Posts Tagged 'field'

Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages

Increasing atmospheric carbon dioxide and its dissolution in seawater have reduced ocean pH and carbonate ion concentrations, with potential implications on calcifying organisms. To assess the response of large Caribbean benthic foraminifera to low carbonate saturation conditions, we analyzed benthic foraminifers’ abundance and relative distribution in surface sediments in proximity to low-carbonate-saturation submarine springs and at adjacent control sites. Our results show that the total abundance of large benthic foraminifera was significantly lower at the low-pH submarine springs than at control sites, although responses were species specific. The relative abundance of high-magnesium, porcelaneous foraminifera was higher than that of hyaline foraminifera at the low-pH springs due to the abundant Archaias angulatus, a chlorophyte-bearing foraminifer, which secretes a large and robust test that is more resilient to dissolution at low-calcite saturation. The different assemblages found at the submarine springs indicate that calcareous symbiont-barren foraminifera are more sensitive to the effects of ocean acidification than agglutinated and symbiont-bearing foraminifera, suggesting that future ocean acidification will likely impact natural benthic foraminifera populations.

Continue reading ‘Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages’

Climate change does not affect seafood quality of a common targeted fish

Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near‐future ocean warming and acidification on the growth, health and seafood quality of a recreationally and economically important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near‐future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro‐and micronutrients, moisture, ash, and total N). Yellowfin bream appear to be highly resilient to predicted near‐future ocean climate change, which might be facilitated by their broad spatio‐temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near‐future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats, and imply their sustainable and viable fisheries into the future.We contend that widely‐distributed species that span large geographic areas and habitats can be “climate‐winners” by being resilient to negative direct impacts of near‐future oceanic and estuarine climate change.
Continue reading ‘Climate change does not affect seafood quality of a common targeted fish’

Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)

The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30% bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.

Continue reading ‘Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)’

Condition of pteropod shells near a volcanic CO2 vent region


 • in situ shell dissolution and change in shell biomass were the predominant features observed in the live pteropods collected within and nearby CO2 vent regions.

• Low pteropod biomass shells (collected nearby the CO2 vents) were more fragile and therefore more prone to fracture than the more robust, high biomass shells (collected in the control stations).

• In the Gulf of Naples, intermittent shifts away from optimum Ωar values can significantly affect pteropod calcification despite waters remaining oversaturated.


Natural gradients of pH in the ocean are useful analogues for studying the projected impacts of Ocean Acidification (OA) on marine ecosystems. Here we document the in situ impact of submarine CO2 volcanic emissions (CO2 vents) on live shelled-pteropods (planktonic gastropods) species Creseis conica in the Gulf of Naples (Tyrrhenian Sea, Mediterranean). Since the currents inside the Gulf will likely drive those pelagic calcifying organisms into and out of the CO2 vent zones, we assume that pteropods will be occasionally exposed to the vents during their life cycle. Shell degradation and biomass were investigated in the stations located within and nearby the CO2 vent emission in relation to the variability of sea water carbonate chemistry. A relative decrease in shell biomass (22%), increase in incidence of shell fractures (38%) and extent of dissolution were observed in Creseis conica collected in the Gulf of Naples compared to those from the Northern Tyrrhenian Sea (control stations). These results suggest that discontinuous but recurrent exposure to highly variable carbonate chemistry could consistently affect the characteristic of the pteropod shells.

Continue reading ‘Condition of pteropod shells near a volcanic CO2 vent region’

Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment (update)

A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on the phytoplankton species Phaeodactylum tricornutum (P. tricornutum), Thalassiosira weissflogii (T. weissflogii) and Emiliania huxleyi (E. huxleyi) and their production ability of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), as well as four halocarbon compounds, bromodichloromethane (CHBrCl2), methyl bromide (CH3Br), dibromomethane (CH2Br2) and iodomethane (CH3I). Over a period of 5 weeks, P. tricornuntum outcompeted T. weissflogii and E. huxleyi, comprising more than 99% of the final biomass. During the logarithmic growth phase (phase I), mean DMS concentration in high pCO2 mesocosms (1000µatm) was 28% lower than that in low pCO2 mesocosms (400µatm). Elevated pCO2 led to a delay in DMSP-consuming bacteria concentrations attached to T. weissflogii and P. tricornutum and finally resulted in the delay of DMS concentration in the high pCO2 treatment. Unlike DMS, the elevated pCO2 did not affect DMSP production ability of T. weissflogii or P. tricornuntum throughout the 5-week culture. A positive relationship was detected between CH3I and T. weissflogii and P. tricornuntum during the experiment, and there was a 40% reduction in mean CH3I concentration in the high pCO2 mesocosms. CHBrCl2, CH3Br, and CH2Br2 concentrations did not increase with elevated chlorophyll a (Chl a) concentrations compared with DMS(P) and CH3I, and there were no major peaks both in the high pCO2 or low pCO2 mesocosms. In addition, no effect of elevated pCO2 was identified for any of the three bromocarbons.

Continue reading ‘Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment (update)’

Seawater carbonate chemistry distributions across the Eastern South Pacific Ocean sampled as part of the GEOTRACES project and changes in marine carbonate chemistry over the past 20 years

The US GEOTRACES Eastern Pacific Zonal Transect in 2013 that sampled in the South Pacific Ocean has provided an opportunity to investigate the biogeochemical cycling of trace elements and isotopes (TEIs) and seawater carbon dioxide (CO2)–carbonate chemistry. Across the Peru to Tahiti section, the entire water column was sampled for total alkalinity (TA) and dissolved inorganic carbon (DIC), in addition to core hydrographic and chemical measurements conducted as part of the GEOTRACES cruise. From the nutrient-rich, low-oxygen coastal upwelling region adjacent to Peru to the oligotrophic central Pacific, very large horizontal gradients in marine carbonate chemistry were observed. Near the coast of Peru, upwelling of CO2-rich waters from the oxygen-deficient zone (ODZ) impinged at the surface with very high partial pressures of CO2 (pCO2; >800–1,200 μatm), and low pH (7.55–7.8). These waters were also undersaturated with respect to aragonite, a common calcium carbonate (CaCO3) mineral. These chemical conditions are not conducive to pelagic and shelf calcification, with shelf calcareous sediments vulnerable to CaCO3 dissolution, and to the future impacts of ocean acidification. A comparison to earlier data collected from 1991 to 1994 suggests that surface seawater DIC and pCO2 have increased by as much as 3 and 20%, respectively, while pH and saturation state for aragonite (Ωaragonite) have decreased by as much as 0.063 and 0.54, respectively. In intermediate waters (∼200–500 m), dissolved oxygen has decreased (loss of up to -43 μmoles kg-1) and nitrate increased (gain of up to 5 μmoles kg-1) over the past 20 years and this likely reflects the westward expansion of the ODZ across the central Eastern South Pacific Ocean. Over the same period, DIC and pCO2 increased by as much as +45 μmoles kg-1 and +145 μatm, respectively, while pH and Ωaragonite decreased by -0.091 and -0.45, respectively. Such rapid change in pH and CO2–carbonate chemistry over the past 20 years reflects substantial changes in the ODZ and water-column remineralization of organic matter with no direct influence from uptake of anthropogenic CO2. Estimates of anthropogenic carbon (i.e., CANT) determined using the TrOCA method showed no significant changes between 1993 and 2014 in these water masses. These findings have implications for changing the thermodynamics and solubility of intermediate water TEIs, but also for the marine ecosystem of the upper waters, especially for the vertically migrating community present in the eastern South Pacific Ocean.

Continue reading ‘Seawater carbonate chemistry distributions across the Eastern South Pacific Ocean sampled as part of the GEOTRACES project and changes in marine carbonate chemistry over the past 20 years’

Development of a low-cost marine pCO2 sensor to characterise the natural variability of coastal carbonate chemistry in the context of global change

To aid the investigation into natural variability of coastal carbonate chemistry, pCO2 sensors are an invaluable tool for ease of in-situ data collection. However, these sensors can require not only specific expertise of utilisation but are also inaccessible to many due to high cost. In lieu of an expensive sensor, the most common way to measure pCO2 in seawater is with discrete sampling of water and subsequent analysis for two of the three parameters of the carbonate system (dissolved inorganic carbon (DIC), Total alkalinity (AT) or pH) which is then used to calculate a final pCO2 value. This method requires a substantial amount of cost, time and labour to not only retrieve seawater from depth, but also employ precise expertise in analyses with each step being potentially fraught with human error.

This research addressed these issues by developing a low-cost, easy-to-use sensor which efficiently and accurately measured coastal marine pCO2. This required a research and development stage where the sensor and housing design was tested at The University of Glasgow (Chapter 2 and 3) and also deployed in a temperate (Chapter 4) and tropical (Chapter 5) field environment. Seawater samples were also taken and their carbonate chemistry analysed in conjunction with sensor readings to calibrate and confirm the accuracy of the sensor. Along with the developed sensor and the collection of in-situ pCO2 data, other marine variables were also measured (pH, dissolved oxygen, chlorophyll, salinity, temperature, depth, photosynthetically active radiation, dissolved inorganic carbon and total alkalinity) to obtain a characterisation of the areas and an analysis of the drivers behind these variables.

The observed variability in the temperate area of Caol Scotnish, Loch Sween, Scotland was shown to be highly dependent on biological activity and the tidal action which exchanged different water masses into and out of the site. The observed variability in the tropical area of El Quseir, Egypt was shown to be highly dependent on biological activity, temperature and weather events. The sensor coped well in characterising the concentrations of pCO2 in both sites. There is a larger fluctuation of pCO2 in the tropical site than compared with the temperate site which is dictated by the relative hydrography in each area and the particular weather conditions experienced.

Continue reading ‘Development of a low-cost marine pCO2 sensor to characterise the natural variability of coastal carbonate chemistry in the context of global change’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,853 hits


Ocean acidification in the IPCC AR5 WG II

OUP book