Posts Tagged 'field'

Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans

• Seagrass features differed between control and low pH stations inconsistently in the two vents.

• Carbon content and its surficial accumulation decreased at high pCO2–low pH conditions.

• Carbon storage capacity of the seagrass may not increase at high pCO2-low pH conditions.

Assessing the status of important carbon sinks such as seagrass meadows is of primary importance when dealing with potential climate change mitigation strategies. This study examined plant and sediment properties in seagrass meadows (Cymodocea nodosa (Ucria) Asch.) from two high pCO2–low pH Mediterranean vent systems, located at Milos (Greece) and Vulcano (Italy) Islands, providing insights on carbon storage potential in future acidified oceans. Contrary to what has been suggested, carbon content (both inorganic and organic) and its surficial accumulation decreased at high pCO2–low pH in comparison with controls. The decrease in inorganic carbon may result from the higher solubility of carbonates due to the more acidic conditions. At Vulcano, the seagrass properties (e.g., leaf area, biomass) appeared negatively affected by environmental conditions at high pCO2–low pH conditions and this may have had a detrimental effect on the organic carbon content and accumulation. At Milos, organic carbon decreased at high pCO2–low pH conditions, despite the increase in seagrass aboveground biomass, leaf length and area, probably as a consequence of site-specific features, which need further investigation and may include both biotic and abiotic factors (e.g., oligotrophic conditions, decreased sedimentation rate and input of allochthonous material). Results suggest that, in contrast to previous predictions based exclusively on the expected positive response of seagrasses to ocean acidification, carbon storage capacity of the seagrass C. nodosa may not increase at high pCO2-low pH conditions. This study emphasizes the need to investigate further the potential alteration in the climate mitigation service delivered by seagrass meadows in acidified oceans.

Continue reading ‘Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans’

The oceanic sink for anthropogenic CO2 from 1994 to 2007

We quantify the oceanic sink for anthropogenic carbon dioxide (CO2) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year−1 and represents 31 ± 4% of the global anthropogenic CO2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO2, substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.

Continue reading ‘The oceanic sink for anthropogenic CO2 from 1994 to 2007’

Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus

While the value of giant kelp (Macrocystis pyrifera) as a habitat-forming foundation species is well-understood, it is unclear how they impact the oxygen concentration and pH of the surrounding seawater, and further, how such a dynamic abiotic environment will affect eco-evolutionary dynamics in a context of global change. Here, we profiled the nearshore kelp forest environment in Southern California to understand changes in dissolved oxygen (DO) and pH with high spatiotemporal resolution. We then examined transgenerational effects using sea urchins (Strongylocentrotus purpuratus) as our study organism. Using enclosures on the benthos, we conditioned adult sea urchins in situ at two locations – one inside the kelp forest and one outside the kelp forest. After a 11-week conditioning period timed to coincide with gametogenesis in the adults, the urchins were collected, spawned, and cultures of their progeny were raised in the laboratory in order to assess their performance to simulated ocean acidification. In terms of the physical observations, we observed significant changes in DO and pH not only when comparing sites inside and outside of the kelp forest, but also between surface and benthic sensors at the same site. DO and pH at the benthos differed in mean, the amplitude of the diel signal, and in the profile of background noise of the signal. Ultimately, these results indicated that both DO and pH were more predictably variable inside of the kelp forest environment. On the biological side, we found that adult sea urchins inside the kelp forest produced more protein-rich eggs that developed into more pH-resilient embryos. Overall, this study in a temperate kelp forest ecosystem is one of the first studies to not only observe biological response to highly characterized environmental variability in situ, but also to observe such changes in a transgenerational context.

Continue reading ‘Variability of seawater chemistry in a kelp forest environment is linked to in situ transgenerational effects in the purple sea urchin, Strongylocentrotus purpuratus’

Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption

• A large bloom of phytoplankton was detected in the surface waters of the Reloncaví fjord following the Calbuco volcano eruption.

• Subsequent to the Calbuco volcano eruption, higher N2O, CH4 and SO42− concentrations were observed in Fjord surface waters close to areas of river discharge.

• Optimal juvenile mussel growth was observed in refugee subsurface depths coinciding with increased aragonite saturation.

• Thus, the observed trends in the carbonate system and nutrient outputs may be valuable for developing effective management strategies for mussel aquaculture in the Reloncaví Fjord.

This study investigates the immediate and mid-term effects of the biogeochemical variables input into the Reloncaví fjord (41°40′S; 72°23′O) as a result of the eruption of Calbuco volcano. Reloncaví is an estuarine system supporting one of the largest mussels farming production within Northern Chilean-Patagonia. Field-surveys were conducted immediately after the volcanic eruption (23–30 April 2015), one month (May 2015), and five months posterior to the event (September 2015). Water samples were collected from three stations along the fjord to determine greenhouse gases [GHG: methane (CH4), nitrous oxide (N2O)], nutrients [NO3−, NO2−, PO43−, Si(OH)4, sulphate (SO42−)], and carbonate systems parameters [total pH (pHT), temperature, salinity, dissolved oxygen (O2), and total alkalinity (AT)]. Additionally, the impact of physicochemical changes in the water column on juveniles of the produced Chilean blue mussel, Mytilus chilensis, was also studied. Following the eruption, a large phytoplankton bloom led to an increase in pHT, due to the uptake of dissolved-inorganic carbon in photic waters, potentially associated with the runoff of continental soil covered in volcanic ash. Indeed, high surface SO42− and GHG were observed to be associated with river discharges. No direct evidence of the eruption was observed within the carbonate system. Notwithstanding, a vertical pattern was observed, with an undersaturation of aragonite (ΩAr < 1) both in brackish surface (10 m), and saturated values in subsurface waters (3 to 7 m). Simultaneously, juvenile mussel shells showed maximized length and weight at 4 m depth. Results suggest a localized impact of the volcanic eruption on surface GHG, nutrients and short-term effects on the carbonate system. Optimal conditions for mussel calcification were identified within a subsurface refuge in the fjord. These specific attributes can be integrated into adaptation strategies by the mussel aquaculture industry to confront ocean acidification and changing runoff conditions.

Continue reading ‘Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption’

The internal consistency of the marine carbon dioxide system for high latitude shipboard and in situ monitoring

• Best calculations from combination of T,P-dependent and non-dependent parameters

• The dissociation constants of M73 and L yielded the best internal consistency

• Monte Carlo simulation of uncertainty propagation shows combined uncertainty to be more dependent on input parameters, less on dissociation constants

• Internal consistency study for deep ocean conditions is required

Deep convection in the Labrador Sea supplies large amounts of anthropogenic carbon to the ocean’s interior. We use measurements of all four measurable CO2 system parameters made along AR7W (across Labrador Sea) between 2013 and 2015 to assess the internal consistency of the carbonate system, including, as appropriate, conversion to in situ temperature (T) and pressure (P). The best agreement between measured and calculated values was obtained through combination of T,P-dependent (pH or pCO2) and non-dependent (TA or DIC) parameters. Use of the dissociation constants of Mehrbach et al. (1973) as refit by Dickson and Millero (1987) and Lueker et al. (2000) yielded the best internal consistency irrespective of the input parameters used. A Monte Carlo simulation demonstrated that the propagated uncertainty (i.e. combined standard uncertainty) of calculated parameters of the carbonate system is (a) always larger than the analytical precision of the measurements themselves; (b) strongly dependent on the choice of input parameters and uncertainties; (c) less dependent on choice of the specific set of constants. For calculation of other parameters of the carbonate system from TA and DIC measurements made throughout the Labrador Sea time-series, the estimated combined standard uncertainty of calculated pCO2 and pH based on the Monte Carlo simulation is ~ 13 μatm and ~ 0.012 pH units respectively, with accuracy relative to laboratory-based measurement estimated to be between −3 and − 13 μatm and 0.002 and 0.007 pH units. Internal consistency especially at in situ temperature and pressure conditions is important for rapidly developing sensor-based monitoring programs in the region, including measurement of pH and/or pCO2 from gliders, profiling floats and moorings. We highlight uncertainty associated with the large pressure effect on pH and pCO2, and recommend a study of carbonate system internal consistency under deep ocean conditions that addresses pressure effects on calculations.

Continue reading ‘The internal consistency of the marine carbon dioxide system for high latitude shipboard and in situ monitoring’

Effects of elevated CO2 on a natural diatom community in the subtropical NE Atlantic

Diatoms are silicifying phytoplankton contributing about one quarter to primary production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set up a plankton community experiment at the coast of Gran Canaria (Canary Islands, Spain) to investigate the response of subtropical diatom assemblages to elevated seawater pCO2. Therefore, natural plankton communities were enclosed for 32 days in in situ mesocosms (∼8 m3 volume) with a pCO2 gradient ranging from 380 to 1140 μatm. Halfway through the study we added nutrients to all mesocosms (N, P, Si) to simulate injections through eddy-induced upwelling which frequently occurs in the region. We found that the total diatom biomass remained unaffected during oligotrophic conditions but was significantly positively affected by high CO2 after nutrient enrichment. The average cell volume and carbon content of the diatom community increased with CO2. CO2 effects on diatom biomass and species composition were weak during oligotrophic conditions but became quite strong above ∼620 μatm after the nutrient enrichment. We hypothesize that the proliferation of diatoms under high CO2 may have been caused by a fertilization effect on photosynthesis in combination with reduced grazing pressure. Our results suggest that OA in the subtropics may strengthen the competitiveness of (large) diatoms and cause changes in diatom community composition, mostly under conditions when nutrients are injected into oligotrophic systems.

Continue reading ‘Effects of elevated CO2 on a natural diatom community in the subtropical NE Atlantic’

Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates

Experiments have shown that increasing dissolved CO2 concentrations (i.e. Ocean Acidification, OA) in marine ecosystems may act as nutrient for primary producers (e.g. fleshy algae) or a stressor for calcifying species (e.g., coralline algae, corals, molluscs). For the first time, rapid habitat dominance shifts and altered competitive replacement from a reef-forming to a non-reef-forming biogenic habitat were documented over one-year exposure to low pH/high CO2 through a transplant experiment off Vulcano Island CO2 seeps (NE Sicily, Italy). Ocean acidification decreased vermetid reefs complexity via a reduction in the reef-building species density, boosted canopy macroalgae and led to changes in composition, structure and functional diversity of the associated benthic assemblages. OA effects on invertebrate richness and abundance were nonlinear, being maximal at intermediate complexity levels of vermetid reefs and canopy forming algae. Abundance of higher order consumers (e.g. carnivores, suspension feeders) decreased under elevated CO2 levels. Herbivores were non-linearly related to OA conditions, with increasing competitive release only of minor intertidal grazers (e.g. amphipods) under elevated CO2 levels.
Our results support the dual role of CO2 (as a stressor and as a resource) in disrupting the state of rocky shore communities, and raise specific concerns about the future of intertidal reef ecosystem under increasing CO2 emissions. We contribute to inform predictions of the complex and nonlinear community effects of OA on biogenic habitats, but at the same time encourage the use of multiple natural CO2 gradients in providing quantitative data on changing community responses to long-term CO2 exposure.

Continue reading ‘Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,182,888 hits


Ocean acidification in the IPCC AR5 WG II

OUP book