Posts Tagged 'algae'

Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools

Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification, and likely already impacting marine ecosystems. In particular, there is concern that coastal, benthic calcifying organisms will be negatively affected by ocean acidification, a hypothesis largely supported by laboratory studies. The inter-relationships between carbonate chemistry and marine calcifying communities in situ are complex and natural mesocosms such as tidal pools can provide useful community-level insights. In this study, we manipulated the carbonate chemistry of intertidal pools to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC) at emersion. Adding CO2 at the start of the tidal emersion to simulate future acidification (+1500 μatm pCO2, target pH: 7.5) modified net production and calcification rates in the pools. By day, pools were fertilized by the increased CO2 (+20 % increase in NCP, from 10 to 12 mmol O2 m−2 hr−1), while there was no measurable impact on NCC. During the night, pools experienced net community dissolution (NCC < 0), even in present-day conditions, when waters were supersaturated with regards to aragonite. Adding CO2 in the pools increased nocturnal dissolution rates by 40 % (from −0.7 to −1.0 mmol CaCO3 m−2 hr−1) with no consistent impact on night community respiration. Our results suggest that ocean acidification is likely to alter temperate intertidal community metabolism on sub-daily timescales, enhancing both diurnal community production and nocturnal calcium carbonate dissolution.

Continue reading ‘Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools’

Coral persistence despite marginal conditions in the Port of Miami

Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites—reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.

Continue reading ‘Coral persistence despite marginal conditions in the Port of Miami’

Enhalus acoroides efficiently alleviate ocean acidification by shifting modes of inorganic carbon uptake and increasing photosynthesis when pH drops

Ocean acidification (OA) is causing increasing ecological damage, so it is worthwhile to find efficient and environmentally friendly ways to mitigate OA. The mechanism of inorganic carbon (Ci) absorption and the ability to mitigate OA of the tropical seagrass Enhalus acoroides were investigated in this study. At 2.2 mM Ci concentration, its CO2 fixation efficiency increased to 81.89 t CO2/year/Ha under pH 6.5 from 27.59 t CO2/year/Ha at pH 8.2, and even reached 88.11 t CO2/year/Ha at pH 6.5 with unlimited Ci availability, made possible by three pathways for Ci utilization, which included absorbing CO2 directly, transforming HCO3 into CO2 through extracellular carbonic anhydrase, and absorbing HCO3 directly by anion-exchange protein then transforming it to CO2 through intracellular carbonic anhydrase, as verified by inhibitor addition experiments. The carbon fixation rate increased with decreasing pH, suggesting a greater CO2 absorbing capacity for E. acoroides under acidic conditions, which further demonstrates the possibility of mitigating OA and increasing carbon fixation through conserving and restoring E. acoroides meadows. Due to the strong carbon absorption capacity of E. acoroides, it is very important to strengthen the artificial restoration of E. acoroides seagrass meadows in the environmental management of the coastline.

Continue reading ‘Enhalus acoroides efficiently alleviate ocean acidification by shifting modes of inorganic carbon uptake and increasing photosynthesis when pH drops’

Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species

Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.

Continue reading ‘Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species’

Two treatment methods on Ulva prolifera bloom result in distinctively different ecological effects in coastal environment

Green tides Ulva prolifera have broken out in the Yellow Sea for more than 10 years, becoming a periodic ecological disaster. The largest-ever green tide that occurred in 2021 promoted innovation in treatment methods. Different from the traditional harvest-disposal method, a microbial complex formulation was firstly sprayed on the harvest U. prolifera that promotes rapid degradation, and then fermented and disposed into the sea. At present, little was known about the ecological effects of those different treatment methods. In order to examine this hypothesis, we run an in-lab incubation of 60 days to simulate the two methods to degrade U. prolifera, with focuses on the degradation ensued impacts on water quality. The degradation process of fresh U. prolifera over two months was dominated by the continuous and slow release of DOM, and the concentration of DOM in the water column was hardly observed to decrease within two months. The pre-discomposed-disposal method also significantly altered microbial community structure. The pre-decomposing treatment with microbial complex formulations destroyed U. prolifera cell tissues and changed its physical state in seawater from floating to fast depositing, and increased the degradation rate by about 14 times. The rapid decomposition of the released bioactive organic matter consumed a substantial amount of dissolved oxygen in local seawater, which has the potential risk of causing local hypoxia and acidification in a short-term. The pre-decomposition treatment of U. prolifera could be a practical and efficient countermeasures to U. prolifera blooming. After the complete degradation of the pre-decomposed U. prolifera, the resulting dissolved organic matter could increase TA to resist acidification. Overall, compared with traditional harvest-packing-disposal method, the pre-decomposing-disposal treatment is an efficient and environmental-friendly disposal method to deal with the U. prolifera “green tide”, but it should be used cautiously.

Continue reading ‘Two treatment methods on Ulva prolifera bloom result in distinctively different ecological effects in coastal environment’

Macroalgal cover on coral reefs: spatial and environmental predictors, and decadal trends in the Great Barrier Reef

Macroalgae are an important component of coral reef ecosystems. We identified spatial patterns, environmental drivers and long-term trends of total cover of upright fleshy and calcareous coral reef inhabiting macroalgae in the Great Barrier Reef. The spatial study comprised of one-off surveys of 1257 sites (latitude 11–24°S, coastal to offshore, 0–18 m depth), while the temporal trends analysis was based on 26 years of long-term monitoring data from 93 reefs. Environmental predictors were obtained from in situ data and from the coupled hydrodynamic-biochemical model eReefs. Macroalgae dominated the benthos (≥50% cover) on at least one site of 40.4% of surveyed inshore reefs. Spatially, macroalgal cover increased steeply towards the coast, with latitude away from the equator, and towards shallow (≤3 m) depth. Environmental conditions associated with macroalgal dominance were: high tidal range, wave exposure and irradiance, and low aragonite saturation state, Secchi depth, total alkalinity and temperature. Evidence of space competition between macroalgal cover and hard coral cover was restricted to shallow inshore sites. Temporally, macroalgal cover on inshore and mid-shelf reefs showed some fluctuations, but unlike hard corals they showed no systematic trends. Our extensive empirical data may serve to parameterize ecosystem models, and to refine reef condition indices based on macroalgal data for Pacific coral reefs.

Continue reading ‘Macroalgal cover on coral reefs: spatial and environmental predictors, and decadal trends in the Great Barrier Reef’

Response of juvenile Saccharina japonica to the combined stressors of elevated pCO2 and excess copper

Coastal macroalgae may be subjected to global and local environmental stressors, such as ocean acidification and heavy-metal pollution. We investigated the growth, photosynthetic characteristics, and biochemical compositions of juvenile sporophytes of Saccharina japonica cultivated at two pCO2 levels (400 and 1000 ppmv) and four copper concentrations (natural seawater, control; 0.2 μM, low level; 0.5 μM, medium level; and 1 μM, high level) to better understand how macroalgae respond to ongoing environmental changes. The results showed that the responses of juvenile S. japonica to copper concentrations depended on the pCO2 level. Under the 400 ppmv condition, medium and high copper concentrations significantly decreased the relative growth rate (RGR) and non-photochemical quenching (NPQ) but increased the relative electron transfer rate (rETR) and chlorophyll a (Chl a), chlorophyll c (Chl c), carotenoid (Car), and soluble carbohydrate contents. At 1000 ppmv, however, none of the parameters had significant differences between the different copper concentrations. Our data suggest that excess copper may inhibit the growth of juvenile sporophytes of S. japonica, but this negative effect could be alleviated by CO2-induced ocean acidification.

Continue reading ‘Response of juvenile Saccharina japonica to the combined stressors of elevated pCO2 and excess copper’

Effects of ocean acidification and eutrophication on the growth and photosynthetic performances of a green tide alga Ulva prolifera

With the impact of fossil fuel burning and industrialization, atmospheric CO2 concentration will reach about 1000 ppmv in 2100, and more and more CO2 will be absorbed by ocean, resulting in ocean acidification. The Chinese coastal waters are showing unexpectedly high levels of acidification due to a combination of global ocean acidification and severe regional eutrophication, which is caused by natural accumulation or human activities such as aquacultural tail water input, potentially affecting macroalgal blooms. However, little is known about the combined effects of ocean acidification and entrophication on the eco-physiology of bloom-forming macroalgae. This study investigated Ulva prolifera, a dominant species causing green tide in the South Yellow Sea, and explored its growth and physiological responses under the combination conditions of ocean acidification and enriched nutrients. In this study, U. prolifera thalli were cultured under two CO2 conditions (air and 1000 μatm) and two nutrient conditions (High Nutrient, HN, 135 μmol L-1 N and 8.5 μmol L-1 P; Normal Nutrient, NN, 27 μmol L-1 N and 1.7 μmol L-1 P). The results showed that eutrophication conditions obviously enhanced the relative growth rate and photosynthetic performance of U. prolifera. Elevated pCO2 had no significant effect on U. prolifera growth and photosynthetic performance under normal nutrient conditions. However, under eutrophication conditions elevated pCO2 inhibited U. prolifera growth. Moreover, eutrophication conditions markedly improved the contents of chlorophyll a, chlorophyll b and nitrate reductase activity and inhibited the soluble carbohydrate content, but elevated pCO2 had no significant effect on them under nutrient-replete conditions. In addition, elevated pCO2 significantly reduced the carotenoid content under eutrophication conditions and had no effect on it under normal nutrient conditions. These findings indicate that seawater eutrophication would greatly accelerate U. prolifera bloom, which may also be suppressed to a certain extent by ocean acidification in the future. The study can provide valuable information for predicting the future outbreaks of U. prolifera green tide in nearshore regions.

Continue reading ‘Effects of ocean acidification and eutrophication on the growth and photosynthetic performances of a green tide alga Ulva prolifera’

Season-specific impacts of two projected climate scenarios on intertidal seaweed communities

Predictions regarding the ecological impacts of future climate change often lack nuance when they rely on studies that focus on a single species under one future scenario. The inclusion of factors such as seasonality, multiple projected climate scenarios, and community-level interactions, which can alter how climate related stressors affect a species, will lead to more holistic and well-informed predictions. Rockweeds, such as Silvetia compressa, whose canopies support diverse understory communities, can have strong responses to climate change when in conjunction with these other factors due to narrow tolerance thresholds and tightly coupled species interactions. Therefore, we chose to assess the impacts of climate change on Silvetia by subjecting simplified Silvetia assemblages to elevated temperature and pCO2 in a mesocosm environment. Due to the uncertainty of future climate trajectories and the potential interactions with seasonality, we tested these stressors under two IPCC projected climate scenarios (RCP 2.6 & 4.5) in both the summer and winter. This was coupled with a field experiment involving Silvetia removal to simulate the effect of climate mediated Silvetia loss on natural assemblages. We found that Silvetia abundance declined under RCP 4.5 in both seasons, and this loss of canopy led to shifts in the understory algal assemblage. In contrast, Silvetia increased under RCP 2.6 in the winter, which resulted in an understory assemblage comparable to those observed under ambient conditions. These results indicate that while most future scenarios will reduce present-day Silvetia communities, some scenarios may lead to their recovery. Given these varied results, future experimental climate change research on similarly structured communities should consider seasonality, multiple climate change scenarios, and species interactions in their designs.

Continue reading ‘Season-specific impacts of two projected climate scenarios on intertidal seaweed communities’

Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification

Seagrass meadows are important marine ecosystems for mitigating ocean acidification because of their ability to raise the pH of seawater during the day. This ability may decrease as a result of the loss of these meadows, which is primarily caused by human activities and climate change. Here, we test the effect of seagrass cover loss on seawater carbonate chemistry to understand how the loss of seagrass meadows affects their ability to mitigate ocean acidification. pH, dissolved inorganic carbon (DIC), partial pressure of carbon dioxide (pCO2), and aragonite saturation state (ΩAr) were measured in experimental tidal pools with varying proportions of seagrass coverage: 0% (mimicking a complete loss of seagrass meadows); 1%–29% (mimicking the greatest loss of seagrass meadows); 30%–59% (mimicking a moderate loss of seagrass meadows); and 60%–100% (mimicking the lowest loss of seagrass meadows). It was found that as seagrass cover decreased, pH and ΩAr levels in seawater decreased proportionally during the day, while pCO2 and DIC increased. Additionally, correlation analysis showed a strong significant positive correlation between the seagrass cover and pH (rs = 0.9096, p < 0.0001) and ΩAr (rs = 0.9031, p < 0.0001), as well as a strong significant negative correlation between the seagrass cover and pCO2 (rs = −0.9068, p < 0.0001) and DIC (rs = −0.8947, p < 0.0001). These results imply that the 7% annual global loss in seagrass meadows may limit seagrass meadows’ ability to raise the pH of their surrounding seawater during the day, reducing their potential to mitigate ocean acidification. The study recommends that management strategies that minimize anthropogenic activities that cause seagrass loss be implemented in order for seagrass meadows to continue mitigating ocean acidification within their ecosystem and nearby ecosystems.

Continue reading ‘Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification’

Potential ecosystem regime shift resulting from elevated CO2 and inhibition of macroalgal recruitment by turf algae

Rising carbon dioxide (CO2) concentrations are predicted to cause an undesirable transition from macroalgae-dominant to turf algae-dominant ecosystems due to its effect on community structuring processes. As turf algae are more likely to proliferate due to the CO2 fertilization effect than macroalgae and often inhibit macroalgal recruitment, increased CO2 beyond certain levels may produce novel positive feedback loops that promote turf algae growth and thus can stabilize turf algae-dominant ecosystems. In this study, we built a simple competition model between macroalgae and turf algae in a homogeneous space to investigate the steady-state response of the ecosystem to changes in the partial pressure of CO2 (pCO2). We found that discontinuous regime shifts in response to pCO2 change can occur once turf algae coverage reaches a critical level capable of inhibiting macroalgal recruitment. The effect of localized turf algae density on the success rate of macroalgae recruitment was also investigated using a patch model that simulated a two-dimensional heterogeneous space. This suggested that in addition to the inhibitory effect by turf algae, a self-enhancing effect by macroalgae could also be important in predicting the potential discontinuous regime shifts in response to future pCO2 changes.

Continue reading ‘Potential ecosystem regime shift resulting from elevated CO2 and inhibition of macroalgal recruitment by turf algae’

Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification

Graphical abstract

Simultaneous ocean warming and acidification will alter marine ecosystem structure and directly affect marine organisms. The alga Phaeocystis globosa commonly causes harmful algal blooms in coastal areas of eastern China. P. globosa often outcompetes other species due to its heterotypic life cycle, primarily including colonies and various types of solitary cells. However, little is known about the adaptive response of P. globosa to ocean warming and acidification. This study aimed to reveal the global molecular regulatory networks implicated in the response of P. globosa to simultaneous warming and acidification. After exposure to warming and acidification, the phosphatidylinositol (PI) and mitogen-activated protein kinase (MAPK) signaling pathways of P. globosa were activated to regulate other molecular pathways in the cell, while the light harvesting complex (LHC) genes were downregulated to decrease photosynthesis. Exposure to warming and acidification also altered the intracellular energy flow, with more energy allocated to the TCA cycle rather than to the biosynthesis of fatty acids and hemolytic substances. The upregulation of genes associated with glycosaminoglycan (GAG) degradation prevented the accumulation of polysaccharides, which led to a reduction in colony formation. Finally, the upregulation of the Mre11 and Rad50 genes in response to warming and acidification implied an increase in meiosis, which may be used by P. globosa to increase the number of solitary cells. The increase in genetic diversity through sexual reproduction may be a strategy of P. globosa that supports rapid response to complex environments. Thus, the life cycle of P. globosa underwent a transition from colonies to solitary cells in response to warming and acidification, suggesting that this species may be able to rapidly adapt to future climate changes through life cycle transitions.

Continue reading ‘Response mechanism of harmful algae Phaeocystis globosa to ocean warming and acidification’

No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies

In a future ocean, dissolved organic carbon (DOC) release by seaweed has been considered a pathway for organic carbon that is not incorporated into growth under carbon dioxide (CO2) enrichment/ocean acidification (OA). To understand the influence of OA on seaweed DOC release, a 21-day experiment compared the physiological responses of three seaweed species, two which operate CO2 concentrating mechanisms (CCMs), Ecklonia radiata (C. Agardh) J. Agardh and Lenormandia marginata (Hooker F. and Harvey) and one that only uses CO2 (non-CCM), Plocamium cirrhosum (Turner) M.J. Wynne. These two groups (CCM and non-CCM) are predicted to respond differently to OA dependent on their affinities for Ci (defined as CO2 + bicarbonate, HCO3). Future ocean CO2 treatment did not drive changes to seaweed physiology—growth, Ci uptake, DOC production, photosynthesis, respiration, pigments, % tissue carbon, nitrogen, and C:N ratios—for any species, regardless of Ci uptake method. Our results further showed that Ci uptake method did not influence DOC release rates under OA. Our results show no benefit of elevated CO2 concentrations on the physiologies of the three species under OA and suggest that in a future ocean, photosynthetic CO2 fixation rates of these seaweeds will not increase with Ci concentration.

Continue reading ‘No effect of ocean acidification on growth, photosynthesis, or dissolved organic carbon release by three temperate seaweeds with different dissolved inorganic carbon uptake strategies’

Ocean acidification increases the impact of typhoons on algal communities

Graphical abstract.


  • Algal community dynamics studied with three-year monthly surveys at a CO2 seep
  • Acidification consistently altered community composition across all seasons
  • Structurally complex communities shifted to degraded ‘turf’ state with rising pCO2
  • Acidification-driven community changes were maintained by typhoon disturbance
  • Turf-dominated communities displayed low resistance to typhoons


Long-term environmental change, sudden pulses of extreme perturbation, or a combination of both can trigger regime shifts by changing the processes and feedbacks which determine community assembly, structure, and function, altering the state of ecosystems. Our understanding of the mechanisms that stabilise against regime shifts or lock communities into altered states is limited, yet also critical to anticipating future states, preventing regime shifts, and reversing unwanted state change. Ocean acidification contributes to the restructuring and simplification of algal systems, however the mechanisms through which this occurs and whether additional drivers are involved requires further study. Using monthly surveys over three years at a shallow-water volcanic seep we examined how the composition of algal communities change seasonally and following periods of significant physical disturbance by typhoons at three levels of ocean acidification (equivalent to means of contemporary ∼350 and future ∼500 and 900 μatm pCO2). Sites exposed to acidification were increasingly monopolised by structurally simple, fast-growing turf algae, and were clearly different to structurally complex macrophyte-dominated reference sites. The distinct contemporary and acidified community states were stabilised and maintained at their respective sites by different mechanisms following seasonal typhoon disturbance. Macroalgal-dominated sites were resistant to typhoon damage. In contrast, significant losses of algal biomass represented a near total ecosystem reset by typhoons for the turf-dominated communities at the elevated pCO2 sites (i.e. negligible resistance). A combination of disturbance and subsequent turf recovery maintained the same simplified state between years (elevated CO2 levels promote turf growth following algal removal, inhibiting macroalgal recruitment). Thus, ocean acidification may promote shifts in algal systems towards degraded ecosystem states, and short-term disturbances which reset successional trajectories may ‘lock-in’ these alternative states of low structural and functional diversity.

Continue reading ‘Ocean acidification increases the impact of typhoons on algal communities’

Ocean acidification and aquacultured seaweeds: progress and knowledge gaps

This systematic review aimed to synthesise the existing studies regarding the effects of ocean acidification (OA) on seaweed aquaculture. Ocean acidification scenarios may increase the productivity of aquacultured seaweeds, but this depends on species-specific tolerance ranges. Conversely, seaweed productivity may be reduced, with ensuing economic losses. We specifically addressed questions on: how aquacultured seaweeds acclimatise with an increase in oceanic CO2; the effects of OA on photosynthetic rates and nutrient uptake; and the knowledge gaps in mitigation measures for seaweed farming in OA environments. Articles were searched by using Google Scholar, followed by Scopus and Web of Science databases, limiting the publications from 2001 to 2022. Our review revealed that, among all the OA-related studies on macroalgae, only a relatively small proportion (n < 85) have examined the physiological responses of aquacultured seaweeds. However, it is generally agreed that these seaweeds cannot acclimatise when critical biological systems are compromised. The existing knowledge gaps regarding mitigation approaches are unbalanced and have overly focused on monitoring and cultivation methods. Future work should emphasise effective and implementable actions against OA while linking the physiological changes of aquacultured seaweeds with production costs and profits.

Continue reading ‘Ocean acidification and aquacultured seaweeds: progress and knowledge gaps’

Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

The supply of dissolved inorganic carbon to seaweeds is a key factor regulating photosynthesis. Thinner diffusive boundary layers at the seaweed surface or greater seawater carbon dioxide (CO2) concentrations increase CO2 supply to the seaweed surface. This may benefit seaweeds by alleviating carbon limitation either via an increased supply of CO2 that is taken up by passive diffusion, or via the down-regulation of active carbon concentrating mechanisms (CCMs) that enable the utilization of the abundant ion bicarbonate (HCO3). Laboratory experiments showed that a 5 times increase in water motion increases DIC uptake efficiency in both a non-CCM (Hymenena palmata, Rhodophyta) and CCM (Xiphophora gladiata, Phaeophyceae) seaweed. In a field survey, brown and green seaweeds with active-CCMs maintained their CCM activity under diverse conditions of water motion. Whereas red seaweeds exhibited flexible photosynthetic rates depending on CO2 availability, and species switched from a non-CCM strategy in wave-exposed sites to an active-CCM strategy in sheltered sites where mass transfer of CO2 would be reduced. 97–99% of the seaweed assemblages at both wave-sheltered and exposed sites consisted of active-CCM species. Variable sensitivities to external CO2 would drive different responses to increasing CO2 availability, although dominance of the CCM-strategy suggests this will have minimal impact within shallow seaweed assemblages.

Continue reading ‘Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae’

Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga

Introduction: The coastal macroalgal genus, Ulva, is found worldwide and is considered a nuisance algal genus due to its propensity for forming vast blooms. The response of Ulva to ocean acidification (OA) is of concern, particularly with nutrient enrichment, as these combined drivers may enhance algal blooms because of increased availability of dissolved inorganic resources.

Methods: We determined how a suite of physiological parameters were affected by OA and ammonium (NH4+) enrichment in 22-day laboratory experiments to gain a mechanistic understanding of growth, nutrient assimilation, and photosynthetic processes. We predicted how physiological parameters change across a range of pCO2 and NH4+ scenarios to ascertain bloom potential under future climate change regimes.

Results: During the first five days of growth, there was a positive synergy between pCO2 and NH4+ enrichment, which could accelerate initiation of an Ulva bloom. After day 5, growth rates declined overall and there was no effect of pCO2, NH4+, nor their interaction. pCO2 and NH4+ acted synergistically to increase NO3 uptake rates, which may have contributed to increased growth in the first five days. Under the saturating photosynthetically active radiation (PAR) used in this experiment (500 μmol photon m-2 s-1), maximum photosynthetic rates were negatively affected by increased pCO2, which could be due to increased sensitivity to light when high CO2 reduces energy requirements for inorganic carbon acquisition. Activity of CCMs decreased under high pCO2 and high NH4+ conditions indicating that nutrients play a role in alleviating photodamage and regulating CCMs under high-light intensities.

Discussion: This study demonstrates that OA could play a role in initiating or enhancing Ulva blooms in a eutrophic environment and highlights the need for understanding the potential interactions among light, OA, and nutrient enrichment in regulating photosynthetic processes.

Continue reading ‘Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga’

Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730

Ocean acidification (OA) caused by rising atmospheric CO2 concentration and solar ultraviolet radiation (UVR) resulting from ozone depletion may affect marine organisms, but little is known regarding how unicellular Rhodosorus sp. SCSIO-45730, an excellent species resource containing various biological-active compounds, responds to OA and UVR. Therefore, we conducted a factorial coupling experiment to unravel the combined effects of OA and UVR on the growth, photosynthetic performances, biochemical compositions and enzyme activities of Rhodosorus sp. SCSIO-45730, which were exposed to two levels of CO2 (LC, 400 μatm, current CO2 level; HC, 1000 μatm, future CO2 level) and three levels of UVR (photosynthetically active radiation (PAR), PAR plus UVA, PAR plus UVB) treatments in all combinations, respectively. Compared to LC treatment, HC stimulated the relative growth rate (RGR) due to higher optimum and effective quantum yields, photosynthetic efficiency, maximum electron transport rates and photosynthetic pigments contents regardless of UVR. However, the presence of UVA had no significant effect but UVB markedly reduced the RGR. Additionally, higher carbohydrate content and lower protein and lipid contents were observed when Rhodosorus sp. SCSIO-45730 was cultured under HC due to the ample HCO−3HCO3− applications and active stimulation of metabolic enzymes of carbonic anhydrase and nitrate reductase, thus resulting in higher TC/TN. OA also triggered the production of reactive oxygen species (ROS), and the increase of ROS coincided approximately with superoxide dismutase and catalase activities, as well as phenols contents. However, UVR induced photochemical inhibition and damaged macromolecules, making algal cells need more energy for self-protection. Generally, these results revealed that OA counteracted UVR-related inhibition on Rhodosorus sp. SCSIO-45730, adding our understanding of the red algae responding to future global climate changes.

Continue reading ‘Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730’

Decreased salinity offsets the stimulation of elevated pCO2 on photosynthesis and synergistically inhibits the growth of juvenile sporophyte of Saccharina japonica (Laminariaceae, Phaeophyta)

The combined effect of elevated pCO2 (Partial Pressure of Carbon Dioxide) and decreased salinity, which is mainly caused by freshwater input, on the growth and physiological traits of algae has been poorly assessed. In order to investigate their individual and interactive effects on the development of commercially farmed algae, the juvenile sporophytes of Saccharina japonica were cultivated under different levels of salinity (30, 25 and 20 psu) and pCO2 (400 and 1000 µatm). Individually, decreased salinity significantly reduced the growth rate and pigments of S. japonica, indicating that the alga was low-salinity stressed. The maximum quantum yield, Fv/Fm, declined at low salinities independent of pCO2, suggesting that the hyposalinity showed the main effect. Unexpectedly, the higher pCO2 enhanced the maximum relative electron transport rate (rETRmax) but decreased the growth rate, pigments and soluble carbohydrates contents. This implies a decoupling between the photosynthesis and growth of this alga, which may be linked to an energetic reallocation among the different metabolic processes. Interactively and previously untested, the decreased salinity offset the improvement of rETRmax and aggravated the declines of growth rate and pigment content caused by the elevated pCO2. These behaviors could be associated with the additionally decreased pH that was induced by the low salinity. Our data, therefore, unveils that the decreased salinity may increase the risks of future CO2-induced ocean acidification on the production of S. japonica.

Continue reading ‘Decreased salinity offsets the stimulation of elevated pCO2 on photosynthesis and synergistically inhibits the growth of juvenile sporophyte of Saccharina japonica (Laminariaceae, Phaeophyta)’

Responses of the macroalga Ulva prolifera Müller to ocean acidification revealed by complementary NMR- and MS-based omics approaches

Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.

Continue reading ‘Responses of the macroalga Ulva prolifera Müller to ocean acidification revealed by complementary NMR- and MS-based omics approaches’

  • Reset


OA-ICC Highlights

%d bloggers like this: