting nitrogen cycling.

Abstract

Coral microbiomes, the complex microbial communities associated with the different anatomic compartments of the coral, provide important functions for the host’s survival, such as nutrient cycling at the host’s surface, prevention of pathogens colonization, and promotion of nutrient uptake. Microbiomes are generally referred to as plastic entities, able to adapt their composition and functionality in response to environmental change, with a possible impact on coral acclimatization to phenomena related to climate change, such as ocean acidification. Ocean sites characterized by natural gradients of pCO2 provide models for investigating the ability of marine organisms to acclimatize to decreasing seawater pH. Here we compared the microbiome of the temperate, shallow water, non-symbiotic solitary coral Astroides calycularis that naturally lives at a volcanic CO2 vent in Ischia Island (Naples, Italy), with that of corals living in non-acidified sites at the same island. Bacterial DNA associated with the different anatomic compartments (mucus, tissue and skeleton) of A. calycularis was differentially extracted and a total of 68 samples were analyzed by 16S rRNA gene sequencing. In terms of phylogenetic composition, the microbiomes associated with the different coral anatomic compartments were different from each other and from the microbial communities of the surrounding seawater. Of all the anatomic compartments, the mucus-associated microbiome differed the most between the control and acidified sites. The differences detected in the microbial communities associated to the three anatomic compartments included a general increase in subdominant bacterial groups, some of which are known to be involved in different stages of the nitrogen cycle, such as potential nitrogen fixing bacteria and bacteria able to degrade organic nitrogen. Our data therefore suggests a potential increase of nitrogen fixation and recycling in A. calycularis living close to the CO2 vent system.

Continue reading ‘Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents’

Responses of sea urchin larvae to field and laboratory acidification

Highlights

• We deploy identical populations of sea urchin embryos in lab and field ocean acidification scenarios.

• Acidification had opposite effects on larval growth in the lab and in the field.

• Results of ocean acidification lab studies may not necessarily scale to field conditions.

Abstract

Understanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key towards making better projections on the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO2 vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO2 vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites. As expected, larvae grown at constant low pH (pHT 7.8) in the laboratory exhibited reduced arm growth, but counter to expectations, the larvae that developed at the low pH vent site (pHT 7.33–7.99) had the longest arms. The larvae at the control field site (pHT 7.87–7.99) grew at a similar rate to laboratory controls. Salinity, temperature, oxygen and flow regimes were comparable between control and vent sites; however, chlorophyll a levels and particulate organic carbon were higher at the vent site than at the control field site. Thus, increased food availability may have modulated the effects of low pH, creating an opposite calcification response in the laboratory and the field. Divergent responses of the same larval populations developing in laboratory and field environments show the importance of considering larval phenotypic plasticity and complex interactions between decreased pH, food availability and larval responses.

Continue reading ‘Responses of sea urchin larvae to field and laboratory acidification’

Within- and trans-generational responses to combined global changes are highly divergent in two congeneric species of marine annelids

Trans-generational plasticity (TGP) represents a primary mechanism for guaranteeing species persistence under rapid global changes. To date, no study on TGP responses of marine organisms to global change scenarios in the ocean has been conducted on phylogenetically closely related species, and we thus lack a true appreciation for TGP inter-species variation. Consequently, we examined the tolerance and TGP of life-history and physiological traits in two annelid species within the genus Ophryotrocha: one rare (O. robusta) and one common (O. japonica). Both species were exposed over two generations to ocean acidification (OA) and warming (OW) in isolation and in combination (OAW). Warming scenarios led to a decrease in energy production together with an increase in energy requirements, which was lethal for O. robusta before viable offspring could be produced by the F1. Under OA conditions, O. robusta was able to reach the second generation, despite showing lower survival and reproductive performance when compared to control conditions. This was accompanied by a marked increase in fecundity and egg volume in F2 females, suggesting high capacity for TGP under OA. In contrast, O. japonica thrived under all scenarios across both generations, maintaining its fitness levels via adjusting its metabolomic profile. Overall, the two species investigated show a great deal of difference in their ability to tolerate and respond via TGP to future global changes. We emphasize the potential implications this can have for the determination of extinction risk, and consequently, the conservation of phylogenetically closely related species.

Continue reading ‘Within- and trans-generational responses to combined global changes are highly divergent in two congeneric species of marine annelids’

Spring distribution of shelled pteropods across the Mediterranean Sea

Shelled pteropods represent an excellent sentinel for indicating exposure to ocean acidification (OA). Here, for the first time, we characterise spring pteropod distribution throughout the Mediterranean Sea, a region that has been identified as a climate change hot-spot. The presence of a west–east natural biogeochemical gradient makes this region a natural laboratory to investigate how the variability in environmental parameters may affect pteropod distribution. Results show that pteropod abundance is significantly higher in the eastern Mediterranean Sea where there is a higher aragonite saturation state (Ωar), showing that distribution is positively correlated with Ωar. We also observed a resilience of pteropods to higher temperatures and low nutrient conditions, including phosphorous limitation. The higher abundance of pteropods in ultra-oligotrophic conditions (eastern Mediterranean Sea) suggests that this organism can play an important role as the prime calcifying zooplankton within specific oligotrophic regions.

Continue reading ‘Spring distribution of shelled pteropods across the Mediterranean Sea’

The carbonate system in the Ligurian Sea

The study of the oceanic carbonate system is linked to two important environmental issues: ocean CO2 uptake and ocean acidification and its impact on organisms, ecosystems and ecosystem services. This chapter mainly focuses on the seasonal cycles and long‐term trends of the ocean carbonate system based on a synthesis of data collected in the Ligurian Sea from 1998 to 2016. In addition to the effect of potential T (theta) on CO2 solubility, the distribution of dissolved inorganic carbon CT in the water column is driven by the antagonistic effects of the biological carbon pump that increases the vertical gradient of CT (lowering CT at the surface and increasing it in the ocean interior) and the exchange of CO2 at the air–sea interface. The chapter also presents the seasonal cycle of the carbonate system and ancillary variables in the surface water.

Continue reading ‘The carbonate system in the Ligurian Sea’

Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins?

Highlights

• Arbacia lixula and Paracentrotus lividus were differently affected by low pH exposure.

• P. lividus skeleton integrity was not affected by low pH.

• Arbacia lixula exposed to low pH near CO2 vent showed decreased skeletal integrity.

• pH exposure leads to changes in biomineralization-related genes expression.

• Acid-base regulation capacity is linked with a better tolerance to low pH.

Continue reading ‘Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins?’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,335,533 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book