Posts Tagged 'methods'

In vivo pH measurement at the site of calcification in an octocoral

Calcareous octocorals are ecologically important calcifiers, but little is known about their biomineralization physiology, relative to scleractinian corals. Many marine calcifiers promote calcification by up-regulating pH at calcification sites against the surrounding seawater. Here, we investigated pH in the red octocoral Corallium rubrum which forms sclerites and an axial skeleton. To achieve this, we cultured microcolonies on coverslips facilitating microscopy of calcification sites of sclerites and axial skeleton. Initially we conducted extensive characterisation of the structural arrangement of biominerals and calcifying cells in context with other tissues, and then measured pH by live tissue imaging. Our results reveal that developing sclerites are enveloped by two scleroblasts and an extracellular calcifying medium of pH 7.97 ± 0.15. Similarly, axial skeleton crystals are surrounded by cells and a calcifying medium of pH 7.89 ± 0.09. In both cases, calcifying media are more alkaline compared to calcifying cells and fluids in gastrovascular canals, but importantly they are not pH up-regulated with respect to the surrounding seawater, contrary to what is observed in scleractinians. This points to a potential vulnerability of this species to decrease in seawater pH and is consistent with reports that red coral calcification is sensitive to ocean acidification.

Continue reading ‘In vivo pH measurement at the site of calcification in an octocoral’

Using mineralogy and higher-level taxonomy as indicators of species sensitivity to pH: a case-study of Puget Sound

Information on ecosystem sensitivity to global change can help guide management decisions. Here, we characterize the sensitivity of the Puget Sound ecosystem to ocean acidification by estimating, at a number of taxonomic levels, the direct sensitivity of its species. We compare sensitivity estimates based on species mineralogy and on published literature from laboratory experiments and field studies. We generated information on the former by building a database of species in Puget Sound with mineralogy estimates for all CaCO3-forming species. For the latter, we relied on a recently developed database and meta-analysis on temperate species responses to increased CO2. In general, species sensitivity estimates based on the published literature suggest that calcifying species are more sensitive to increased CO2 than non-calcifying species. However, this generalization is incomplete, as non-calcifying species also show direct sensitivity to high CO2 conditions. We did not find a strong link between mineral solubility and the sensitivity of species survival to changes in carbonate chemistry, suggesting that, at coarse scales, mineralogy plays a lesser role to other physiological sensitivities. Summarizing species sensitivity at the family level resulted in higher sensitivity scalar scores than at the class level, suggesting that grouping results at the class level may overestimate species sensitivity. This result raises caution about the use of broad generalizations on species response to ocean acidification, particularly when developing summary information for specific locations. While we have much to learn about species response to ocean acidification and how to generalize ecosystem response, this study on Puget Sound suggests that detailed information on species performance under elevated carbon dioxide conditions, summarized at the lowest taxonomic level possible, is more valuable than information on species mineralogy.

Continue reading ‘Using mineralogy and higher-level taxonomy as indicators of species sensitivity to pH: a case-study of Puget Sound’

Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater

The ratio of boron to calcium (B/Ca) in marine biogenic carbonates has been proposed as a proxy for properties of seawater carbonate chemistry. Applying this proxy to planktic foraminifera residing in the surface seawater largely in equilibrium with the atmosphere may provide a critical constraint on past atmospheric CO2 concentrations. However, precise controls on B/Ca in planktic foraminifera remain enigmatic because it has been shown to depend on multiple physicochemical seawater properties. To help establish a firm inorganic basis for interpreting the B/Ca records, we examined the effect of a suite of chemical parameters ([Ca2+], pH, [DIC], salinity and [PO43-]) on B/Ca in inorganic calcite precipitated in artificial seawater. These parameters were primarily varied individually while keeping all others constant, but we also tested the influence of pH and [DIC] at a constant calcite precipitation rate (R) by concurrent [Ca2+] adjustments. In the simple [Ca2+], pH and [DIC] experiments, both R and B/Ca increased with these parameters. In the pH–[Ca2+] and [DIC]–[Ca2+] experiments at constant R, on the other hand, B/Ca was invariant at different pH and decreased with [DIC], respectively. These patterns agree with the behavior of solution [BTotal/DIC] ratio such that, at a fixed [BTotal], it is independent of pH but decreases with [DIC]. Based on these results, R and [BTotal/DIC] ratio appear to be the primary controls on B/Ca in inorganic calcite, suggesting that both B(OH)4 and B(OH)3 are possibly involved in B incorporation. Moreover, B/Ca modestly increased with salinity and [PO43-]. Inorganic calcite precipitated at higher R and in the presence of oxyanions such as SO42- and PO43- in growth solutions often undergoes surface roughening due to formation of crystallographic defects, vacancies and, occasionally, amorphous/hydrous CaCO3.These non-lattice sites may provide additional space for B, particularly B(OH)3. Consequently, besides the macroscopic influence of R and bulk solution chemistry, molecular-scale processes associated with calcite nucleation can be an important consideration for B incorporation, especially in complex ionic solutions. Lastly, the covariance of B/Ca with [DIC] and salinity observed here qualitatively agrees with those in planktic foraminifers. It follows that their impact on foraminiferal B/Ca is partly inorganically driven, which may explain why the effect is evident across different species.

Continue reading ‘Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater’

Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

Continue reading ‘Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique’

Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification

Elevated CO2 levels associated with ocean acidification (OA) have been shown to alter behavioural responses in coral reef fishes. However, all studies to date have used stable pCO2 treatments, not considering the substantial diel pCO2 variation that occurs in shallow reef habitats. Here, we reared juvenile damselfish, Acanthochromis polyacanthus, and clownfish, Amphiprion percula, at stable and diel cycling pCO2 treatments in two experiments. As expected, absolute lateralization of A. polyacanthus and response to predator cue of Am. percula were negatively affected in fish reared at stable, elevated pCO2 in both experiments. However, diel pCO2 fluctuations reduced the negative effects of OA on behaviour. Importantly, in experiment two, behavioural abnormalities that were present in fish reared at stable 750 µatm CO2 were largely absent in fish reared at 750 ± 300 µatm CO2. Overall, we show that diel pCO2 cycles can substantially reduce the severity of behavioural abnormalities caused by elevated CO2. Thus, past studies may have over-estimated the impacts of OA on the behavioural performance of coral reef fishes. Furthermore, our results suggest that diel pCO2 cycles will delay the onset of behavioural abnormalities in natural populations.

Continue reading ‘Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification’

Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities

Anthropogenic modifications of marine environments result from a variety of activities and have effects across social and ecological dimensions. Humans inhabit linked systems, where our actions such as resource extraction, pollution and development influence species in both direct and indirect ways and feedback to influence the human communities dependent on living marine resources. In order to understand the consequences of our actions and develop strategies to plan for future environmental change, we need a diverse set of tools able to incorporate various levels of complexity. This necessitates the improvement and modification of existing tools, development of novel approaches and unique applications of methods from across fields. In this dissertation I address the ways in which we can use and improve existing tools in ecology to advance our understanding and management of marine resources. In the first Chapter I introduce a method to incorporate life stage specific responses to a stressor, ocean acidification, to gain a broader understanding of population level vulnerability. In the second Chapter I extend this work to address ecosystem level change from ocean acidification in the California Current, using an ecosystem model to determine changes in biomass and fisheries catch. In the third chapter, I work to improve our understanding of how multiple stressors acting across life history can be magnified or mitigated, based solely on biological characteristics of populations. Finally, in the fourth Chapter I introduce ecologists and natural scientists to a broader understanding of research on risk in order to improve our methods for approaching ecosystem based fisheries management. My work spans ecological scales from populations to ecosystems and links between social and ecological systems.

Continue reading ‘Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities’

Solid state sensor for simultaneous measurement of total alkalinity and pH of seawater

A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (AT) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two “master variables”: pH and AT. ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nL-scale acid-base titration of AT in under 40 s. This method of measuring AT, a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H+, through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e. OH, HCO3, CO32-, B(OH)4, PO43-) of seawater AT. The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in AT over the range of seawater AT of ~2200-2500 μmol kg-1 which demonstrates great potential for autonomous sensing.

Continue reading ‘Solid state sensor for simultaneous measurement of total alkalinity and pH of seawater’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,025,923 hits


Ocean acidification in the IPCC AR5 WG II

OUP book