Posts Tagged 'field'

Marine CO2 patterns in the northern Salish Sea

Marine carbon dioxide (CO2) system data has been collected from December 2014 to June 2018 in the Northern Salish Sea (NSS; British Columbia, Canada) and consisted of continuous measurements at two sites as well as spatially- and seasonally distributed discrete seawater samples. The array of CO2 observing activities included high-resolution CO2 partial pressure (pCO2) and pHT (total scale) measurements made at the Hakai Institute’s Quadra Island Field Station (QIFS) and from an Environment Canada weather buoy, respectively, as well as discrete seawater measurements of pCO2 and total dissolved inorganic carbon (TCO2) obtained during a number of field campaigns. A relationship between NSS alkalinity and salinity was developed with the discrete datasets and used with the continuous measurements to highly resolve the marine CO2 system. Collectively, these datasets provided insights into the seasonality in this historically under-sampled region and detail the area’s tendency for aragonite saturation state (Ωarag) to be at non-corrosive levels (i.e., Ωarag > 1) only in the upper water column during spring and summer months. This depth zone and time period of reprieve can be periodically interrupted by strong northwesterly winds that drive short-lived (∼1 week) episodes of high-pCO2, low-pH, and low-Ωarag conditions throughout the region. Interannual variability in summertime conditions was evident and linked to reduced northwesterly winds and increased stratification. Anthropogenic CO2 in NSS surface water was estimated using data from 2017 combined with the global atmospheric CO2 forcing for the period 1765 to 2100, and projected a mean value of 49 ± 5 μmol kg-1 for 2018. The estimated trend in anthropogenic CO2 was further used to assess the evolution of Ωarag and pHT levels in NSS surface water, and revealed that wintertime corrosive Ωarag conditions were likely absent pre-1900. The percent of the year spent above Ωarag = 1 has dropped from ∼98% in 1900 to ∼60% by 2018. Over the coming decades, winter pHT and spring and summer Ωarag are projected to decline to conditions below identified biological thresholds for select vulnerable species.

Continue reading ‘Marine CO2 patterns in the northern Salish Sea’

Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches

High-latitude cold-water coral reefs are particularly vulnerable to climate change due to enhanced CO2 uptake in these regions. To evaluate their physiological functioning and potential application as pH archives, we retrieved both recent and fossil samples of Lophelia pertusa along the Norwegian margin from Oslofjord (59°N), over to Trondheimsfjord, Sula and Lopphavet (70.6°N). Boron isotope analyses (δ11B) were undertaken using solution-based and laser ablation multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS; LA-ICP-MS), and secondary ion mass spectrometry (SIMS). Epi-fluorescence microscopy was employed to provide a rapid pre-screening routine for structure-specific subsampling in the coral skeleton. This integrated approach enabled us to assess heterogeneities within single specimens, as well as to investigate the role of local environmental influences including recent and past variations. All three mass spectrometry methods show substantial differences in the δ11B of the theca wall (TW) and the centres of calcification (COC’s). Micro-bulk subsamples milled from the theca wall of modern specimens originating from different habitats but with comparable seawater pH (8–8.16) gave consistent δ11B values averaging 26.7 (±0.2‰, 2σ, n = 4), while COC subsamples systematically deviated towards lower B/Ca (by ~40%) and depleted δ11B values (minimum 22.7 ± 0.3‰, 2σ), implying a difference of at least 4‰ between TW and COC. SIMS and LA-ICP-MS measurements identified much larger internal heterogeneities with maximum variation of ~10‰ between the distinct skeletal structures; minimal SIMS δ11B values of ~17.3 ± 1.2‰ (2σ) were associated with the pure COC material. Our findings may be interpreted in terms of the occurrence of two main, but likely different, biomineralisation mechanisms in L. pertusa, with the COC’s generally exhibiting minimal pH up-regulation, potentially supporting the use of bicarbonate in the early stages of biomineralisation. Furthermore, we highlight the potential utility of L. pertusa for palaeo-proxy studies if targeting the compositionally homogenous TW zones devoid of COC admixtures, which appear to provide highly reproducible measurements.

Continue reading ‘Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches’

Ecosystem calcification and production in two Great Barrier Reef coral reefs: methodological challenges and environmental drivers

This thesis investigates the drivers of coral reef ecosystem metabolism and the abilities of the different methodologies and analytical approaches to accurately represent reef dynamics. It encompassed tracing natural nutrient additions through bird guano into a coral cay. Developing a new, automated system for measuring carbonate chemistry for coral reef metabolism and the effects of mass coral bleaching on ecosystem functioning were quantified. Overall, it showed that natural nutrient additions and bleaching differentially affect coral reef metabolism and that subtle differences in analytical methods, sampling approaches, and data interpretation techniques can cause significant variation in metabolic estimates.

Continue reading ‘Ecosystem calcification and production in two Great Barrier Reef coral reefs: methodological challenges and environmental drivers’

Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau, Micronesia

Mangroves sequester large amounts of carbon in soils but limited information is available on carbon losses from tropical mangrove systems. Here we quantify carbon outwelling, CO2 emissions and pore-water exchange rates from two nearby (∼2 km apart) tropical mangrove creeks located in different geomorphic settings on the island of Palau, Micronesia during the monsoonal storm season. On average, POC and pCO2 were >100% higher and DOC, DIC and TA were 62%, 25%, 16% higher, respectively, from Creek 1 (located within a semi-enclosed bay) than from Creek 2 (located along the coast adjacent to fringing reefs). Both creeks were net exporters of DIC, DOC, POC and emitters of CO2. However, outwelling rates of POC, DIC and DOC and CO2 emissions were 27-fold, 8-fold, 4-fold and 3-fold higher at Creek 1. DIC outwelling (37%) and CO2 emissions (39%) were the major terms contributing to total carbon losses at Creek 1, whilst CO2 emission (61%) was the major contributor at Creek 2. Monsoon storms appeared to explain the organic carbon dynamics whilst tidal pumping appears to drive the inorganic carbon dynamics at both creeks. Our data demonstrates the considerable heterogeneity of mangroves creeks that are in close proximity and subject to similar weather conditions but in differing geomorphological settings.

Continue reading ‘Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau, Micronesia’

Pacific geoduck (Panopea generosa) resilience to natural pH variation

Pacific geoduck aquaculture is a growing industry, however little is known about how geoduck respond to varying environmental conditions, or how production might be impacted by low pH associated with ocean acidification. Ocean acidification research is increasingly incorporating multiple environmental drivers and natural pH variability into biological response studies for more complete understanding of the effects of projected ocean conditions. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays pH was lower in unvegetated habitats compared to eelgrass habitats, however this did not impact geoduck growth, survival, or proteomic expression patterns. However, across all sites temperature and dissolved oxygen corresponded to growth and protein expression patterns. Specifically, three protein abundance levels (trifunctional-enzyme β-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-⍺) and shell 16 growth positively correlated with dissolved oxygen variability and inversely correlated with mean 17 temperature. These results demonstrate that geoduck are resilient to low pH in a natural setting, 18 and other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater 19 influence on geoduck physiology. In addition this study contributes to the understanding of how 20 eelgrass patches influences water chemistry.

Continue reading ‘Pacific geoduck (Panopea generosa) resilience to natural pH variation’

Coastal hypoxia in the Jinhae Bay, South Korea: mechanism, spatiotemporal variation, and implications (based on 2011 survey)

Hypoxia (dissolved oxygen ≤2 mg L−1), which occurs frequently in coastal regions due to eutrophication, is a serious environmental problem in marine ecosystems. The areal extent of hypoxic regions has increased globally in recent decades. Jinhae Bay (JB) on the southeastern coast of South Korea has suffered from seasonal hypoxia due to increased anthropogenic activities since the 1970s. However, no intensive study has examined hypoxia in JB, although it is a scientific, social, and economic concern. We conducted monthly hydrographic surveys of JB in 2011 and present the mechanism of the hypoxia and its spatiotemporal variation there. The advent of hypoxic waters in the JB was initiated locally by the combination of developing stratification and increased benthic (bottom waters sediments zone) remineralization in early June. From mid-July to early September, the hypoxia extended to the entire region, despite constant organic matter content in the benthic layer, due mainly to strong stratification, resulting in stagnant water circulation. During September, the hypoxia was maintained by a combination of physical and biogeochemical effects, although the areal extent of the hypoxic regions was substantially reduced. Overall, the hypoxia was present from early June until late September, with monthly spatiotemporal variation. The hypoxic waters tended to have low pH values, indicating an association with coastal acidification. JB, a small coastal region, suffers from serious environmental problems that urgently need our attention.

Continue reading ‘Coastal hypoxia in the Jinhae Bay, South Korea: mechanism, spatiotemporal variation, and implications (based on 2011 survey)’

Combined effects of ocean acidification and increased light intensity on natural phytoplankton communities from two Southern Ocean water masses

The composition of phytoplankton communities plays a major role in the efficiency of the biological carbon pump and energy transfer to higher trophic levels. Phytoplankton community composition can be significantly affected by changes in environmental conditions. We investigated the effect of increased pCO2 and light intensity on natural communities from two Southern Ocean water masses, the Subtropical Frontal Zone (STFZ) and Subantarctic Surface Waters (SASW). The community in both experiments shifted to predominately dinoflagellates under high pCO2 and high light and the community composition was significantly different between both treatments at the end of the incubation. In the STFZ assemblage, the combination of increased light and pCO2 had a small positive effect on diatom, coccolithophores and picoeukaryote abundance at the beginning of the experiment while higher pCO2 alone had no or a negative effect. In the SASW assemblage, the combination of increased light and pCO2 had a negative effect on diatom abundance while lower pH/higher pCO2 alone resulted in an increase in diatom counts compared to the control. Coccolithophores grew only in the control treatment. Our results show that there are taxon-specific and locality specific differences in natural phytoplankton community responses to increased light and pCO2 within low nutrient regions.

Continue reading ‘Combined effects of ocean acidification and increased light intensity on natural phytoplankton communities from two Southern Ocean water masses’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,379 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book