Posts Tagged 'photosynthesis'

Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH

Coralline algae (CA), a type of primary calcifying producer presented in coastal ecosystems, are considered one of the highly sensitive organisms to marine environmental change. However, experimental studies on coralline algae responses to elevated seawater temperature and reduced pH have documented either contradictory or opposite results. In this study, we analysed the growth and physiological responses of coralline algae Porolithon onkodes to the elevated temperature (30.8°C) and reduced pH (7.8). The aim of this analysis was to observe the direct and combined effects, while elucidating the growth and photosynthesis in this response. It was demonstrated that the algae thallus growth rate and photosynthesis under elevated temperature were depressed by 21.5% and 14.9% respectively. High pCO2 enhanced the growth and photosynthesis of the thallus at ambient temperature, while they were deceased when both temperature and pCO2 were elevated. CA is among the most sensitive organisms to ocean acidification (OA) because of their precipitate high Mg-calcite. We hypothesize that coralline algae could increase their calcification rate in order to counteract the effects of moderate acidification, but offset by the effect of elevated temperature. Accordingly, our results also support the conclusion that global warming (GW) is a stronger threat to algal performance than OA. Our findings are also proposed that coralline algae may be more
resilient under OA than GW.

Continue reading ‘Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH’

Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business‐as‐usual RCP8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end‐of‐century RCP8.5 conditions for temperature and pCO2 (3.5 °C and 570 ppm above present‐day respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral‐dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business‐as‐usual CO2 emission scenarios will likely extirpate thermally‐sensitive coral species before the end of the century, while slowing the recovery of more thermally‐tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

Continue reading ‘Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals’

Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes


• Increased algal densities reduce photosynthesis and respiration of Ulva conglobata.

• Algal density mediates the interactive effect of increased temperature and lowered pH.

• Altered temperature and pH oppositely affect photosynthetic rate and saturation light.


Growing of macroalgae increases their biomass densities in natural habitats. To explore how the altered algal density impacts their photosynthetic responses to changes of environmental factors, we compared the photosynthesis versus irradiance characteristics of a marine green macroalga Ulva conglobata under low [2.0 g fresh weight (FW) L−1], medium (6.0 g FW L−1) and high biomass densities (12.0 g FW L−1), and under a matrix of temperatures (20, 25, 30 and 35 °C) and pH levels (7.8, 8.2 and 8.6). Increased algal densities decreased the photosynthetic O2 evolution rate among all combined temperature and pH treatments, in parallel with the decrease of light-utilizing efficiency (α, the initial slope) and maximum photosynthetic rate (Pmax) and the increase of light saturation point (EK). Rising temperature interacted with lowered pH to increase the α under low but not under high algal densities. Rising temperature increased the Pmax and decreased the EK under low algal density, but not under high density. Lowered pH promoted the Pmax and EK under all three algal densities. The increased temperature enhanced the dark respiration (Rd) and light compensation point (EC), while the altered pH showed a limited effect. Moreover, the increased algal density reduced the Rd, and had a limited effect on the EC. In addition, our results indicate that changing algal densities caused the complex photophysiological changes in responses to the temperature and pH changes, and these complex responses resolved into a close relation between Rd and Pmax across the matrix of temperatures and pH levels.

Continue reading ‘Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes’

Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi

Continuous accumulation of fossil CO2 in the atmosphere and increasingly dissolved CO2 in seawater leads to ocean acidification (OA), which is known to affect phytoplankton physiology directly and/or indirectly. Since increasing attention has been paid to the effects of OA under the influences of multiple drivers, in this study, we investigated effects of elevated CO2 concentration under different levels of light and nutrients on growth rate, particulate organic (POC) and inorganic (PIC) carbon quotas of the coccolithophorid Emiliania huxleyi. We found that OA treatment (pH 7.84, CO2 = 920 μatm) reduced the maximum growth rate at all levels of the nutrients tested, and exacerbated photo-inhibition of growth rate under reduced availability of phosphate (from 10.5 to 0.4 μmol l−1). Low nutrient levels, especially lower nitrate concentration (8.8 μmol l−1 compared with 101 μmol l−1), decreased maximum growth rates. Nevertheless, the reduced levels of nutrients increased the maximum PIC production rate. Decreased availability of nutrients influenced growth, POC and PIC quotas more than changes in CO2 concentrations. Our results suggest that reduced nutrient availability due to reduced upward advective supply because of ocean warming may partially counteract the negative effects of OA on calcification of the coccolithophorid.

Continue reading ‘Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi’

Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum


• OA significantly alleviated the toxicity of Cd to S. costatum.

• OA rescued S. costatum from inhibition of Cd on photosynthesis and pyruvate metabolism.

• OA detoxified Cd through upregulating genes in production of non-protein thiol compounds.


Ocean acidification (OA) is a global problem to marine ecosystems. Cadmium (Cd) is a typical metal pollutant, which is non-essential but extremely toxic to marine organisms. The combined effects of marine pollution and climate-driven ocean changes should be considered for the effective marine ecosystem management of coastal areas. Previous reports have separately investigated the influences of OA and Cd pollution on marine organisms. However, little is known of the potential combined effects of OA and Cd pollution on marine diatoms. We investigated the sole and combined influences of OA (1,500 ppm CO2) and Cd exposure (0.4 and 1.2 mg/L) on the coastal diatom Skeletonema costatum. Our results clearly showed that OA significantly alleviated the toxicity of Cd to S. costatum growth and mitigated the oxidant stress, although the intercellular Cd accumulation still increased. OA partially rescued S. costatum from the inhibition of photosynthesis and pyruvate metabolism caused by Cd exposure. It also upregulated genes involved in gluconeogenesis, glycolysis, the citrate cycle (TCA), Ribonucleic acid (RNA) metabolism, and especially the biosynthesis of non-protein thiol compounds. These changes might contribute to algal growth and Cd resistance. Overall, this study demonstrates that OA can alleviate Cd toxicity to S. costatum and explores the potential underlying mechanisms at both the cellular and molecular levels. These results will ultimately help us understand the impacts of combined stresses of climate change and metal pollution on marine organisms and expand the knowledge of the ecological risks of OA.

Continue reading ‘Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum’

Diatoms dominate and alter marine food-webs when CO2 rises

Diatoms are so important in ocean food-webs that any human induced changes in their abundance could have major effects on the ecology of our seas. The large chain-forming diatom Biddulphia biddulphiana greatly increases in abundance as pCO2 increases along natural seawater CO2 gradients in the north Pacific Ocean. In areas with reference levels of pCO2, it was hard to find, but as seawater carbon dioxide levels rose, it replaced seaweeds and became the main habitat-forming species on the seabed. This diatom algal turf supported a marine invertebrate community that was much less diverse and completely differed from the benthic communities found at present-day levels of pCO2. Seawater CO2 enrichment stimulated the growth and photosynthetic efficiency of benthic diatoms, but reduced the abundance of calcified grazers such as gastropods and sea urchins. These observations suggest that ocean acidification will shift photic zone community composition so that coastal food-web structure and ecosystem function are homogenised, simplified, and more strongly affected by seasonal algal blooms.

Continue reading ‘Diatoms dominate and alter marine food-webs when CO2 rises’

Responses of symbiotic cnidarians to environmental change

As climate change intensifies, the capacity of organisms to adapt to changing environments becomes increasingly relevant. Heat-induced coral bleaching –the breakdown of the symbiotic association between coral hosts and photosynthetic algae of the family Symbiodiniaceae– is rapidly degrading reefs worldwide. Hence, there is a growing interest to study symbioses that can persist in extreme conditions. The Red Sea is such a place, known as one of the hottest seas where healthy coral reef systems thrive. Here (Chapter 1), we tested the potential of symbiont manipulation as means to improve the thermal resilience of the cnidarian holobiont, particularly using heat tolerant symbiont species from the Red Sea. We used clonal lineages of the model system Aiptasia (host and symbiont), originating from different thermal environments to assess how interchanging either partner affected their short- and long-term performance under heat stress. Our findings revealed that symbioses are not only intra-specific but have also adapted to native, local environments, thus potentially limiting the acclimation capacity of symbiotic cnidarians to climate change. As such, infection with more heat resistant species, even if native, might not necessarily improve thermotolerance of the holobiont. We further investigated (Chapter 2) how environment-dependent specificity, in this case elevated temperature, affects the establishment of novel symbioses. That is, if Aiptasia hosts are, despite exhibiting a high degree of partner fidelity, capable of acquiring more thermotolerant symbionts under stress conditions. Thus, we examined the infection dynamics of multi-species symbioses under different thermal environments and assessed their performance to subsequent heat stress. We showed that temperature, more than host identity, plays a critical role in symbiont uptake and overall performance when heatchallenged. Additionally, we found that pre-exposure to high temperature plays a fundamental role in improving the response to thermal stress, yet, this can be heavily influenced by other factors like feeding. Like climate change, ocean acidification is a serious threat to corals. Yet, most research has focused on the host and little is known for the algal partner. Thus, here we studied (Chapter 3) the global transcriptomic response of an endosymbiotic dinoflagellate to long-term seawater acidification stress. Our results revealed that despite observing an enrichment of processes related to photosynthesis and carbon fixation, which might seem beneficial to the symbiont, low pH has a detrimental effect on its photo-physiology. Taken together, this dissertation provides valuable insights into the responses of symbiotic cnidarians to future climate and ocean changes.

Continue reading ‘Responses of symbiotic cnidarians to environmental change’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,318,642 hits


Ocean acidification in the IPCC AR5 WG II

OUP book