Posts Tagged 'Mediterranean'

Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification

The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanicashoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters.

Continue reading ‘Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification’

Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO2 gradient to assess the importance of the timing and duration of high pCO2 exposure (i.e. discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by eight weeks) but then caught up over the next four weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO2 and changes in species interactions. High pCO2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pre-transplant), negative effects of pCO2 on recruitment of these worms was still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important implications for ecosystem function and food web dynamics.

Continue reading ‘Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities’

Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO2 and temperature

Global warming and ocean acidification are increasingly affecting coastal ecosystems, with impacts that vary regionally depending upon local biogeography. Ocean acidification drives shifts in seaweed community dominance that depend on interactions with other factors such as light and nutrients. In this study, we investigated the photophysiological responses in the brown macroalgae species Cystoseira tamariscifolia (Hudson) Papenfuss with important structural role in the coastal Mediterranean communities. These algae were collected in the Cabo de Gata-Nijar Natural Park in ultraoligotrophic waters (algae exposed under high irradiance and less nutrient conditions) vs. those collected in the La Araña beach in oligotrophic waters (algae exposed at middle nutrient and irradiance conditions) in the Mediterranean Sea. They were incubated in mesocosms, under two levels of CO2; ambient (400-500 ppm) and high CO2 (1200-1300 ppm), combined with two temperatures (ambient temperature; 20 °C and ambient temperature + 4 °C; 24 °C) and the same nutrient conditions of the waters of the origin of macroalgae. Thalli from two sites on the Spanish Mediterranean coast were significantly affected by increases in pCO2 and temperature. The carotenoids (fucoxanthin, violaxanthin and β-carotene) contents were higher in algae from oligotrophic than that from ultraoligotrophic water, i.e., algae collected under higher nutrient conditions respect to less conditions, increase photoprotective pigments content. Thalli from both locations upregulated photosynthesis (as Fv/Fm) at increased pCO2 levels. Our study shows that ongoing ocean acidification and warming can increase photoprotection and photosynthesis in intertidal macroalgae.

Continue reading ‘Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO2 and temperature’

Increase of dissolved inorganic carbon and decrease of pH in near surface waters of the Mediterranean Sea during the past two decades

Two three-year-long time series of hourly measurements of the fugacity of CO2 (fCO2) in the upper 10 m of the surface layer of the northwestern Mediterranean Sea have been recorded by CARIOCA sensors almost two decades apart, in 1995–1997 and 2013–2015. By combining them with alkalinity derived from measured temperature and salinity, we calculated changes of pH and dissolved inorganic carbon (DIC). DIC increased in surface seawater by ~ 25 μmol kg−1 and fCO2 by 40 μatm, whereas seawater pH decreased by ~ 0.04 (0.0021 yr−1). The DIC increase is larger than expected from equilibrium with atmospheric CO2. This supports the hypothesis of a ~ 15 % contribution of the Atlantic Ocean as a source of anthropogenic carbon to the Mediterranean Sea through the strait of Gibraltar. We estimate that the part of DIC accumulated over the last 18 years represents ~ 30 % of the total change since the beginning of the industrial period.

Continue reading ‘Increase of dissolved inorganic carbon and decrease of pH in near surface waters of the Mediterranean Sea during the past two decades’

Calcifying response and recovery potential of the brown alga Padina pavonica under ocean acidification

Anthropogenic CO2 emissions are causing ocean acidification (OA), which affects calcifying organisms. Recent studies have shown that Padina pavonica investigated along a natural pCO2 gradient seems to acclimate to OA by reducing calcified structures and changing mineralogy from aragonite to calcium sulphate salts. The aim of the present study was to study the potential for acclimation of P. pavonica to OA along the same gradient and in aquaria under controlled conditions. P. pavonica was cross-transplanted for one week from a normal pH site (median value: pHTS = 8.1; pCO2 = 361 μatm) to a low pH site (median value: pHTS = 7.4; pCO2 = 1025 μatm) and vice versa. Results showed that this calcifying alga did survive under acute environmental pHTS changes but its calcification was significantly reduced. P. pavonica decalcified and changed mineralogy at pHTS = 7.4, but once brought back at pHTS = 8.1 it partially recovered the aragonite loss while preserving the calcium sulphate minerals that formed under low pHTS. These results suggest that P. pavonica could be used as a bio-indicator for monitoring OA, as well as localized anthropogenic acidity fluctuations.

Continue reading ‘Calcifying response and recovery potential of the brown alga Padina pavonica under ocean acidification’

Physiological and biochemical analyses shed light on the response of Sargassum vulgare to ocean acidification at different time scales

Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a “natural laboratory” to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans.

Continue reading ‘Physiological and biochemical analyses shed light on the response of Sargassum vulgare to ocean acidification at different time scales’

Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea

Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was −0.0028 ± 0.0003 units pHT yr−1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr−1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr−1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg−1 yr−1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg−1 yr−1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring–summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land–sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.

Continue reading ‘Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,018,757 hits


Ocean acidification in the IPCC AR5 WG II

OUP book