Posts Tagged 'Mediterranean'

Elevated trace elements in sediments and seagrasses at CO2 seeps

Highlights
• Sandy CO2 seep sediments had higher concentration of trace elements.

• Metals can be more toxic in areas affected by CO2 acidification, with adverse effects on the sediment associated biota.

• Seagrasses element accumulation at CO2 seeps was highest in the roots.

Abstract
Seagrasses often occur around shallow marine CO2 seeps, allowing assessment of trace metal accumulation. Here, we measured Cd, Cu, Hg, Ni, Pb and Zn levels at six CO2 seeps and six reference sites in the Mediterranean. Some seep sediments had elevated metal concentrations; an extreme example was Cd which was 43x more concentrated at a seep than its reference. Three seeps had metal levels that were predicted to adversely affect marine biota, namely Vulcano (for Hg), Ischia (for Cu) and Paleochori (for Cd and Ni). There were higher-than-sediment levels of Zn and Ni in Posidonia oceanica and of Zn in Cymodocea nodosa, particularly in roots. High levels of Cu were found in Ischia seep sediments, yet seagrass was abundant, and the plants contained low levels of Cu. Differences in bioavailability and toxicity of trace elements helps explain why seagrasses can be abundant at some CO2 seeps but not others.

Continue reading ‘Elevated trace elements in sediments and seagrasses at CO2 seeps’

Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals (update)

Here we present a comprehensive attempt to correlate aragonitic Na∕Ca ratios from Desmophyllum pertusum (formerly known as Lophelia pertusa), Madrepora oculata and a caryophylliid cold-water coral (CWC) species with different seawater parameters such as temperature, salinity and pH. Living CWC specimens were collected from 16 different locations and analyzed for their Na∕Ca ratios using solution-based inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements.

The results reveal no apparent correlation with salinity (30.1–40.57 g kg−1) but a significant inverse correlation with temperature (0.31±0.04mmolmol1C1). Other marine aragonitic organisms such as Mytilus edulis (inner aragonitic shell portion) and Porites sp. exhibit similar results highlighting the consistency of the calculated CWC regressions. Corresponding Na∕Mg ratios show a similar temperature sensitivity to Na∕Ca ratios, but the combination of two ratios appears to reduce the impact of vital effects and domain-dependent geochemical variation. The high degree of scatter and elemental heterogeneities between the different skeletal features in both Na∕Ca and Na∕Mg, however, limit the use of these ratios as a proxy and/or make a high number of samples necessary. Additionally, we explore two models to explain the observed temperature sensitivity of Na∕Ca ratios for an open and semi-enclosed calcifying space based on temperature-sensitive Na- and Ca-pumping enzymes and transport proteins that change the composition of the calcifying fluid and consequently the skeletal Na∕Ca ratio.

Continue reading ‘Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals (update)’

Influence of water quality parameters on the prevalence of Livoneca redmanii (Isopoda; Cymothoidae) infestation of Mediterranean Sea fishes, Egypt

The quality of water in the aquatic ecosystem is a very sensitive issue and is controlled by many physical and chemical factors. The deterioration of water quality has variable effect on parasitic population and their rate of infestation and consequently the negative impact can impede fish viability and productivity. The current study aimed to: i) Surveying the parasitic isopod infesting some of the edible fish species inhabit the Egyptian Mediterranean Sea water ii) Assess the seasonal variations in water quality parameters of Mediterranean coastal water of Egypt. iii) Investigating the effect of water quality parameters on the rate of parasitic isopod infestation among the examined fishes. Water samples during each season were analyzed for physico-chemical parameters using standard methods. The selected parameters namely: temperature, pH, salinity, oxidizable organic matter (OOM), ammonia, nitrite, nitrate and some heavy metals (Lead, Copper, Arsenic and Mercury). A total of 400 Mediterranean Sea fish of Tilapia zilli, Solea spp, Mugil capito and Sardinella species were examined for isopod parasites. Parasites were preserved and identified. The results revealed isolation of the isopod species Livoneca redmanii, with an infestation rate of 19% among the examined fish species with the highest rate among Mugil capito (36%) and reached its total maximum value during summer (32%). Correlation analysis revealed that infestation rates were highly correlated (positively) with certain water quality parameters, such as temperature, oxidzable organic matter (OOM) and nitrite. High water temperatures during summer and spring seasons, and high nitrite concentrations were significantly associated with high infestation rates in Tilapia zilli (R2=0.91, P=0.046 and R2 = 0.97, P=0.015). The findings suggested that deterioration of water quality with varying seasons was stressful to fish, and consequently increased the incidences of the parasitic Isopod (Livoneca redmanii) so considered as a predisposing agent to parasitism. The study recommended
periodical monitoring of water quality parameters in fish water resources and the need to take all measures by the responsible authorities to prevent pollution of these resources to minimized and control the prevalence of parasite
infestations particularly of isopods.

Continue reading ‘Influence of water quality parameters on the prevalence of Livoneca redmanii (Isopoda; Cymothoidae) infestation of Mediterranean Sea fishes, Egypt’

Ocean acidification impact on ascidian Ciona robusta spermatozoa: new evidence for stress resilience

Highlights

• Impact of ocean acidification on sperm quality of the ascidian Ciona robusta was investigated.

• Two experimental approaches were set up to simulate the ocean conditions predicted for the end of this century.

• Alteration of sperm motility, morphology and physiology was detected in short-term exposure.

• A rapid recovery of physiological conditions was observed within one week.

• New evidence of resilience in ascidian C. robusta spermatozoa in response to ocean acidification.

Abstract

Rising atmospheric CO2 is causing a progressive decrease of seawater pH, termed ocean acidification. Predicting its impact on marine invertebrate reproduction is essential to anticipate the consequences of future climate change on species fitness and survival. Ocean acidification may affect reproductive success either in terms of gamete or progeny quality threating species survival. Despite an increasing number of studies focusing on the effects of ocean acidification on the early life history of marine organisms, very few have investigated the effects on invertebrate gamete quality. In this study, we set up two experimental approaches simulating the ocean conditions predicted for the end of this century, in situ transplant experiments at a naturally acidified volcanic vent area along the Ischia island coast and microcosm experiments, to evaluate the short-term effects of the predicted near-future levels of ocean acidification on sperm quality of the ascidian Ciona robusta after parental exposure. In the first days of exposure to acidified conditions, we detected alteration of sperm motility, morphology and physiology, followed by a rapid recovery of physiological conditions that provide a new evidence of resilience of ascidian spermatozoa in response to ocean acidification. Overall, the short-term tolerance to adverse conditions opens a new scenario on the marine species capacity to continue to reproduce and persist in changing oceans.

Continue reading ‘Ocean acidification impact on ascidian Ciona robusta spermatozoa: new evidence for stress resilience’

Simulating and quantifying multiple natural subsea CO2 seeps at Panarea Island (Aeolian Islands, Italy) as a proxy for potential leakage from subseabed carbon storage sites

Carbon dioxide (CO2) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO2 release sites serve as natural laboratories to study subsea CO2 leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO2, and carbonate chemistry. The focus is on a medium-sized CO2 release from 294 identified small point sources around Panarea Island (South-East Tyrrhenian Sea, Aeolian Islands, Italy) in water depths of about 40–50 m. This study evaluates how multiple CO2 seep sites generate a temporally variable plume of dissolved CO2. The model also allows the overall flow rate of CO2 to be estimated based on field measurements of pH. Simulations indicate a release of ∼6900 t y–1 of CO2 for the investigated area and highlight an important role of seeps located at >20 m water depth in the carbon budget of the Panarea offshore gas release system. This new transport-reaction model provides a framework for understanding potential future leaks from CO2 storage sites.

Continue reading ‘Simulating and quantifying multiple natural subsea CO2 seeps at Panarea Island (Aeolian Islands, Italy) as a proxy for potential leakage from subseabed carbon storage sites’

Abiotic parameters in Tunis Southern Lagoon after an environmental restoration and status of macrobenthic biocenosis (northern Tunisia, central Mediterranean Sea)

Tunis Southern Lagoon was previously polluted by anthropogenic activities which needed a thorough environmental restoration, achieved during September 2001. The aim of the work is to reveal the positive changes of the abiotic parameters and their role on the biodiversity of the lagoon. Ecological measures carried out during a 24-months period (from October 2014 to September 2016) at 3 fixed stations, showed an improvement in water quality, confirming the positive impact of the restoration project. An overview of the macrobenthic biocenosis evolution is also discussed in the present work.

Continue reading ‘Abiotic parameters in Tunis Southern Lagoon after an environmental restoration and status of macrobenthic biocenosis (northern Tunisia, central Mediterranean Sea)’

Ocean acidification alters meiobenthic assemblage composition and organic matter degradation rates in seagrass sediments

Seagrass meadows are an important organic matter (OM) reservoir but, are currently being lost due to global and regional stressors. Yet, there is limited research investigating the cumulative impacts of anthropogenic stressors on the structure and functioning of seagrass benthic assemblages, key drivers of OM mineralization and burial. Here, using a 16‐month field experiment, we assessed how meiobenthic assemblages and extracellular enzymatic activities (as a proxy of OM degradation) in Posidonia oceanica sediments responded to ocean acidification (OA) and nutrient loadings, at CO2 vents. P. oceanica meadows were exposed to three nutrient levels (control, moderate, and high) at both ambient and low pH sites. OA altered meiobenthic assemblage structure, resulting in increased abundance of annelids and crustaceans, along with a decline in foraminifera. In addition, low pH enhanced OM degradation rates in seagrass sediments by enhancing extracellular enzymatic activities, potentially decreasing the sediment carbon storage capacity of seagrasses. Nutrient enrichment had no effect on the response variables analyzed, suggesting that, under nutrient concentration unlikely to cause N or P imitation, a moderate increase of dissolved nutrients in the water column had limited influence on meiobenthic assemblages. These findings show that OA can significantly alter meiobenthic assemblage structure and enhance OM degradation rates in seagrass sediments. As meiofauna are ubiquitous key actors in the functioning of benthic ecosystems, we postulated that OA, altering the structure of meiobenthic assemblages and OM degradation, could affect organic carbon sequestration over large spatial scales.

Continue reading ‘Ocean acidification alters meiobenthic assemblage composition and organic matter degradation rates in seagrass sediments’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,290,929 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book