Posts Tagged 'methods'

Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties


• We explored model approaches for ocean acidification effects on marine organisms.
• Modelled effects on aerobic performance were scaled up to population level dynamics.
• Results were sensitive to model structure, then scenario and parameter uncertainty.
• Sensitivity was variable across species and the source of uncertainty.
• Integrated global change models progress development of future scenarios.


Ocean acidification (OA) driven by anthropogenic CO2 emissions affects marine ecosystems, fisheries and aquaculture. Assessing the impacts of OA using projection models facilitates the development of future scenarios and potential solutions. Here, we explored various ways to incorporate OA impacts into a multi-stressor dynamic bioclimatic envelope model to project biogeographic changes of ten commercially exploited invertebrate species. We examine three dimensions of uncertainties in modelling biophysical OA effects: model structure, parameterization, and scenario uncertainty. Our results show that projected OA impacts are most sensitive to the choice of structural relationship between OA and biological responses, followed by the choice of climate change emission scenarios and parameterizations of the size of OA effects. Species generally showed negative effects to OA but sensitivity to the various sources of uncertainty were not consistent across or within species. For example, some species showed higher sensitivity to structural uncertainty and very low sensitivity to parameter uncertainty, while others showed greatest sensitivity to parameter uncertainty. This variability is largely due to geographic variability and difference in life history traits used to parameterize model simulations. Our model highlights the variability across the sources of uncertainty and contributes to the development of integrating OA impacts in species distribution models. We further stress the importance of defining the limitations and assumptions, as well as exploring the range of uncertainties associated with modelling OA impacts.

Continue reading ‘Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties’

Technical note: continuous fluorescence-based monitoring of seawater pH in situ (update)

Electrical conductivity (salinity), temperature and fluorescence-based measurements of pH were employed to examine diel fluctuations in seawater carbonate chemistry of surface waters in Sydney Harbour over two multiple-day periods. A proof-of-concept device employing the fluorescence-based technique provided a useful time series for pH. Alkalinity with pH and temperature were used to calculate the degree of calcite and aragonite saturation (ΩCa and ΩAr, respectively). Alkalinity was determined from a published alkalinity–salinity relationship. The fluctuations observed in pH over intervals of minutes to hours could be distinguished from background noise. While the stated phase angle resolution of the lifetime fluorometer translated into pH units was ±0.0028 pH units, the repeatability standard deviation of calculated pH was 0.007 to 0.009. Diel variability in pH, ΩAr and ΩCa showed a clear pattern that appeared to correlate with both salinity and temperature. Drift due to photodegradation of the fluorophore was minimized by reducing exposure to ambient light. The ΩCa and ΩAr fluctuated on a daily cycle. The net result of changes in pH, salinity and temperature combined to influence seawater carbonate chemistry. The fluorescence-based pH monitoring technique is simple, provides good resolution and is unaffected by moving parts or leaching of solutions over time. The use of optics is pressure insensitive, making this approach to ocean acidification monitoring well suited to deepwater applications.

Continue reading ‘Technical note: continuous fluorescence-based monitoring of seawater pH in situ (update)’

CO2 induced pHi changes in the brain of polar fish: a TauCEST application

Chemical exchange saturation transfer (CEST) from taurine to water (TauCEST) can be used for in vivo mapping of taurine concentrations as well as for measurements of relative changes in intracellular pH (pHi) at temperatures below 37°C. Therefore, TauCEST offers the opportunity to investigate acid–base regulation and neurological disturbances of ectothermic animals living at low temperatures, and in particular to study the impact of ocean acidification (OA) on neurophysiological changes of fish. Here, we report the first in vivo application of TauCEST imaging. Thus, the study aimed to investigate the TauCEST effect in a broad range of temperatures (1–37°C) and pH (5.5–8.0), motivated by the high taurine concentration measured in the brains of polar fish. The in vitro data show that the TauCEST effect is especially detectable in the low temperature range and strictly monotonic for the relevant pH range (6.8–7.5). To investigate the specificity of TauCEST imaging for the brain of polar cod (Boreogadus saida) at 1.5°C simulations were carried out, indicating a taurine contribution of about 65% to the in vivo expected CEST effect, if experimental parameters are optimized. B. saida was acutely exposed to three different CO2 concentrations in the sea water (control normocapnia; comparatively moderate hypercapnia OAm = 3300 μatm; high hypercapnia OAh = 4900 μatm). TauCEST imaging of the brain showed a significant increase in the TauCEST effect under the different CO2 concentrations of about 1.5–3% in comparison with control measurements, indicative of changes in pHi or metabolite concentration. Consecutive recordings of 1H MR spectra gave no support for a concentration induced change of the in vivo observed TauCEST effect. Thus, the in vivo application of TauCEST offers the possibility of mapping relative changes in pHi in the brain of polar cod during exposure to CO2.

Continue reading ‘CO2 induced pHi changes in the brain of polar fish: a TauCEST application’

Metrology of pH measurements in brackish waters – Part 2: experimental characterization of purified meta-cresol purple for spectrophotometric pHT measurements

Spectrophotometric pH measurements allow for an accurate quantification of acid-base equilibria in natural waters, provided that the physico-chemical properties of the indicator dye are well known. Here we present the first characterization of purified m-Cresol Purple (mCP) directly linked to a primary pH standard in the salinity range 5–20. Results were obtained from mCP absorption measurements in TRIS buffer solutions. The pHT of identical buffer solutions was previously determined by Harned cell measurements in a coordinated series of experiments. The contribution of the TRIS/HCl component to the ionic strength of the buffer solutions increases toward lower salinity: This was taken into account by extrapolating the determined pK2e2 to zero buffer concentration, thereby establishing access to a true hydrogen ion concentration scale for the first time. The results of this study were extended with previous determinations of pK2e2 at higher and lower salinity and a pK2e2 model was fitted to the combined data set. For future investigations that include measurements in the salinity range 5–20, pHT should be calculated according to this pK2e2 model, which can also be used without shortcomings for salinities 0–40 and temperatures from 278.15 to 308.15 K. It should be noted that conceptual limitations and methodical uncertainties are not yet adequately addressed for pHT determinations at very low ionic strength.

Continue reading ‘Metrology of pH measurements in brackish waters – Part 2: experimental characterization of purified meta-cresol purple for spectrophotometric pHT measurements’

Metrology for pH measurements in brackish waters – Part 1: Extending electrochemical pHT measurements of TRIS buffers to salinities 5–20

Harned cell pHT measurements were performed on 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) buffered artificial seawater solutions in the salinity range 5–20, at three equimolal buffer concentrations (0.01, 0.025, 0.04 mol·kg-H2O−1), and in the temperature range 278.15–318.15 K. Measurement uncertainties were assigned to the pHT values of the buffer solutions and ranged from 0.002 to 0.004 over the investigated salinity and temperature ranges. The pHT values were combined with previous results from literature covering salinities from 20 to 40. A model function expressing pHT as a function of salinity, temperature and TRIS/TRIS·H+ molality was fitted to the combined data set. The results can be used to reliably calibrate pH instruments traceable to primary standards and over the salinity range 5–40, in particular, covering the low salinity range of brackish water for the first time. At salinities 5–20 and 35, the measured dependence of pHT on the TRIS/TRIS·H+ molality enables extrapolation of quantities calibrated against the pHT values, e.g., the dissociation constants of pH indicator dyes, to be extrapolated to zero TRIS molality. Extrapolated quantities then refer to pure synthetic seawater conditions and define a true hydrogen ion concentration scale in seawater media.

Continue reading ‘Metrology for pH measurements in brackish waters – Part 1: Extending electrochemical pHT measurements of TRIS buffers to salinities 5–20’

Marine hydrothermal vents as templates for global change scenarios

Subsurface marine hydrothermal vents (HVs) may provide a particular advantage to better understand evolutionary conditions of the early earth and future climate predictions for marine life. Hydrothermal vents (HV) are unique extreme environments that share several similarities with projected global and climate change scenarios in marine systems (e.g., low pH due to high carbon dioxide and sulfite compounds, high temperature and turbidity, high loads of toxic chemicals such as H2S and trace metals). Particularly, shallow hydrothermal vents are easily accessible for short-term and long-term experiments. Research on organisms from shallow HVs may provide insights in the molecular, ecological, and evolutionary adaptations to extreme oceanic environments by comparing them with evolutionary related but less adapted biota. A shallow-water hydrothermal vent system at the northeast Taiwan coast has been intensively studied by several international research teams. These studies revealed astounding highlights at the levels of ecosystem (being fueled by photosynthesis and chemosynthesis), community (striking biodiversity changes due to mass mortality), population (retarded growth characteristics), individual (habitat attractive behavior), and molecular (adaptations to elevated concentrations of heavy metals, low pH, and elevated temperature). The present opinion paper evaluates the potential of shallow hydrothermal vents to be used as a templates for global change scenarios.

Continue reading ‘Marine hydrothermal vents as templates for global change scenarios’

Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth

Because many of the negative effects of ocean acidification on marine life may result from underlying energetic short-falls associated with increased metabolic demands, several studies have hypothesized that negative responses to high CO2 could be reduced by energy input. Although this hypothesis was supported by a recent meta-analysis, we believe that the meta-analytic calculation used was not appropriate to test the stated hypothesis. Here, we first clarify the hypothesis put forward, the crux being that the effects of increased food supply and CO2 interact statistically. We then test this hypothesis by examining the available data in a more appropriate analytical framework. Using factorial meta-analysis, we confirm that food addition has a positive effect and CO2 has a negative effect on both growth and calcification. For calcification, food addition did indeed reduce CO2 impacts. Surprisingly, however, we found that food addition actually exacerbated the effects of acidification on growth, perhaps due to increased scope upon which CO2 effects can act in food-replete situations. These interactive effects were undetectable using a multilevel meta-analytic approach. Ongoing changes in food supply and carbonate chemistry, coupled with under-described, poorly understood, and potentially surprising interactive outcomes for these two variables, suggest that the role of food should remain a priority in ocean acidification research.

Continue reading ‘Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,347 hits


Ocean acidification in the IPCC AR5 WG II

OUP book