Posts Tagged 'photosynthesis'

Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification

Ocean acidification (OA) can induce shifts in plankton community composition, with coccolithophores being mostly negatively impacted. This is likely to change particulate inorganic and organic carbon (PIC and POC, respectively) production, with impacts on the biological carbon pump. Hence, assessing and, most importantly, understanding species‐specific sensitivities of coccolithophores is paramount. In a multispecies comparison, spanning more than two orders of magnitude in terms of POC and PIC production rates, among Calcidiscus leptoporus, Coccolithus pelagicus subsp. braarudii, Emiliania huxleyi, Gephyrocapsa oceanica, and Scyphosphaera apsteinii, we found that cellular PIC : POC was a good predictor for a species’ OA sensitivity. This is likely related to the need for cellular pH homeostasis, which is challenged by the process of calcification producing protons internally, especially when seawater pH decreases in an OA scenario. With higher PIC : POC, species and strains being more sensitive to OA coccolithophores may shift toward less calcified varieties in the future.

Continue reading ‘Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification’

The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH

Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.

Continue reading ‘The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH’

Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses

Ocean warming and acidification can have negative implications on coral reefs. This mechanistic study aims to evaluate the proximal causes of the observed negative response of Hawaiian corals to climate change scenarios. Net calcification (Gnet), gross photosynthesis, and dark respiration were measured in three species of Hawaiian corals across a range of temperature and acidification regimes using endpoint incubations. Calcification rates showed a curvilinear response with temperature, with the highest calcification rates observed at 26°C. Coral response to ocean acidification (OA) was species dependent and highly variable. OA enhanced calcification rates by 45% in the perforate coral, Montipora capitata, but had no short-term effect on the calcification or photosynthetic rates of imperforate corals, Pocillopora damicornis or Leptastrea purpurea. Further investigations revealed M. capitata to effectively dissipate protons (H+) while increasing uptake of bicarbonate (HCO−3), therefore maintaining high rates of Gnet under acute OA stress. This study demonstrates the first experimental evidence of the ability of a coral species to take advantage of increased dissolved inorganic carbon and overcome an increasing proton gradient in the boundary layer under OA conditions. These observed differences in coral metabolism may underlie the species-specific responses to climate change.

Continue reading ‘Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses’

Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga

Ocean acidification (OA) is predicted to enhance photosynthesis in many marine taxa. However, photophysiology has multiple components that OA may affect differently, especially under different light environments, with potentially contrasting consequences for photosynthetic performance. Furthermore, because photosynthesis affects energetic budgets and internal acid-base dynamics, changes in it due to OA or light could mediate the sensitivity of other biological processes to OA (e.g. respiration and calcification). To better understand these effects, we conducted experiments on Porolithon onkodes, a common crustose coralline alga in Pacific coral reefs, crossing pCO2 and light treatments. Results indicate OA inhibited some aspects of photophysiology (maximum photochemical efficiency), facilitated others (α, the responsiveness of photosynthesis to sub-saturating light), and had no effect on others (maximum gross photosynthesis), with the first two effects depending on treatment light level. Light also exacerbated the increase in dark-adapted respiration under OA, but did not alter the decline in calcification. Light-adapted respiration did not respond to OA, potentially due to indirect effects of photosynthesis. Combined, results indicate OA will interact with light to alter energetic budgets and potentially resource allocation among photosynthetic processes in P. onkodes, likely shifting its light tolerance, and constraining it to a narrower range of light environments.

Continue reading ‘Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga’

Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization

Increasing atmospheric pCO2 leads to seawater acidification, which has attracted considerable attention due to its potential impact on the marine biological carbon pump and function of marine ecosystems. Alternatively, phytoplankton cells living in coastal waters might experience increased pH/decreased pCO2 (seawater alkalization) caused by metabolic activities of other photoautotrophs, or after microalgal blooms. Here we grew Thalassiosira weissflogii (diatom) at seven pCO2 levels, including habitat-related lowered levels (25, 50, 100, and 200 µatm) as well as present-day (400 µatm) and elevated (800 and 1600 µatm) levels. Effects of seawater acidification and alkalization on growth, photosynthesis, dark respiration, cell geometry, and biogenic silica content of T. weissflogii were investigated. Elevated pCO2 and associated seawater acidification had no detectable effects. However, the lowered pCO2 levels (25 ∼ 100 µatm), which might be experienced by coastal diatoms in post-bloom scenarios, significantly limited growth and photosynthesis of this species. In addition, seawater alkalization resulted in more silicified cells with higher dark respiration rates. Thus, a negative correlation of biogenic silica content and growth rate was evident over the pCO2 range tested here. Taken together, seawater alkalization, rather than acidification, could have stronger effects on the ballasting efficiency and carbon export of T. weissflogii.

Continue reading ‘Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization’

A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton

Coccolithophores are unicellular marine phytoplankton and important contributors to global carbon cycling. Most work on coccolithophore sensitivity to climate change has been on the small, abundant bloom-forming species Emiliania huxleyi and Gephyrocapsa oceanica. However, large coccolithophore species can be major contributors to coccolithophore community production even in low abundances. Here we fit an analytical equation, accounting for simultaneous changes in CO2 and light intensity, to rates of photosynthesis, calcification and growth in Scyphosphaera apsteinii. Comparison of responses to G. oceanica and E. huxleyi revealed S. apsteinii is a low-light adapted species and, in contrast, becomes more sensitive to changing environmental conditions when exposed to unfavourable CO2 or light. Additionally, all three species decreased their light requirement for optimal growth as CO2 levels increased. Our analysis suggests that this is driven by a drop in maximum rates and, in G. oceanica, increased substrate uptake efficiency. Increasing light intensity resulted in a higher proportion of muroliths (plate-shaped) to lopadoliths (vase shaped) and liths became richer in calcium carbonate as calcification rates increased. Light and CO2 driven changes in response sensitivity and maximum rates are likely to considerably alter coccolithophore community structure and productivity under future climate conditions.

Continue reading ‘A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton’

Factors that affect the growth and photosynthesis of the filamentous green algae, Chaetomorpha valida, in static sea cucumber aquaculture ponds with high salinity and high pH

Chaetomorpha valida, dominant filamentous green algae, can be harmful to sea cucumber growth in aquaculture ponds of China. In order to understand the environmental factors affecting the growth of C. valida in sea cucumber aquaculture ecosystems, a combination of field investigations and laboratory experiments were conducted. Field surveys over one year revealed that C. valida survived in sea cucumber aquaculture ponds in salinities ranging from 24.3 ± 0.01‰ to 32.0 ± 0.02‰ and a pH range of 7.5 ± 0.02–8.6 ± 0.04. The high salinity and pH during the period of low C. valida biomass from January to May lay the foundation for its rapid growth in the following months of June to October. Many factors interact in the field environment, thus, laboratory experiments were conducted to determine the isolated effects of pH and salinity on C. valida growth. In laboratory experiments, samples were incubated under different salinity and pH conditions at 25 °C, with a light intensity of 108 μmol photon·m−2·s−1, and a photoperiod of 12 L:12 D. Results showed that salinity and pH significantly affect the growth and Fv/Fm (quantum yield of photosynthesis) of C. valida (p < 0.01). C. valida grew the longest at a salinity of 34‰ and a pH of 8.0. At 34‰ salinity, C. valida grew to 26.44 ± 5.89 cm in 16 days. At a pH of 8.0, C. valida grew to 67.96 ± 4.45 cm in 32 days. Fv/Fm was 0.635 ± 0.002 at a salinity of 32‰, and 0.550 ± 0.006 to 0.660± 0.001 at pH 7.0 to 8.5. Based on these results, we conclude that C. valida can bloom in sea cucumber ponds due to the high salinity and pH of coastal sea waters, which promote growth and maintain the photosynthetic activity of C. valida.

Continue reading ‘Factors that affect the growth and photosynthesis of the filamentous green algae, Chaetomorpha valida, in static sea cucumber aquaculture ponds with high salinity and high pH’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,178,819 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book