Posts Tagged 'field'

Carbonate chemistry variability in the East coast of Gran Canaria island

1.1. Carbonate system variability: Marine acidification
In a natural occurring way, there have always been great variability of greenhouse gases concentration in the atmosphere (carbon dioxide, nitrous oxide, methane). Those oscillations have always presented a quite constant range over the last 650 thousand years before the Industrial Revolution. From then on, in 1750, the greenhouse gases’ concentrations have suffered a sharp increase due to emissions from anthropogenic activities (Joos and Spahni, 2007).

Continue reading ‘Carbonate chemistry variability in the East coast of Gran Canaria island’

Temporal and spatial variability of the CO2 system in a riverine influenced area of the Mediterranean Sea, the Northern Adriatic

Coastal ecosystems are subject to multiple processes that drive pH change over time. Therefore, efforts to understand the variability in the coastal carbonate system are crucial to assess the marine system vulnerability to acidification. The variations of the carbon dioxide (CO2) system were studied, from December 2014 to January 2017, on 6 stations along a transect latitudinally crossing the northern Adriatic, from the Po River delta to the Istrian Peninsula. The study aims to evaluate the influence of riverine inputs and other environmental drivers, such as temperature, air-sea CO2 exchanges and biological processes, on the carbonate system. Riverine discharges significantly affected the carbonate system, as they are an input of total alkalinity and nutrients. High alkalinity concentrations were measured in low salinity waters and a significant negative correlation between salinity and alkalinity was found. The influence of biological processes was underscored by the significant inverse correlation between pHT at a constant temperature (pHT25^°C) and apparent oxygen utilization, and by the positive correlation between chlorophyll a and pHT25^°C in samplings close to flood events. Moreover, thermic and non-thermic partial pressure (p) of CO2 in surface waters was evaluated. pCO2 was more strongly influenced by the thermal effect during summer, while the biological effect prevailed in the other seasons. The analysis of air-sea CO2 fluxes highlighted that the area acts as a sink of CO2 during winter, spring and autumn and as a source during summer. A biogeochemical simulation was used for bottom and surface waters to estimate future changes in northern Adriatic carbonate chemistry with the increase of anthropogenic CO2 and temperature, and to understand how biological processes could affect the expected trends. By 2100, under the IPCC scenario of business as usual and without the effect of biological processes, pHT is expected to decrease by ∼0.3 and the aragonite saturation is expected to decline by ∼1.3, yet not reach undersaturation values. Even though the northern Adriatic is characterized by high alkalinity buffering, pH seasonal variability will likely be more pronounced, due to the strong decoupling of production and respiration processes driven by stratification of the water column.

Continue reading ‘Temporal and spatial variability of the CO2 system in a riverine influenced area of the Mediterranean Sea, the Northern Adriatic’

Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord

Environmental change can have a significant impact on biogeochemical cycles at high latitudes and be particularly important in ecologically valuable fjord ecosystems. Seasonality in biogeochemical cycling in a sub-Arctic fjord of northern Norway (Kaldfjorden) was investigated from October 2016 to September 2018. Monthly changes in total inorganic carbon (CT), alkalinity (AT), major nutrients and calcium carbonate saturation (Ω) were driven by freshwater discharge, biological production and mixing with subsurface carbon-rich coastal water. Stable oxygen isotope ratios indicated that meteoric water (snow melt, river runoff, precipitation) had stratified and freshened surface waters, contributing to 81% of the monthly CT deficit in the surface layer. The timing and magnitude of freshwater inputs played an important role in Ω variability, reducing AT and CT by dilution. This dilution effect was strongly counteracted by the opposing effect of primary production that dominated surface water Ω seasonality. The spring phytoplankton bloom rapidly depleted nitrate and CT to drive highest Ω (~2.3) in surface waters. Calcification reduced AT and CT, which accounted for 21% of the monthly decrease in Ω during a coccolithophore bloom. Freshwater runoff contributed CT, AT and silicates of terrestrial origin to the fjord. Lowest surface water Ω (~1.6) resulted from organic matter remineralisation and mixing into subsurface water during winter and spring. Surface waters were undersaturated with respect to atmospheric CO2, resulting in modest uptake of –0.32 ± 0.03 mol C m–2 yr–1. Net community production estimated from carbon drawdown was 14 ± 2 g C m–2 yr–1 during the productive season. Kaldfjorden currently functions as an atmospheric CO2 sink of 3.9 ± 0.3 g C m–2 yr–1. Time-series data are vital to better understand the processes and natural variability affecting biogeochemical cycling in dynamic coastal regions and thus better predict the impact of future changes on important fjord ecosystems.

Continue reading ‘Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord’

Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic peninsula

We show an annual overview of the sea-air CO2 exchanges and primary drivers in the Gerlache Strait, a hotspot for climate change that is ecologically important in the northern Antarctic Peninsula. In autumn and winter, episodic upwelling events increase the remineralized carbon in the sea surface, leading the region to act as a moderate or strong CO2 source to the atmosphere of up to 40 mmol m–2 day–1. During summer and late spring, photosynthesis decreases the CO2 partial pressure in the surface seawater, enhancing ocean CO2 uptake, which reaches values higher than − 40 mmol m–2 day–1. Thus, autumn/winter CO2 outgassing is nearly balanced by an only 4-month period of intense ocean CO2 ingassing during summer/spring. Hence, the estimated annual net sea-air CO2 flux from 2002 to 2017 was 1.24 ± 4.33 mmol m–2 day–1, opposing the common CO2 sink behaviour observed in other coastal regions around Antarctica. The main drivers of changes in the surface CO2 system in this region were total dissolved inorganic carbon and total alkalinity, revealing dominant influences of both physical and biological processes. These findings demonstrate the importance of Antarctica coastal zones as summer carbon sinks and emphasize the need to better understand local/regional seasonal sensitivity to the net CO2 flux effect on the Southern Ocean carbon cycle, especially considering the impacts caused by climate change.

Continue reading ‘Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic peninsula’

Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea


  • Continuous, massive green tides have occurred in the Yellow Sea over the past decade (2007–2018).
  • This study integrates remote sensing, field observation, laboratory measurements and indoor cultivation.
  • Ulva prolifera blooming is influenced by higher concentrations of Fe(II) and HCO3-, and a lower pH.


Over the past decade, massive outbreaks of Ulva prolifera have occurred in the Yellow Sea, China, and caused negative effects to the coastal environments. In response, many scientific investigations have been conducted to ascertain the origins of and reasons for the algal bloom that has resulted in continuous green tides. In this work, we explored the influences of iron and dissolved inorganic carbon (DIC) on the occurrence of green algal blooms. The moderate-resolution imaging spectroradiometer (MODIS) data showed the blooming areas and movement of U. prolifera. Field observation showed that higher Fe(II) concentrations (average 0.145 mg L−1) can be correlated with large Ulva prolifera blooms. Furthermore, lower pH might enhance the accumulation of dissolved carbon into the green algae; a premise that was supported by higher concentrations of CO2(0.037 mmol L−1), HCO3−(2.58 mmol L−1) and the lowest pH value (7.69) being found together at site H11. The indoor iron- and bicarbonate-enrichment experiments further confirmed that higher concentrations of Fe(II) and HCO3− and a lower pH can increase the growth rate of U. prolifera. This study indicates that seawater chemical factors contribute to the long term, ongoing green tides in the Yellow Sea and provides new thoughts for the causes of U. prolifera blooms.

Continue reading ‘Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea’

Effects of nearshore processes on carbonate chemistry dynamics and ocean acidification

Time series from open ocean fixed stations have robustly documented secular changes in carbonate chemistry and long-term ocean acidification (OA) trends as a direct response to increases in atmospheric carbon dioxide (CO2). However, few high-frequency coastal carbon time series are available in reef systems, where most affected tropical marine organisms reside. Seasonal variations in carbonate chemistry at Cheeca Rocks (CR), Florida, and La Parguera (LP), Puerto Rico, are presented based on 8 and 10 years of continuous, high-quality measurements, respectively. This dissertation synthesizes autonomous and bottle observations to model carbonate chemistry and to understand how physical and biological processes affect seasonal carbonate chemistry at both locations. The autonomous carbonate chemistry and oxygen observations are used to examine a mass balance approach using a 1-D model to determine net rates of ecosystem calcification and production (NEC and NEP) from communities close (<5km) to the buoys. The results provide evidence to suggest that seasonal response between benthic metabolism and seawater chemistry at LP is attenuated relative to that at CR because their differences in benthic cover and how benthic metabolism modifies the water chemistry. Simple linear trends cannot explain the feedback between metabolism and reef water chemistry using long-term observations over natural variations. The effects of community production on partial pressure of CO2 (pCO2sw) make these interactions complex at short- and long-term scales. Careful consideration should be taken when inferring local biogeochemical processes, given that pCO2sw (and presumably pH) respond on much shorter time and local scales than dissolved inorganic carbon (DIC) and total alkalinity (TA). The observations highlight the need for more comprehensive observing systems that can reliably measure both the fast-response (pCO2sw, pH) and slow-response (DIC) carbon pools.

Continue reading ‘Effects of nearshore processes on carbonate chemistry dynamics and ocean acidification’

Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “coralporosis” as an indicator of habitat integrity

Ocean acidification is a threat to the net growth of tropical and deep-sea coral reefs, due to gradual changes in the balance between reef growth and loss processes. Here we go beyond identification of coral dissolution induced by ocean acidification and identify a mechanism that will lead to a loss of habitat in cold-water coral reef habitats on an ecosystem-scale. To quantify this, we present in situ and year-long laboratory evidence detailing the type of habitat shift that can be expected (in situ evidence), the mechanisms underlying this (in situ and laboratory evidence), and the timescale within which the process begins (laboratory evidence). Through application of engineering principals, we detail how increased porosity in structurally critical sections of coral framework will lead to crumbling of load-bearing material, and a potential collapse and loss of complexity of the larger habitat. Importantly, in situ evidence highlights that cold-water corals can survive beneath the aragonite saturation horizon, but in a fundamentally different way to what is currently considered a biogenic cold-water coral reef, with a loss of the majority of reef habitat. The shift from a habitat with high 3-dimensional complexity provided by both live and dead coral framework, to a habitat restricted primarily to live coral colonies with lower 3-dimensional complexity represents the main threat to cold-water coral reefs of the future and the biodiversity they support. Ocean acidification can cause ecosystem-scale habitat loss for the majority of cold-water coral reefs.

Continue reading ‘Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “coralporosis” as an indicator of habitat integrity’

Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications

The increasing shellfish aquaculture requires knowledge about nearshore environmental variability to manage sustainably and create climate change adaptation strategies. We used data from mooring time series and in situ sampling to characterize oceanographic and carbonate system variability in three bivalve aquaculture areas located along a latitudinal gradient off the Humboldt Current System. Our results showed pHT <8 in most coastal sites and occasionally below 7.5 during austral spring–summer in the lower (−30°S) and central (−37°S) latitudes, related to upwelling. Farmed mussels were exposed to undersaturated (Ωarag < 1) and hypoxic (<2 ml l−1) waters during warm seasons at −37°S, while in the higher latitude (43°S) undersaturated waters were only detected during colder seasons, associated with freshwater runoff. We suggest that both Argopecten purpuratus farmed at −30°S and Mytilus chilensis farmed at −43°S may enhance their growth during summer due to higher temperatures, lower pCO2, and oversaturated waters. In contrast, Mytilus galloprovincialis farmed at 37°S grows better during spring–summer, following higher temperatures and high pCO2. This knowledge is relevant for aquaculture, but it must be improved using high-resolution time series and in situ experimentation with farmed species to aid their adaptation to climate change and ocean acidification.

Continue reading ‘Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications’

The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities

The oceanic uptake of atmospheric carbon dioxide (CO2) emitted by human activities alters the seawater carbonate system. Here, the chemical status of the Northeast Atlantic is examined by means of a high-quality database of carbon variables based on the GO-SHIP A25 section (1997–2018). The increase of atmospheric CO2 leads to an increase in ocean anthropogenic carbon (Cant) and a decrease in carbonate that is unequivocal in the upper and mid-layers (0–2,500 m depth). In the mid-layer, the carbonate content in the Northeast Atlantic is maintained by the interplay between the northward spreading of recently conveyed Mediterranean Water with excess of carbonate and the arrival of subpolar-origin waters close to carbonate undersaturation. In this study we show a progression to undersaturation with respect to aragonite that could compromise the conservation of the habitats and ecosystem services developed by benthic marine calcifiers inhabiting that depth-range, such as the cold-water corals (CWC) communities. For each additional ppm in atmospheric pCO2 the waters surrounding CWC communities lose carbonate at a rate of − 0.17 ± 0.02 μmol kg−1 ppm−1. The accomplishment of global climate policies to limit global warming below 1.5–2 ℃ will avoid the exhaustion of excess carbonate in the Northeast Atlantic.

Continue reading ‘The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities’

pH variability off Goa (eastern Arabian Sea) and the response of sea urchin to ocean acidification scenarios

The increasing atmospheric CO2 concentration in the last few decades has resulted in a decrease in oceanic pH. In this study, we assessed the natural variability of pH in coastal waters off Goa, eastern Arabian Sea. pHT showed large variability (7.6–8.1) with low pH conditions during south‐west monsoon (SWM), and the variability is found to be associated with upwelling rather than freshwater runoff. Considering that marine biota inhabiting dynamic coastal waters off Goa are exposed to such wide range of natural fluctuations of pH, an acidification experiment was carried out. We studied the impact of low pH on the local population of sea urchin Stomopneustes variolaris (Lamarck, 1816). Sea urchins were exposed for 210 days to three treatments of pHT: 7.96, 7.76 and 7.46. Our results showed that S. variolaris at pHT 7.96 and 7.76 were not affected, whereas the ones at pHT 7.46 showed adverse effects after 120 days and 50% mortality by 210 days. However, even after exposure to low pH for 210 days, 50% organisms survived. Under low pH conditions (pHT 7.46), the elemental composition of sea urchin spines exhibited deposition of excess Sr2+ as compared to Mg2+ ions. We conclude that although the sea urchins would be affected in future high CO2 waters, at present they are not at risk even during the south‐west monsoon when low pH waters reside on the shelf.

Continue reading ‘pH variability off Goa (eastern Arabian Sea) and the response of sea urchin to ocean acidification scenarios’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,014 hits


Ocean acidification in the IPCC AR5 WG II

OUP book