Posts Tagged 'photosynthesis'

Combined effects of ocean acidification with morphology, water flow, and algal acclimation on metabolic rates of tropical coralline algae

Coral reefs are currently facing multiple stressors that threaten their health and function, including ocean acidification (OA). OA has been shown to negatively affect many reef calcifiers, such as coralline algae that provide many critical contributions to reef systems. Past studies have focused on how OA independently influences coralline algae, but more research is necessary as it is expected that the effects of OA on coralline algae will vary depending on many other factors. To better understand how algal morphology, water flow, and algal acclimation interact with OA to affect coralline algae, three studies were conducted in Moorea, French Polynesia, from June 2015 to July 2016. In January 2016, I tested the hypothesis that algal individuals with higher morphological complexity would exhibit faster metabolic rates under ambient pCO2 conditions, but would also demonstrate higher sensitivity to OA conditions. For three species of crustose coralline algae, Lithophyllum kotschyanum, Neogoniolithon frutescens, and Hydrolithon reinboldii, algal individuals with more complex morphologies demonstrated faster rates of calcification, photosynthesis, and respiration in the ambient pCO2 treatment than individuals with simpler morphological forms. There also appeared to be a relationship between morphology and sensitivity to OA conditions, with calcification rates negatively correlated with higher morphological complexity. In the summers of 2015 and 2016, I conducted three experiments examining the effects of water flow and OA on different morphologies of coralline algae to test the hypotheses that increased flow would enhance metabolic rates and mitigate the effects of OA, and that algae with more complex morphologies would be more responsive to increased water flow and more sensitive to OA conditions. A field experiment investigating the effects of water flow on Amphiroa fragilissima, L. kotschyanum, N. frutescens, and H. reinboldii detected enhanced rates of calcification, photosynthesis, and respiration with increased flow, and this relationship appeared to be the strongest for the crustose algal species with the highest structural complexity. A flume manipulation examining the combined effects of water flow and OA on A. fragilissima, L. kotschyanum, N. frutescens, H. reinboldii, and Porolithon onkodes suggested that coralline algal species with high structural complexity were the most sensitive to OA conditions. Finally, A. fragilissima and L. kotschyanum were maintained in different pCO2 and water flow conditions in a long-term mesocosm experiment, which indicated that flow was unable to mitigate the effects of OA on coralline algae. In the summer of 2016, I investigated the acclimation potential of A. fragilissima and L. kotschyanum to OA, and predicted that the original treatment conditions would induce phenotypic modifications that would influence algal responses to the end treatment. There were negative effects of long-term exposure of coralline algae to elevated pCO2 conditions on calcification and photosynthesis, though partial acclimation in calcification to OA was observed. The instantaneous exposure of elevated pCO2 had negative impacts on algal calcification, but had a nominal effect on photosynthesis. No effects of long-term or instantaneous exposure to elevated pCO2 were observed for respiration. The results of these studies indicate that the coralline algal response to OA conditions will likely be complex and depend on numerous factors including water flow, morphology, and acclimation potential. Therefore, it is critical that future studies further investigate the effects of these factors; specifically examining the mechanisms that underlie these responses in order to better predict the future of coralline algae and thus coral reef ecosystems in a more acidic ocean.

Continue reading ‘Combined effects of ocean acidification with morphology, water flow, and algal acclimation on metabolic rates of tropical coralline algae’

Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization

Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m−2 s−1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.

Continue reading ‘Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization’

Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates

Health of tropical coral reefs depends largely on the balance between constructive (calcification and cementation) and destructive forces (mechanical-chemical degradation). Gradual increase in dissolved CO2 and the resulting decrease in carbonate ion concentration (“ocean acidification”) in ocean surface water may tip the balance toward net mass loss for many reefs. Enhanced nutrients and organic loading in surface waters (“eutrophication”), may increase the susceptibility of coral reef and near shore environments to ocean acidification. The impacts of these processes on coral calcification have been repeatedly reported, however the synergetic effects on bioerosion rates by sponges are poorly studied. Erosion by excavating sponges is achieved by a combination of chemical dissolution and mechanical chip removal. In this study, Cliona caribbaea, a photosymbiont-bearing excavating sponge widely distributed in Caribbean reef habitats, was exposed to a range of CO2 concentrations, as well as different eutrophication levels. Total bioerosion rates, estimated from changes in buoyant weights over 1 week, increased significantly with pCO2 but not with eutrophication. Observed chemical bioerosion rates were positively affected by both pCO2 and eutrophication but no interaction was revealed. Net photosynthetic activity was enhanced with rising pCO2 but not with increasing eutrophication levels. These results indicate that an increase in organic matter and nutrient renders sponge bioerosion less dependent on autotrophic products. At low and ambient pCO2, day-time chemical rates were ~50% higher than those observed at night-time. A switch was observed in bioerosion under higher pCO2 levels, with night-time chemical bioerosion rates becoming comparable or even higher than day-time rates. We suggest that the difference in rates between day and night at low and ambient pCO2 indicates that the benefit of acquired energy from photosynthetic activity surpasses the positive effect of increased pCO2 levels at night due to holobiont respiration. This implies that excavation must cost cellular energy, by processes, such as ATP usage for active Ca2+ and/or active proton pumping. Additionally, competition for dissolved inorganic carbon species may occur between bioerosion and photosynthetic activity by the symbionts. Either way, the observed changing role of symbionts in bioerosion can be attributed to enhanced photosynthetic activity at high pCO2 levels.

Continue reading ‘Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates’

Ecological performance of construction materials subject to ocean climate change

Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages.

Continue reading ‘Ecological performance of construction materials subject to ocean climate change’

Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins

Highlights

  • Strain of Alexandrium tamarense isolated from East China Seas, showed a significant response to elevated CO2 levels in growth and toxicity.
  • Strain ATDH grew faster and showed a larger density when exposed to elevated CO2 concentration, especially in the exponential period.
  • The concentration per cell of each PST derivate varied and eventually caused the cellular toxicity increased when exposed to higher pCO2.


Abstract

In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.

Continue reading ‘Effect of CO2 on growth and toxicity of Alexandrium tamarense from the East China Sea, a major producer of paralytic shellfish toxins’

Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi

Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4–6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3-was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of CCMs.

Continue reading ‘Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi’

The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta)

Ocean acidification (OA) and coastal eutrophication affect coastal marine organisms. We studied the physiological responses of Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) to increased concentrations of CO2 and NH4 +. Incubation treatments were applied at two different pH units (low, 7.5; high (control), 7.9) and three different NH4 + concentrations (low, 10; medium, 50; high, 100 μM). Growth, rates of photosynthetic oxygen evolution, and NH4 + uptake rates were affected by both elevated CO2 and NH4 + conditions. The changes in the pH of culture media were influenced by elevated CO2 or NH4 +treatments. However, chlorophyll fluorescence was affected only by the level of NH4 +. These results indicate that the physiological responses of G. lemaneiformis might be enhanced when the concentrations of CO2and NH4 + rise. Therefore, cultures of this alga could provide a good mitigation solution against ongoing problems with OA and coastal eutrophication.

Continue reading ‘The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,030,785 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book