Posts Tagged 'Mediterranean'

Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem

Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO2 vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidification reduced seagrass detritivore richness and diversity through the loss of less abundant, pH-sensitive species but increased the abundance of the dominant detritivore (amphipod Gammarella fucicola). Such compensatory shifts in species abundance caused more than a three-fold increase in the total detritivore abundance in lower pH zones. These community changes were associated with increased consumption (52-112%) and decay of seagrass detritus (up to 67% faster decomposition rate for the slow-decaying, refractory detrital pool) under acidification. Seagrass detritus deployed in acidified zones showed increased N content and decreased C:N ratio, indicating that altered microbial activities under OA may have affected the decay process. The findings suggest that OA could restructure consumer assemblages and modify plant decomposition in blue carbon ecosystems, which may have important implications for carbon sequestration, nutrient recycling, and trophic transfer. Our study highlights the importance of within-community response variability and compensatory processes in modulating ecosystem functions under extreme global change scenarios.

Continue reading ‘Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem’

End-Triassic Extinction in a carbonate platform from western tethys: a comparison between extinction trends and geochemical variations

The Triassic/Jurassic boundary section cropping out at Mt Sparagio in north-western Sicily (Italy) consists of a thick and continuous peritidal succession typical of a Tethyan carbonate platform. The combined chemostratigraphic and biostratigraphic study of this section allowed us to parallel the environmental variations inferred by the isotopic records and the extinction trends recorded by the benthic organisms. In the studied section, the isotope data of C, O, and S are indicative of serious environmental perturbations related to the Central Atlantic Magmatic Province (CAMP) activity, as recorded worldwide. Two negative excursions in the C-curve (Initial-CIE and Main-CIE) confirm the acidification processes that affected the benthic community. Moreover, the oxygen isotopes curve indicates a strong warming-trend that corresponds to the reduction in biodiversity and size of the megalodontoids in the upper part of the Rhaetian beds, probably due to the deterioration of the photosymbiotic relationships of these pelecypods. We here present some novel isotope data (Zn, Pb, Sr) from the Mt Sparagio section that offer additional clues on a tight control of CAMP volcanism on the End-Triassic Extinction.

Continue reading ‘End-Triassic Extinction in a carbonate platform from western tethys: a comparison between extinction trends and geochemical variations’

Potential resilience to ocean acidification of benthic foraminifers living in Posidonia oceanica meadows: the case of the shallow venting site of Panarea

This research shows the results regarding the response to acidic condition of the sediment and Posidonia foraminiferal assemblages collected around the Panarea Island. The Aeolian Archipelago represents a natural laboratory and a much-promising study site for multidisciplinary marine research (carbon capture and storage, geochemistry of hydrothermal fluids and ocean acidification vs. benthic and pelagic organisms). The variability and the complexity of the interaction of the ecological factors characterizing extreme environments such as shallow hydrothermal vents did not allow us to carry out a real pattern of biota responses in situ, differently from those observed under controlled laboratory conditions. However, the study provides new insights into foraminiferal response to increasing ocean acidification (OA) in terms of biodiversity, faunal density, specific composition of the assemblages and morphological variations of the shells. The study highlights how the foraminiferal response to different pH conditions can change depending on different environmental conditions and microhabitats (sediments, Posidonia leaves and rhizomes). Indeed, mineral sediments were more impacted by acidification, whereas Posidonia microhabitats, thanks to their buffer effect, can offer “refugia” and more mitigated acidic environment. At species level, rosalinids and agglutinated group represent the most abundant taxa showing the most specific resilience and capability to face acidic conditions.

Continue reading ‘Potential resilience to ocean acidification of benthic foraminifers living in Posidonia oceanica meadows: the case of the shallow venting site of Panarea’

The role of epiphytes in seagrass productivity under ocean acidification

Ocean Acidification (OA), due to rising atmospheric CO2, can affect the seagrass holobiont by changing the plant’s ecophysiology and the composition and functioning of its epiphytic community. However, our knowledge of the role of epiphytes in the productivity of the seagrass holobiont in response to environmental changes is still very limited. CO2 vents off Ischia Island (Italy) naturally reduce seawater pH, allowing to investigate the adaptation of the seagrass Posidonia oceanica L. (Delile) to OA. Here, we analyzed the percent cover of different epiphytic groups and the epiphytic biomass of P. oceanica leaves, collected inside (pH 6.9–7.9) and outside (pH 8.1–8.2) the CO2 vents. We estimated the contribution of epiphytes to net primary production (NPP) and respiration (R) of leaf sections collected from the vent and ambient pH sites in laboratory incubations. Additionally, we quantified net community production (NCP) and community respiration (CR) of seagrass communities in situ at vent and ambient pH sites using benthic chambers. Leaves at ambient pH sites had a 25% higher total epiphytic cover with encrusting red algae (32%) dominating the community, while leaves at vent pH sites were dominated by hydrozoans (21%). Leaf sections with and without epiphytes from the vent pH site produced and respired significantly more oxygen than leaf sections from the ambient pH site, showing an average increase of 47 ± 21% (mean ± SE) in NPP and 50 ± 4% in R, respectively. Epiphytes contributed little to the increase in R; however, their contribution to NPP was important (56 ± 6% of the total flux). The increase in productivity of seagrass leaves adapted to OA was only marginally reflected by the results from the in situ benthic chambers, underlining the complexity of the seagrass community response to naturally occurring OA conditions.

Continue reading ‘The role of epiphytes in seagrass productivity under ocean acidification’

Schizosphaerella size and abundance variations across the Toarcian Oceanic Anoxic Event in the Sogno Core (Lombardy Basin, Southern Alps)


  • Schizospharella spp. size and abundance variations during the Jenkyns event.
  • Abundance drop caused by the failure of S. punctulata > 7 μm.
  • Size decrease due to the relative increase in abundance of small specimens.
  • Drop in abundance and size consequence of ocean acidification and global warming.
  • Presence of diagenetic crust diagnostic to distinguish S. punctulata from S. astraea


Abundance and size variations of nannofossil Schizosphaerella punctulata were quantified in the uppermost Pliensbachian–Lower Toarcian succession recovered with the Sogno Core (Lombardy Basin, Northern Italy). High-resolution nannofossil biostratigraphy and C-isotopic chemostratigraphy identified the Jenkyns Event within the Toarcian oceanic anoxic event (T-OAE) interval. Absolute abundances and morphometric changes of “small S. punctulata” (< 7 μm), S. punctulata (7–10 μm; 10–14 μm; > 14 μm) and “encrusted S. punctulata” (specimens with a fringing crust) show large fluctuations across the negative δ13C Jenkyns Event. The Schizosphaerella crisis is further characterized by a decrease in average valve size in the early–middle Jenkyns Event. The abundance fall was caused by the failure of S. punctulata specimens >7 μm and “encrusted S. punctulata” that along with the increased relative abundance of small specimens, produced the reduction of average dimensions also documented in the Lusitanian and Paris Basins, although with a diachronous inception. The average valve size from the Lombardy Basin is ~2 μm smaller than in these other basins. Hyperthermal conditions associated with excess CO2 and ocean acidification possibly forced the drastic reduction of S. punctulata abundance/size. In the pelagic succession of the Sogno Core there is a strong positive correlation between the S. punctulata (> 7 μm) absolute abundance/size and the CaCO3 content, with a negligible contribution by small specimens (< 7 μm). Encrusted specimens testify selective neomorphic processes: the diagenetic crust seems diagnostic to separate S. punctulata from S. astraea.

Continue reading ‘Schizosphaerella size and abundance variations across the Toarcian Oceanic Anoxic Event in the Sogno Core (Lombardy Basin, Southern Alps)’

Editorial: acidification and hypoxia in marginal seas

Editorial on the Research Topic
Acidification and Hypoxia in Marginal Seas

Ocean acidification and hypoxia (dissolved oxygen <2 mg L−1 or <62 μmol L−1) are universal environmental concerns that can impact ecological and biogeochemical processes, including element cycling, carbon sequestration, community shifts, contributing to biodiversity reduction, and reducing marine ecosystem services (Riebesell et al., 2000Feely et al., 20042009Andersson et al., 2005Doney, 2006Cohen and Holcomb, 2009Doney et al., 20092020Kleypas and Yates, 2009Ekstrom et al., 2015Gattuso et al., 2015). While the stressors are global in their occurrence, local and regional impacts might be enhanced and even more accelerated, thus requiring even greater and faster consideration (Doney et al., 2020).

The driving mechanisms of acidification and hypoxia are inextricably linked in near-shore and coastal habitats. Along coastal shelf and its adjacent marginal seas, where the natural variability of multiple stressors is high, human-induced eutrophication is additionally enhancing both local acidification and hypoxia. For example, the well-known eutrophication of surface waters in the northern Gulf of Mexico caused hypoxic conditions that result in a pH decrease by 0.34 in the oxygen-depleted bottom water, which is significantly more than the pH decrease via atmospheric CO2 sequestration alone (pH decrease by 0.11; Cai et al., 2011). Similar changes in coastal conditions involving biological respiration and atmospheric CO2 invasion have also been observed in other marginal seas, urbanized estuaries, salt marshes and mangroves (Feely et al., 200820102018Cai et al., 2011Howarth et al., 2011). Other natural and anthropogenic processes, such as increased wind intensity and coastal upwelling, enhanced stratification due to global warming, along with more intense benthic respiration, more frequent extreme events, oscillation of water circulations, and variations in the terrestrial carbon and/or alkalinity fluxes, etc., all influence the onset and maintenance of acidification and/or hypoxia. For example, coastal upwelling brings both low pH and hypoxic water from below and enhances acidification and hypoxia in the coastal regions (Feely et al., 2008). Although acidification and hypoxia in the open oceans have received considerable attention already, the advances in our understanding of the driving mechanisms and the temporal evolution under global climate change is still poorly understood, particularly with respect to the region-specific differences, various scales of temporal and spatial variability, predictability patterns, and interactive multiple stressor impacts. Therefore, coastal ecosystems have a much broader range of rates of change in pH than the open ocean does (Carstensen and Duarte, 2019). The importance of understanding acidification and hypoxia for the biogeochemical and ecosystem implications in marginal seas is essential for climate change mitigation and adaptation strategy implementations in the future.

The scope of this Research Topic is to cover the most recent advances related to the status of acidification and hypoxia in marginal seas, the coupling mechanisms of multi-drivers and human impacts, ecosystem responses, prediction of their evolution over space and time, and under future climate change scenarios. The authors of this Research Topic contributed a total of 35 papers covering a wide variety of subjects spanning from acidification and/or hypoxia (OAH) status, the carbonate chemistry baseline and trends, the impacts of OAH on the habitat suitability and ecosystem implications, and the long-term changes and variability of OAH in marginal seas.

Continue reading ‘Editorial: acidification and hypoxia in marginal seas’

Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors

End-of-the-century predictions on carbon dioxide (CO2) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species’ early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced. Here we compared the transgenerational responses to a multiple stressor scenario in sea urchins (Paracentrotus lividus) that experienced different environments since their settlement: i.e., animals from a highly variable environment, such as the Venice lagoon, versus animals from a coastal area with prevailing oligotrophic conditions in the Northern Adriatic Sea. After long-term maintenance (2 and 6 months) of adult sea urchins at natural and −0.4 units reduced pH, the F1 generations were obtained. Embryos were reared under four experimental conditions: natural and −0.4 pH both in the absence and in the presence of an emerging contaminants’ mixture (glyphosate and aminomethylphosphonic acid at environmentally relevant concentrations, 100 μg/L). A significant detrimental effect of both the parental and the filial pH was highlighted, affecting embryo development and growth. Nonetheless, sea urchins from both sites were able to cope with ocean acidification. The 6-months F1 response was better than that of the 2-months F1. Conversely, the F1 response of the sea urchins maintained at natural conditions did not change sensibly after more prolonged parental exposure. An additive but mild negative effect of the mixture was observed, mostly in lagoon offspring. Results suggest that long-term exposure to reduced pH leads to transgenerational acclimation but does not affect susceptibility to the tested pollutants.

Continue reading ‘Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors’

Structural and functional analyses of motile fauna associated with Cystoseira brachycarpa along a gradient of ocean acidification in a CO2-vent system off Panarea (Aeolian Islands, Italy)

Ocean acidification (OA), one of the main climate-change-related stressors linked to increasing CO2 concentration in the atmosphere, is considered an important threat to marine biodiversity and habitats. Studies on CO2-vents systems, naturally acidified environments that mimic future ocean scenarios, help to explore the sensitivity of species and to understand how benthic communities rearrange their structure and functioning under the pressure of OA. We addressed this problem by studying the benthic invertebrates associated with a habitat-forming brown alga (Cystoseira brachycarpa) in the Bottaro crater vents system off Panarea island (Tyrrhenian Sea, Italy), by sampling along an OA gradient from the proximity of the main venting area (station B3, pH 7.9) to a control zone (B1 station, pH 8.1). Samples were collected in September 2016 and 2018. A total of 184 taxa and 23 different functional traits have been identified, considering feeding habit, motility, size, reproductive and developmental biology, and occurrence of calcareous structures. Invertebrates are distributed according to the distance from the high venting zone and low pH levels and results very consistent between the two investigated years. In the low-pH area (B3), 43% of the species are selected. The functional traits of the fauna mirror this zonation pattern, mainly changing the relative proportion of the number of individuals of the various functional guilds along the OA gradient. Invertebrates inhabiting the low-pH zone are mainly composed of weakly or non-calcified species, with small size, burrower/tubicolous habit, omnivorous or suspension feeders, and with direct development and brooding habit. In the other stations, heavily calcified forms, herbivore and herbivore/detritivore, and with medium (1–5 cm) and large (>5 cm) sizes prevail, showing indirect benthic and planktic development. The taxonomic analysis, coupled with functional aspects, increases our prediction of which traits could be potentially more advantageous for species to adapt to the hypothesized scenarios of OA, and identify present and future winner and/or loser organisms in the future ocean of the Anthropocene.

Continue reading ‘Structural and functional analyses of motile fauna associated with Cystoseira brachycarpa along a gradient of ocean acidification in a CO2-vent system off Panarea (Aeolian Islands, Italy)’

Ecological and biotechnological relevance of Mediterranean hydrothermal vent systems

Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.

Continue reading ‘Ecological and biotechnological relevance of Mediterranean hydrothermal vent systems’

Effects of local acidification on benthic communities at shallow hydrothermal vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea)

Simple Summary

Ocean acidification is causing major changes in marine ecosystems, with varying levels of impact depending on the region and habitat investigated. Here, we report noticeable changes in both meio- and macrobenthic assemblages at shallow hydrothermal vents located in the Mediterranean Sea. In general, the areas impacted by the vent fluids showed decrease in the abundance of several taxa and a shift in community composition, but with a clear biomass reduction evident only for macrofauna. CO2 emissions at shallow hydrothermal vents cause a progressive simplification of community structure and a general biodiversity decline due to the loss of the most sensitive meio- and macrofaunal taxa, which were replaced by the more tolerant groups, such as oligochaetes, or highly mobile species, able to escape from extreme conditions. Our results provide new insight on the tolerance of marine meio- and macrofaunal taxa to the extreme conditions generated by hydrothermal vent emissions in shallow-water ecosystems.


The Aeolian Islands (Mediterranean Sea) host a unique hydrothermal system called the “Smoking Land” due to the presence of over 200 volcanic CO2-vents, resulting in water acidification phenomena and the creation of an acidified benthic environment. Here, we report the results of a study conducted at three sites located at ca. 16, 40, and 80 m of depth, and characterized by CO2 emissions to assess the effects of acidification on meio- and macrobenthic assemblages. Acidification caused significant changes in both meio- and macrofaunal assemblages, with a clear decrease in terms of abundance and a shift in community composition. A noticeable reduction in biomass was observed only for macrofauna. The most sensitive meiofaunal taxa were kinorhynchs and turbellarians that disappeared at the CO2 sites, while the abundance of halacarids and ostracods increased, possibly as a result of the larger food availability and the lower predatory pressures by the sensitive meiofaunal and macrofaunal taxa. Sediment acidification also causes the disappearance of more sensitive macrofaunal taxa, such as gastropods, and the increase in tolerant taxa such as oligochaetes. We conclude that the effects of shallow CO2-vents result in the progressive simplification of community structure and biodiversity loss due to the disappearance of the most sensitive meio- and macrofaunal taxa.

Continue reading ‘Effects of local acidification on benthic communities at shallow hydrothermal vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea)’

Microbial biofilms along a geochemical gradient at the shallow-water hydrothermal system of Vulcano Island, Mediterranean Sea

Shallow water hydrothermal vents represent highly dynamic environments where strong geochemical gradients can shape microbial communities. Recently, these systems are being widely used for investigating the effects of ocean acidification on biota as vent emissions can release high CO2 concentrations causing local pH reduction. However, other gas species, as well as trace elements and metals, are often released in association with CO2 and can potentially act as confounding factors. In this study, we evaluated the composition, diversity and inferred functional profiles of microbial biofilms in Levante Bay (Vulcano Island, Italy, Mediterranean Sea), a well-studied shallow-water hydrothermal vent system. We analyzed 16S rRNA transcripts from biofilms exposed to different intensity of hydrothermal activity, following a redox and pH gradient across the bay. We found that elevated CO2 concentrations causing low pH can affect the response of bacterial groups and taxa by either increasing or decreasing their relative abundance. H2S proved to be a highly selective factor shaping the composition and affecting the diversity of the community by selecting for sulfide-dependent, chemolithoautotrophic bacteria. The analysis of the 16S rRNA transcripts, along with the inferred functional profile of the communities, revealed a strong influence of H2S in the southern portion of the study area, and temporal succession affected the inferred abundance of genes for key metabolic pathways. Our results revealed that the composition of the microbial assemblages vary at very small spatial scales, mirroring the highly variable geochemical signature of vent emissions and cautioning for the use of these environments as models to investigate the effects of ocean acidification on microbial diversity.

Continue reading ‘Microbial biofilms along a geochemical gradient at the shallow-water hydrothermal system of Vulcano Island, Mediterranean Sea’

Ocean acidification affects volatile infochemicals production and perception in fauna and flora associated with Posidonia oceanica (L.) delile

Communication among marine organisms are generally based on production, transmission, and interpretation of chemical cues. Volatile organic compounds (VOCs) can act as infochemicals, and ocean acidification can alter their production in the source organisms as well as the interpretation of the information they drive to target organisms. Two diatoms (Cocconeis scutellum var. parva and Diploneis sp.) and a macroalga (Ulva prolifera), all common epiphytes of Posidonia oceanica leaves, were isolated and cultured at two pH conditions (8.2 and 7.7). Their biomass was collected, and the VOCs produced upon wounding were extracted and analyzed using gas chromatography. Chemotactic reactions of invertebrates triggered by VOCs were tested using a static choice experimental arena and a flow-through flume system. Odor choice experiments were performed on several invertebrates associated with P. oceanica meadows to investigate the modification of behavioral responses due to the growth of algae in acidified environments. Complex patterns of behavioral responses were recorded after exposure to algal VOCs. This study demonstrated that a) ocean acidification alters the bouquet of VOCs released by diatoms and macroalgae and b) these compounds act as infochemicals and trigger peculiar behavioral responses in benthic invertebrates. In addition, behavioral responses are species-specific, dose-dependent, and are modified by environmental constraints. In fact, the static diffusion in choice arenas produced different responses as compared to flow-through flume systems. In conclusion, we demonstrate that in future marine environments higher CO2 concentrations (leading to a pH 7.7 by the end of this century) will modify the production of VOCs by micro- and macroalgae as well as the recognition of these infochemicals by marine invertebrates.

Continue reading ‘Ocean acidification affects volatile infochemicals production and perception in fauna and flora associated with Posidonia oceanica (L.) delile’

Ocean acidification, but not environmental contaminants, affects fertilization success and sperm motility in the sea urchin Paracentrotus lividus

Ocean acidification poses an increasing concern for broadcast spawning species that release gametes in the water column where fertilization occurs. Indeed, the functionality of gametes and their interactions may be negatively affected by reduced pH. Susceptibility to other environmental stressors, such as pollutants, may be also altered under acidified conditions, resulting in more detrimental effects. To verify this hypothesis, combined exposures to CO2-driven acidification and environmentally relevant concentrations (0.5 µg/L) of three contaminants (caffeine, diclofenac, and PFOS, all singularly or in mixture) were carried out to highlight potential negative effects on fertilization success and motility of sperm in the sea urchin Paracentrotus lividus. Our results showed a significant reduction in the percentage of fertilized eggs when sperm were pre-exposed to reduced pH (ambient pH minus 0.4 units) compared to that of controls (ambient, pH = 8.1). Sperm speed and motility also decreased when sperm were activated and then exposed at reduced pH. Conversely, at both pH values tested, no significant effect due to the contaminants, nor of their interaction with pH, was found on any of the biological endpoints considered.

Continue reading ‘Ocean acidification, but not environmental contaminants, affects fertilization success and sperm motility in the sea urchin Paracentrotus lividus’

Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

Minimizing the impact of ocean acidification requires an understanding of species responses and environmental variability of population habitats. Whereas the literature is growing rapidly, emerging results suggest unresolved species- or population-specific responses. Here we present a meta-analysis synthesizing experimental studies examining the effects of pCO2 on biological traits in marine invertebrates. At the sampling locations of experimental animals, we determined environmental pCO2 conditions by integrating data from global databases and pCO2 measurements from buoys. Experimental pCO2 scenarios were compared with upper pCO2 using an index considering the upper environmental pCO2. For most taxa, a statistically significant negative linear relationship was observed between this index and mean biological responses, indicating that the impact of a given experimental pCO2 scenario depends on the deviation from the upper pCO2 level experienced by local populations. Our results highlight the importance of local biological adaptation and the need to consider present pCO2 natural variability while interpreting experimental results.

Continue reading ‘Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates’

Shallow sea gas manifestations in the Aegean Sea (Greece) as natural analogs to study ocean acidification: first catalog and geochemical characterization

The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, while subaerial emissions are widely studied, submarine outgassing is not yet well understood. In this study, we review and catalog 122 literature and unpublished data of submarine emissions distributed in ten coastal areas of the Aegean Sea. This catalog includes descriptions of the degassing vents through in situ observations, their chemical and isotopic compositions, and flux estimations. Temperatures and pH data of surface seawaters in four areas affected by submarine degassing are also presented. This overview provides useful information to researchers studying the impact of enhanced seawater CO2 concentrations related either to increasing CO2 levels in the atmosphere or leaking carbon capture and storage systems.

Continue reading ‘Shallow sea gas manifestations in the Aegean Sea (Greece) as natural analogs to study ocean acidification: first catalog and geochemical characterization’

Modeling carbon budgets and acidification in the Mediterranean Sea ecosystem under contemporary and future climate

We simulate and analyze the effects of a high CO2 emission scenario on the Mediterranean Sea biogeochemical state at the end of the XXI century, with a focus on carbon cycling, budgets and fluxes, within and between the Mediterranean sub-basins, and on ocean acidification. As a result of the overall warming of surface water and exchanges at the boundaries, the model results project an increment in both the plankton primary production and the system total respiration. However, productivity increases less than respiration, so these changes yield to a decreament in the concentrations of total living carbon, chlorophyll, particulate organic carbon and oxygen in the epipelagic layer, and to an increment in the DIC pool all over the basin. In terms of mass budgets, the large increment in the dissolution of atmospheric CO2 results in an increment of most carbon fluxes, including the horizontal exchanges between eastern and western sub-basins, in a reduction of the organic carbon component, and in an increament of the inorganic one. The eastern sub-basin accumulates more than 85% of the absorbed atmospheric CO2. A clear ocean acidification signal is observed all over the basin, quantitatively similar to those projected in most oceans, and well detectable also down to the mesopelagic and bathypelagic layers.

Continue reading ‘Modeling carbon budgets and acidification in the Mediterranean Sea ecosystem under contemporary and future climate’

Acidity, electric conductivity, dissolved oxygen total dissolved solid and salinity profiles of marine water in Gaza: influence of wastewater discharge

Effects of wastewater discharge on the coastal area in Gaza strip Palestine are not fully investigated. This study investigated the effect wastewater discharge of the physical and chemical properties of marine water in the coastal area over a period of 2 year. Sea water and sediment samples were collected from about 20 different sites. The water and the sediments were collected wastewater/sea water mixing zone at depth 0, 2.5 and 5 m water column depth at a direct wastewater discharging pipe line from different location and similarly from other locations. Water temperature T, electric conductivity (EC), dissolved oxygen (DO), pH, total dissolved solid (TDS) and salinity were determined for water samples using field equipment such as pH-meter, DO meter, TDS-/ and EC-meter. On the other hand, NO3, SO42-, PO43- were determined in the laboratory using chemical methods, details are described in materials and method section. Results showed average and standard deviation of T, EC, DO, pH, TDS and salinity were 22.02°C ± 4.1°C, EC: 58.41 ± 4.8 ms/cm; DO: 6.96 ± 1.8 mg/L; pH: 7.69 ± 0.37; TDS: 30.51 ± 3.29 and salinity 4.39 ± 0.12 (%); whereas, average and standard deviation of NO3: were 299.8 ± 204.1 mg/L; SO42-, 5736.9 ± 817.1; and PO43-: 164.35 ± 120.7 mg/L. The measured values indicate significant differences due to high value of standard deviation of some measured parameters. This indicates the influence of wastewater discharge in sea water as shown inside the manuscript in the appropriate section. The study recommends efficient treatment of wastewater and reuses it for agricultural purposes instead of discharging it in sea.

Continue reading ‘Acidity, electric conductivity, dissolved oxygen total dissolved solid and salinity profiles of marine water in Gaza: influence of wastewater discharge’

Effects of ocean acidification on resident and active microbial communities of Stylophora pistillata

Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.

Continue reading ‘Effects of ocean acidification on resident and active microbial communities of Stylophora pistillata’

Acidification, deoxygenation, nutrient and biomasses decline in a warming Mediterranean Sea

The projected warming, nutrient decline, changes in net primary production, deoxygenation and acidification of the global ocean will dramatically affect marine ecosystems during the 21st century. Here we assess the climate change-related impacts in the marine ecosystems of the Mediterranean Sea in the middle and at the end of the 21st century using high-resolution projections of the physical and biogeochemical state of the basin under the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The analysis shows significant changes in the dissolved nutrient content of the euphotic and intermediate layers of the basin, net primary production, phytoplankton respiration and carbon stock (including phytoplankton, zooplankton, bacterial biomass and particulate organic matter). The projections also show a uniform surface and subsurface reduction in the oxygen concentration driven by the warming of the water column and by the increase in respiration. Moreover, we observe an acidification in the upper water column, linked to the increase in the dissolved inorganic carbon content of the water column due to CO2 absorption from the atmosphere and the increase in respiration. The projected changes are stronger in the eastern Mediterranean due to the limited influence, in that part of the basin, of the exchanges in the Strait of Gibraltar.

Continue reading ‘Acidification, deoxygenation, nutrient and biomasses decline in a warming Mediterranean Sea’

Marine macrophytes as carbon sinks: comparison between seagrasses and the non-native alga Halimeda incrassata in the Western Mediterranean (Mallorca)

Seagrass species play a critical role in the mitigation of climate change by acting as valuable carbon sinks and storage sites. Another important ecosystem service of this coastal vegetation is nutrient removal. However, coastal ecosystems are under increasing pressure of global warming and associated establishment of invasive species. To elucidate the respective contributions of seagrass species Posidonia oceanica and Cymodocea nodosa and the non-native macroalga Halimeda incrassata as primary producers and nutrient sinks in coastal habitats we conducted in-situ incubations in the North-western Mediterranean Sea. Measured metabolic activity and nutrient removal as well as calcification rates in these habitats over a 24 h period in spring and summer confirmed that the endemic seagrass P. oceanica represents a valuable ecosystem with high O2 production and considerable carbon capture. The documented regression of P. oceanica meadows with higher temperatures and decline in autotrophy as measured here causes concern for the continuity of ecosystem services rendered by this habitat throughout the Mediterranean Sea with progressing climate warming. In contrast, the enhanced performance of C. nodosa and the calcifying alga H. incrassata with increasing temperatures, under expected rates of future warming is uncertain to mitigate loss of productivity in case of a potential shift in marine vegetation. This could ultimately lead to a decline in ecosystem services, decreased carbon storage and mitigation of climate change. Furthermore, this study provides a first estimate for the growth rate of H. incrassata in the Mediterranean Sea, supporting evidence for the mechanism of its rapid extension.

Continue reading ‘Marine macrophytes as carbon sinks: comparison between seagrasses and the non-native alga Halimeda incrassata in the Western Mediterranean (Mallorca)’

  • Reset


OA-ICC Highlights

%d bloggers like this: