Posts Tagged 'Mediterranean'

Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach

Lithogenic elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (232Th and 230Th, given as Th) and protactinium (Pa) are often assumed to be insoluble. In this study, their dissolution from Saharan dust reaching Mediterranean seawater was studied through tank experiments over 3 to 4 d under controlled conditions including controls without dust addition as well as dust seeding under present and future climate conditions (+3 C and −0.3 pH). Unfiltered surface seawater from three oligotrophic regions (Tyrrhenian Sea, Ionian Sea and Algerian Basin) were used. The maximum dissolution was low for all seeding experiments: less than 0.3 % for Fe, 1 % for 232Th and Al, about 2 %–5 % for REEs and less than 6 % for Pa. Different behaviors were observed: dissolved Al increased until the end of the experiments, Fe did not dissolve significantly, and Th and light REEs were scavenged back on particles after a fast initial release. The constant 230Th/232Th ratio during the scavenging phase suggests that there is little or no further dissolution after the initial Th release. Quite unexpectedly, comparison of present and future conditions indicates that changes in temperature and/or pH influence the release of Th and REEs in seawater, leading to lower Th release and a higher light REE release under increased greenhouse conditions.

Continue reading ‘Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach’

Morphological properties of gastropod shells in a warmer and more acidic future ocean using 3D micro-computed tomography

The increased absorption of atmospheric CO2 by the ocean reduces pH and affects the carbonate chemistry of seawater, thus interfering with the shell formation processes of marine calcifiers. The present study aims to examine the effects of ocean acidification and warming on the shell morphological properties of two intertidal gastropod species, Nassarius nitidus and Columbella rustica. The experimental treatments lasted for 3 months and combined a temperature increase of 3°C and a pH reduction of 0.3 units. The selected treatments reflected the high emissions (RCP 8.5) “business as usual” scenario of the Intergovernmental Panel on Climate Change models for eastern Mediterranean. The morphological and architectural properties of the shell, such as density, thickness and porosity were examined using 3D micro-computed tomography, which is a technique giving the advantage of calculating values for the total shell (not only at specific points) and at the same time leaving the shells intact. Nassarius nitidus had a lower shell density and thickness and a higher porosity when the pH was reduced at ambient temperature, but the combination of reduced pH and increased temperature did not have a noticeable effect in comparison to the control. The shell of Columbella rustica was less dense, thinner and more porous under acidic and warm conditions, but when the temperature was increased under ambient pH the shells were thicker and denser than the control. Under low pH and ambient temperature, shells showed no differences compared to the control. The vulnerability of calcareous shells to ocean acidification and warming appears to be variable among species. Plasticity of shell building organisms as an acclimation action toward a continuously changing marine environment needs to be further investigated focusing on species or shell region specific adaptation mechanisms.

Continue reading ‘Morphological properties of gastropod shells in a warmer and more acidic future ocean using 3D micro-computed tomography’

Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy)

Effects of ocean acidification (OA) on the plant phenology and colonization/settlement pattern of the hydrozoan epibiont community of the leaves of the seagrass Posidonia oceanica have been studied at volcanic CO2 vents off Ischia (Italy). The study was conducted in shallow Posidonia stands (2.5–3.5 m depth), in three stations on the north and three on the south sides of the vent’s area (Castello Aragonese vents), distributed along a pH gradient. At each station, 10–15 P. oceanica shoots were collected every three months for one-year cycle (Sept 2009–2010). The shoot density of Posidonia beds in the most acidified stations along the gradient (pH < 7.4) was significantly higher than that in the control area (pH = 8.10). On the other hand, we recorded lower leaf lengths and widths in the acidified stations in the whole year of observations, compared to those in the control stations. However, the overall leaf surface (Leaf Area Index) available for epiphytes under ocean acidification conditions was higher on the south side and on both the most acidified stations because of the higher shoot density under OA conditions. The hydrozoan epibiont community on the leaf canopy accounted for seven species, three of which were relatively abundant and occurring all year around (Sertularia perpusilla, Plumularia obliqua, Clytia hemisphaerica). All hydroids species showed a clear tolerance to low pH levels, including chitinous and non-calcifying forms, likely favoured also by the absence of competition for substratum with the calcareous forms of epiphytes selected against OA.

Continue reading ‘Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy)’

An intertidal life: combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community


  • Coralline alga create a microhabitat with mitigating effect on ocean acidification
  • Temperature is the major driver of changes in the invertebrate reef community
  • Winter heatwaves and acidified conditions alter invertebrates community structure
  • Algal reef communities become dominated by opportunistic taxa


In coastal marine ecosystems coralline algae often create biogenic reefs. These calcareous algal reefs affect their associated invertebrate communities via diurnal oscillations in photosynthesis, respiration and calcification processes. Little is known about how these biogenic reefs function and how they will be affected by climate change. We investigated the winter response of a Mediterranean intertidal biogenic reef, Ellisolandia elongate exposed in the laboratory to reduced pH conditions (i.e. ambient pH – 0.3, RCP 8.5) together with an extreme heatwave event (+1.4°C for 15 days). Response variables considered both the algal physiology (calcification and photosynthetic rates) and community structure of the associated invertebrates (at taxonomic and functional level). The combination of a reduced pH with a heatwave event caused Ellisolandia elongata to significantly increase photosynthetic activity. The high variability of calcification that occurred during simulated night time conditions, indicates that there is not a simple, linear relationship between these two and may indicate that it will resilient to future conditions of climate change.

In contrast, the associated fauna were particularly negatively affected by the heatwave event, which impoverished the communities as opportunistic taxa became dominant. Local increases in oxygen and pH driven by the algae can buffer the microhabitat in the algal fronds, thus favouring the survival of small invertebrates.

Continue reading ‘An intertidal life: combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community’

Viral-mediated microbe mortality modulated by ocean acidification and eutrophication: consequences for the carbon fluxes through the microbial food web

Anthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropogenic stressor, i.e., human-induced nutrient loads. In this study, two mesocosm acidification experiments with Mediterranean waters from different seasons revealed distinct effects of OA on viruses and viral-mediated prokaryotic mortality depending on the trophic state and the successional stage of the plankton community. In the winter bloom situation, low fluorescence viruses, the most abundant virus-like particle (VLP) subpopulation comprising mostly bacteriophages, were negatively affected by lowered pH with nutrient addition, while the bacterial host abundance was stimulated. High fluorescence viruses, containing cyanophages, were stimulated by OA regardless of the nutrient conditions, while cyanobacteria of the genus Synechococcus were negatively affected by OA. Moreover, the abundance of very high fluorescence viruses infecting small haptophytes tended to be lower under acidification while their putative hosts’ abundance was enhanced, suggesting a direct and negative effect of OA on viral–host interactions. In the oligotrophic summer situation, we found a stimulating effect of OA on total viral abundance and the viral populations, suggesting a cascading effect of the elevated pCO2 stimulating autotrophic and heterotrophic production. In winter, viral lysis accounted for 30 ± 16% of the loss of bacterial standing stock per day (VMMBSS) under increased pCO2 compared to 53 ± 35% in the control treatments, without effects of nutrient additions while in summer, OA had no significant effects on VMMBSS (35 ± 20% and 38 ± 5% per day in the OA and control treatments, respectively). We found that phage production and resulting organic carbon release rates significantly reduced under OA in the nutrient replete winter situation, but it was also observed that high nutrient loads lowered the negative effect of OA on viral lysis, suggesting an antagonistic interplay between these two major global ocean stressors in the Anthropocene. In summer, however, viral-mediated carbon release rates were lower and not affected by lowered pH. Eutrophication consistently stimulated viral production regardless of the season or initial conditions. Given the relevant role of viruses for marine carbon cycling and the biological carbon pump, these two anthropogenic stressors may modulate carbon fluxes through their effect on viruses at the base of the pelagic food web in a future global change scenario.

Continue reading ‘Viral-mediated microbe mortality modulated by ocean acidification and eutrophication: consequences for the carbon fluxes through the microbial food web’

Ten years of Spanish ion carbonate data in the North Atlantic Ocean and Mediterranean Sea (Dataset)

Concentration of ion carbonate has become the fifth measurable variable of the seawater CO2 system since the publication of the work by Byrne and Yao (2008) introducing a spectrophotometric method similar to the standard pH procedure. However, opposite to pH, the ion carbonate method has been refined and updated in a series of works(Easley et al., 2013; Patsavas et al., 2015; Sharp et al., 2017 and Sharp and Byrne, 2019) that introduced modifications in the equations relating the UV absorbance measurements and the final ion carbonate concentration, the reagent used and other details. Except for the USA seminal research group, and the two Spanish teams at the IEO A Coruña and IIM-CSIC, no other oceanographic group has published research data using the ion carbonate spectrophotometric methods. The work by Fajar et al. (2015) used a collection of Spanish cruises from 2009 to 2014 to compare the initial spectrophotometric ion carbonate methods by Byrne and Yao (2008) and Easley et al. (2013).
The current database comprises a set of 9 one-time cruises and one coastal time-series run by the above-mentioned Spanish CO2 research groups, expanding from 2009 to 2020, where ancillary and CO2 measurements (pH, total alkalinity and total inorganic carbon) have been performed, along with spectrophotometric measurements of ion carbonate, which followed the time evolution of the ion carbonate published approaches. The database compiles all the information (cruise identification, time, location, equipment used), measurements and analysis (pressure, temperature, salinity, pH, total alkalinity, total inorganic carbon, silicate and phosphate, UV absorbance ratios for spectrophotometric ion carbonate measurements from two different reagents [PbCl2 and Pb(ClO4)2] needed to perform any CO2 internal consistency analysis. All chemical analysis were assigned a quality indicator.

Continue reading ‘Ten years of Spanish ion carbonate data in the North Atlantic Ocean and Mediterranean Sea (Dataset)’

Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece

Although the rise of antibiotic and multidrug resistant bacteria is one of the biggest current threats to human health, our understanding of the mechanisms involved in antibiotic resistance selection remains scarce. We performed whole genome sequencing of 21 Pseudomonas strains, previously isolated from an active submarine volcano of Greece, the Kolumbo volcano. Our goal was to identify the genetic basis of the enhanced co-tolerance to antibiotics and acidity of these Pseudomonas strains. Pangenome analysis identified 10,908 Gene Clusters (GCs). It revealed that the numbers of phage-related GCs and sigma factors, which both provide the mechanisms of adaptation to environmental stressors, were much higher in the high tolerant Pseudomonas strains compared to the rest ones. All identified GCs of these strains were associated with antimicrobial and multidrug resistance. The present study provides strong evidence that the CO2-rich seawater of the volcano associated with low pH might be a reservoir of microorganisms carrying multidrug efflux-mediated systems and pumps. We, therefore, suggest further studies of other extreme environments (or ecosystems) and their associated physicochemical parameters (or factors) in the rise of antibiotic resistance.

Continue reading ‘Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece’

Leaf proteome modulation and cytological features of seagrass Cymodocea nodosa in response to long-term high CO2 exposure in volcanic vents

Seagrass Cymodocea nodosa was sampled off the Vulcano island, in the vicinity of a submarine volcanic vent. Leaf samples were collected from plants growing in a naturally acidified site, influenced by the long-term exposure to high CO2 emissions, and compared with others collected in a nearby meadow living at normal pCO2 conditions. The differential accumulated proteins in leaves growing in the two contrasting pCO2 environments was investigated. Acidified leaf tissues had less total protein content and the semi-quantitative proteomic comparison revealed a strong general depletion of proteins belonging to the carbon metabolism and protein metabolism. A very large accumulation of proteins related to the cell respiration and to light harvesting process was found in acidified leaves in comparison with those growing in the normal pCO2 site. The metabolic pathways linked to cytoskeleton turnover also seemed affected by the acidified condition, since a strong reduction in the concentration of cytoskeleton structural proteins was found in comparison with the normal pCO2 leaves. Results coming from the comparative proteomics were validated by the histological and cytological measurements, suggesting that the long lasting exposure and acclimation of C. nodosa to the vents involved phenotypic adjustments that can offer physiological and structural tools to survive the suboptimal conditions at the vents vicinity.

Continue reading ‘Leaf proteome modulation and cytological features of seagrass Cymodocea nodosa in response to long-term high CO2 exposure in volcanic vents’

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 (> 10,000 μatm) result in low seawater pH (< 6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 μatm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic trade-offs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.

Continue reading ‘Volcanic CO2 seep geochemistry and use in understanding ocean acidification’

The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea

Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea – one of the most oligotrophic marine regions in the world. Since the 1970s, this region has been experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity and bacterial biomass accumulation, and triggered a shift towards heterotrophic biodegrading bacterial communities, whereas autotrophic picophytoplankton abundance was moderately affected or reduced. This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, acidification, nutrient enrichment, and microbial community shifts at the sediment-water interface may have a detrimental impact on macrobenthic communities. Based on these findings, we suggest that jelly-falls and their decay may facilitate an additional decline in ecosystem functions and services.

Continue reading ‘The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea’

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,450,937 hits


Ocean acidification in the IPCC AR5 WG II

OUP book