Posts Tagged 'field'

Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment

Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.

Continue reading ‘Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment’

Tropical coral reef coral patterns in Indonesian shallow water areas close to underwater volcanic vents at Minahasa Seashore, and Mahengetang and Gunung Api Islands

Coral community patterns on some Indonesian reefs influenced by CO2 from underwater volcanic vents and nutrients from eutrophication pressures were examined. The overall aim of the study was to provide an insight into the significance of future ocean acidification compared to eutrophication pressures on tropical coral communities. Coral cover and seawater characteristics at acidified sites (with varied levels of eutrophication), i.e., moderate acidification (pH: 7.87 ± 0.04), low acidification (pH: 8.01 ± 0.04) and reference (pH: 8.2 ± 0.02), were observed at reefs associated with Minahasa Seashore, and Mahengetang and Gunung Api Islands. Results showed that coral community patterns varied among locations and acidified sites, e.g., domination of families such as Alcyoniidae, Acroporidae, Poritidae and Heliporidae, and with different levels of abiotic cover. Surprisingly, pH was not detected as the major determining factor. This finding probably relates to tropical seawater temperatures being high enough to still allow for aragonite deposition even at pH values down to 7.8. Nutrients (phosphate and dissolved inorganic nitrogen) were shown to be the main determining factors that influenced community patterns on the observed coral reefs. Overall, the results indicate that tropical coral reef community patterns will continue to vary as pH decreases to the predicted oceanic value of pH 7.8 over the next 100 years, and bio-geo-ecological characteristics and anthropogenic pressures will be the major factors determining Indonesian tropical coral community structure, compared to pH.

Continue reading ‘Tropical coral reef coral patterns in Indonesian shallow water areas close to underwater volcanic vents at Minahasa Seashore, and Mahengetang and Gunung Api Islands’

Carbonate system parameters and anthropogenic CO2 in the North Aegean Sea in October 2013

Data of AT (total alkalinity) and CT (total inorganic carbon) collected during October 2013, on a N-S transect crossing the North of Lemnos basin allowed to identify the peculiarities of the CO2 system in the North Aegean Sea and estimate the anthropogenic CO2 (CANT) concentrations.

Extremely high concentrations of AT and CT were recorded in the upper layer of the North Aegean reflecting the high loads of AT and CT by the brackish BSW (Black Sea Water) outflowing through the Dardanelles strait and by the local rivers runoff. Both AT and CTexhibit strong negative linear correlation with salinity in the upper layer (0–20 m). Investigation of the AT-S relationship along with the salinity adjustment of AT revealed excess alkalinity throughout the water column in relation to surface waters implying the possible occurrence of non-carbonate alkalinity inputs and of other processes taking place probably over the extended shelves that contribute to the alkalinity surplus.

The intermediate layer occupied by the Modified Levantine Intermediate Water (MLIW) mass exhibits the lowest CT and AT concentrations, while rather elevated AT and CTconcentrations characterize the North Aegean Deep Water (NAgDW) mass filling the deep layer of the North of Lemnos basin linked to previous dense water formation episodes.

High anthropogenic CO2 content was detected at intermediate and deep layers of the North Aegean reflecting the effective transportation of the absorbed atmospheric CO2 at the surface to the deeper waters via the dense water formation episodes. The MLIW layer is more affected by the penetration of CANT than the NAgDW that fills the deep part of the basin. The observed variability of CANT distribution reflects the influence of the intensity of dense water formation events, of the different θ/S properties of the newly formed dense waters as well as of the diverse submarine pathways followed by the cascading dense waters. The invasion of CANT has lead to more acidic conditions and to lower saturation degree of calcium carbonate in relation to the preindustrial era. The findings of this study provide baseline information about the carbonate system properties of the North Aegean and highlight its active role in sequestering and storing anthropogenic CO2.

Continue reading ‘Carbonate system parameters and anthropogenic CO2 in the North Aegean Sea in October 2013’

The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt

The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region, provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Water samples for phytoplankton enumeration were collected from the upper 30 m during two cruises, the first to the South Atlantic sector (Jan–Feb 2011; 60 °W–15 °E and 36–60 °S) and the second in the South Indian sector (Feb–Mar 2012; 40–120 °E and 36–60 °S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Sub-Tropical, Polar, and Sub-Antarctic Fronts. The influence of environmental parameters, such as sea-surface temperature (SST), salinity, carbonate chemistry (i.e., pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macro-nutrients (i.e., nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB, was assessed statistically. Nanophytoplankton (cells 2–20 μm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, the coccolithophore Emiliania huxleyi and the diatoms Fragilariopsis nana, F. pseudonana and Pseudonitzschia sp. were the most dominant and widely distributed species. A combination of SST, macro-nutrient concentrations and pCO2 were the best statistical descriptors of biogeographic variability of biomineralizing species composition between stations. Emiliania huxleyi occurred in the silicic acid-depleted waters between the Sub-Antarctic Front and the Polar Front, indicating a favorable environment for this coccolithophore in the GCB after spring diatom blooms remove silicic acid to limiting levels. After full consideration of variability in carbonate chemistry and temperature on the distribution of nanoplankton in the GCB, we find that temperature remains the dominant driver of biogeography in a large proportion of the modern Southern Ocean.

Continue reading ‘The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt’

Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea

There is growing evidence that the on-going ocean acidification of the Mediterranean Sea could be favoured by its active overturning circulation. The areas of dense water formation are, indeed, preferential sites for atmospheric carbon dioxide absorption and through them the ocean acidification process can quickly propagate into the deep layers.

In this study we estimated the concentration of anthropogenic CO2 (Cant) in the dense water formation areas of the middle and southern Adriatic Sea. Using the composite tracer TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) and carbonate chemistry data collected throughout March 2013, our results revealed that a massive amount of Cant has invaded all the identified water masses. High Cantconcentration was detected at the bottom layer of the Pomo Pit (middle Adriatic, 96.8 ± 9.7 µmol kg−1) and Southern Adriatic Pit (SAP, 85.2 ± 9.4 µmol kg−1), associated respectively with the presence of North Adriatic Dense Water (NAdDW) and Adriatic Dense Water (AdDW). This anthropogenic contamination was clearly linked to the dense water formation events, which govern strong CO2 flux from the atmosphere to the sea and the sinking of dense, CO2-rich surface waters to the deep sea. However, a very high Cant level (94.5 ± 12.5 µmol kg−1) was also estimated at the intermediate layer, as a consequence of a recent vertical mixing that determined the physical and biogeochemical modification of the water of Levantine origin (i.e. Modified Levantine Intermediate Water, MLIW) and favoured the atmospheric CO2 intrusion.

The penetration of Cant in the Adriatic Sea determined a significant pH reduction since the pre-industrial era (– 0.139 ± 0.019 pH units on average). This estimation was very similar to the global Mediterranean Sea acidification, but it was again more pronounced at the bottom of the Pomo Pit, within the layer occupied by NAdDW (– 0.157 ± 0.019 pH units), and at the intermediate layer of the recently formed MLIW (– 0.143 ± 0.019 pH units). Our results indicate that the Adriatic Sea could potentially be one of the Mediterranean regions most affected by the ocean acidification and also demonstrate its active role in sequestering and storing Cant.

Continue reading ‘Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea’

Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of submarine volcanic CO2 vents

Ocean acidification (OA) predicted for 2100 is expected to shift seagrass epiphyte communities towards the dominance of more tolerant non-calcifying taxa. However, little is known about the indirect effects of such changes on food provision to key seagrass consumers. We found that epiphyte communities of the seagrass Posidonia oceanica in two naturally acidified sites (i.e. north and south sides of a volcanic CO2 vent) and in a control site away from the vent at the Ischia Island (NW Mediterranean Sea) significantly differed in composition and abundance. Such differences involved a higher abundance of non-calcareous crustose brown algae and a decline of calcifying polychaetes in both acidified sites. A lower epiphytic abundance of crustose coralline algae occurred only in the south side of the vents, thus suggesting that OA may alter epiphyte assemblages in different ways due to interaction with local factors such as differential fish herbivory or hydrodynamics. The OA effects on food items (seagrass, epiphytes, and algae) indirectly propagated into food provision to the sea urchin Paracentrotus lividus, as reflected by a reduced P. oceanica exploitation (i.e. less seagrass and calcareous epiphytes in the diet) in favour of non-calcareous green algae in both vent sites. In contrast, we detected no difference close and outside the vents neither in the composition of sea urchin diet nor in the total abundance of calcareous versus non-calcareous taxa. More research, under realistic scenarios of predicted pH reduction (i.e. ≤ 0.32 units of pH by 2100), is still necessary to better understand cascading effects of this altered urchin exploitation of food resources under acidified conditions on ecosystem diversity and function.

Continue reading ‘Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of submarine volcanic CO2 vents’

Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy

Alterations in seagrass epiphytic communities are expected under future ocean acidification conditions, yet this hypothesis has been little tested in situ. A Free Ocean Carbon Dioxide Enrichment system was used to lower pH by a ~0.3 unit offset within a partially enclosed portion (1.7 m3) of a Posidonia oceanica meadow (11 m depth) between June 21 and November 3, 2014. Leaf epiphytic community composition (% cover) and bulk epiphytic mineralogy were compared every 4 weeks within three treatments, located in the same meadow: a pH-manipulated (experimental enclosure) and a control enclosure, as well as a nearby ambient area. Percent coverage of invertebrate calcifiers and crustose coralline algae (CCA) did not appear to be affected by the lowered pH. Furthermore, fleshy algae did not proliferate at lowered pH. Only Foraminifera, which covered less than 3% of leaf surfaces, declined in manner consistent with ocean acidification predictions. Bulk epiphytic magnesium carbonate composition was similar between treatments and percentage of magnesium appeared to increase from summer to autumn. CCA did not exhibit any visible skeleton dissolution or mineral alteration at lowered pH and carbonate saturation state. Negative impacts from ocean acidification on P. oceanica epiphytic communities were smaller than expected. Epiphytic calcifiers were possibly protected from the pH treatment due to host plant photosynthesis inside the enclosure where water flow is slowed. The more positive outcome than expected suggests that calcareous members of epiphytic communities may find refuge in some conditions and be resilient to environmentally relevant changes in carbonate chemistry.

Continue reading ‘Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 991,916 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book