Posts Tagged 'methods'

What a decade (2006-15) of journal abstracts can tell us about trends in ocean and coastal sustainability challenges and solutions

Text mining and analytics may offer possibilities to assess scientists’ professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD) framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014-15 relative to the 2006-13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists’ written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them.

Continue reading ‘What a decade (2006-15) of journal abstracts can tell us about trends in ocean and coastal sustainability challenges and solutions’

Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean: a novel approach based on neural networks

 

A neural network-based method (CANYON: CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network) was developed to estimate water-column (i.e., from surface to 8,000 m depth) biogeochemically relevant variables in the Global Ocean. These are the concentrations of three nutrients [nitrate (NO3−), phosphate (PO43−), and silicate (Si(OH)4)] and four carbonate system parameters [total alkalinity (AT), dissolved inorganic carbon (CT), pH (pHT), and partial pressure of CO2 (pCO2)], which are estimated from concurrent in situ measurements of temperature, salinity, hydrostatic pressure, and oxygen (O2) together with sampling latitude, longitude, and date. Seven neural-networks were developed using the GLODAPv2 database, which is largely representative of the diversity of open-ocean conditions, hence making CANYON potentially applicable to most oceanic environments. For each variable, CANYON was trained using 80 % randomly chosen data from the whole database (after eight 10° × 10° zones removed providing an “independent data-set” for additional validation), the remaining 20 % data were used for the neural-network test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE): 1.04 μmol kg−1 (NO3−), 0.074 μmol kg−1 (PO43−), 3.2 μmol kg−1 (Si(OH)4), 0.020 (pHT), 9 μmol kg−1 (AT), 11 μmol kg−1 (CT) and 7.6 % (pCO2) (30 μatm at 400 μatm). This was confirmed for the eight independent zones not included in the training process. CANYON was also applied to the Hawaiian Time Series site to produce a 22 years long simulated time series for the above seven variables. Comparison of modeled and measured data was also very satisfactory (RMSE in the order of magnitude of RMSE from validation test). CANYON is thus a promising method to derive distributions of key biogeochemical variables. It could be used for a variety of global and regional applications ranging from data quality control to the production of datasets of variables required for initialization and validation of biogeochemical models that are difficult to obtain. In particular, combining the increased coverage of the global Biogeochemical-Argo program, where O2 is one of the core variables now very accurately measured, with the CANYON approach offers the fascinating perspective of obtaining large-scale estimates of key biogeochemical variables with unprecedented spatial and temporal resolutions. The Matlab and R codes of the proposed algorithms are provided as Supplementary Material.

Continue reading ‘Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean: a novel approach based on neural networks’

Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence

We present new “size-normalized weight” (SNW)-Δ[CO32−] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32−], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32−] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32−] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32−] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the “coral reef hypothesis” that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32−] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the “deglacial ventilation hypothesis”). During MIS 4, a transient decline in SNW-based [CO32−], along with other reported [CO32−] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.

Continue reading ‘Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence’

A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California

Resulting from the rising levels of atmospheric carbon, ocean acidification has become a global problem. It has significant impacts on the development, survival, growth and physiology of marine organisms. Therefore, a high- precision sensor is urgently needed to measure the pH of sea-water. Iridium wire with a diameter of 0.25 mm is used as the substrate, and an Ir/Ir(OH)x pH electrode is prepared by a one-step electrochemical method in a LiOH solution at the room temperature. A scanning electron microscope (SEM) observation reveals that it is coated with nanoscale particles. In laboratory tests, the electrode exhibits a very promising pH response, with an ideal Nernst slope (56.14–59.52), fast response, good stability and long life-span in tested pH buffer solutions. For a sea trial, four pH electrodes and one Ag/AgCl reference electrode are integrated with a self-made chemical sensor, and a profile detection of nearly 70 m is implemented near Newport Harbor, California on August 3, 2015. The results reflect that the pH value measured by the sensor is very close to the data given by Sea-Bird 911 plus CTD, with a difference value ranging from 0.000 075 to 0.064 719. And the sensor shows a better data matching degree in 0–40 m water depth. In addition, the high precision and accuracy of the sensor make it possible to use in the ocean observation field.

Continue reading ‘A new electroplated Ir/Ir(OH)x pH electrode and its application in the coastal areas of Newport Harbor, California’

Graphical coding data and operational guidance for implementation or modification of a LabVIEW®-based pHstat system for the cultivation of microalgae

The influence of pH on phytoplankton physiology is an important facet of the body of research on ocean acidification. We provide data developed during the design and implementation of a novel pHstat system capable of maintaining both static and dynamic pH environments in a laboratory setting. These data both help improve functionality of the system, and provide specific coding blocks for controlling the pHstat using a LabVIEW® virtual instrument (VI). The data in this paper support the research article “Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions” (Golda et al. [2]). These data will be of interest to researchers studying the effects of changing pH on phytoplankton in a laboratory context, and to those desiring to build their own pHstat system(s). These data can also be used to facilitate modification of the pHstat system to control salinity, temperature, or other environmental factors.

Continue reading ‘Graphical coding data and operational guidance for implementation or modification of a LabVIEW®-based pHstat system for the cultivation of microalgae’

Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification

Critical to determining vulnerability or resilience of reef corals to Ocean Acidification (OA) is a clearer understanding of the extent to which corals can control carbonate chemistry in their Extracellular Calcifying Medium (ECM) where the CaCO3 skeleton is produced. Here, we employ a mathematical framework to calculate ECM aragonite saturation state (Ωarag.(ECM)) and carbonate system ion concentration using measurements of calcification rate, seawater characteristics (temperature, salinity and pH) and ECM pH (pH(ECM)). Our calculations of ECM carbonate chemistry at current-day seawater pH, indicate that Ωarag.(ECM) ranges from ∼10 to 38 (mean 20.41), i.e. about 5 to 6-fold higher than seawater. Accordingly, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were calculated to be around 3 times higher in the ECM than in seawater. We also assessed the effects of acidification on ECM chemical properties of the coral Stylophora pistillata. At reduced seawater pH our calculations indicate that Ωarag.(ECM) remains almost constant. DIC(ECM) and TA(ECM) gradually increase as seawater pH declines, reaching values about 5 to 6-fold higher than in seawater, respectively for DIC and TA. We propose that these ECM characteristics buffer the effect of acidification and explain why certain corals continue to produce CaCO3 even when seawater chemistry is less favourable.

Continue reading ‘Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification’

Primary life stage boron isotope and trace elements incorporation in aposymbiotic Acropora millepora coral under ocean acidification and warming

Early-life stages of reef-building corals are vital to coral existence and reef maintenance. It is therefore crucial to study juvenile coral response to future climate change pressures. Moreover, corals are known to be reliable recorders of environmental conditions in their skeletal materials. Aposymbiotic Acropora millepora larvae were cultured in different seawater temperature (27 and 29ºC) and pCO2 (390 and 750 µatm) conditions to understand the impacts of ‘end of century’ ocean acidification (OA) and ocean warming (OW) conditions on skeletal morphology and geochemistry. The experimental conditions impacted primary polyp juvenile coral skeletal morphology and growth resulting in asymmetric translucent appearances with brittle skeleton features. The impact of OA resulted in microstructure differences with decreased precipitation or lengthening of fasciculi and disorganized aragonite crystals that led to more concentrations of centers of calcifications. The coral skeletal δ11B composition measured by laser ablation MC-ICP-MS was significantly affected by pCO2 (p = 0.0024) and water temperature (p = 1.46 x 10-5). Reconstructed pH of the primary polyp skeleton using the δ11B proxy suggests a difference in coral calcification site and seawater pH consistent with previously observed coral pH up-regulation. Similarly, trace element results measured by laser ablation ICP-MS indicate the impact of pCO2. Primary polyp juvenile Sr/Ca ratio indicates a bias in reconstructed sea surface temperature (SST) under higher pCO2 conditions. Coral microstructure content changes (center of calcification and fasciculi) due to OA possibly contributed to the variability in B/Ca ratios. Our results imply that increasing OA and OW may lead to coral acclimation issues and species-specific inaccuracies of the commonly used Sr/Ca-SST proxy.

Continue reading ‘Primary life stage boron isotope and trace elements incorporation in aposymbiotic Acropora millepora coral under ocean acidification and warming’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book