Posts Tagged 'photosynthesis'

Effect of increased CO2 on calcium homeostasis and signaling in a marine diatom

Ocean acidification influences photosynthesis, respiration, and metabolism in marine diatoms, leading to changes in diatom growth performance and shifts in phytoplankton communities. Previous studies have demonstrated that increases in seawater CO2 concentrations affect the uptake of trace metals such as iron, zinc, copper, and cobalt by marine diatoms. However, the influence of increased CO2 on calcium, which plays a vital role as a secondary messenger in various signaling pathways within organisms, has received limited attention so far. This study examined the effect of increased CO2 on Ca homeostasis and signaling in the marine diatom Phaeodactylum tricornutum. While seawater acidification had little effect on the diatom’s growth, it significantly changed cell properties (surface topography, adhesion, and surface potential). Elevated CO2 concentrations reduced calcium accumulation P. tricornutum and lowered the rise of cytosolic Ca2+ transients stimulated by toxic aldehyde, phosphorus supplement, and hypo-osmotic stress. Our results suggest that a continuous rise in atmospheric CO2 may alter diatoms’ response to environmental cues.

Continue reading ‘Effect of increased CO2 on calcium homeostasis and signaling in a marine diatom’

Geochemical evidence of temporal ecosystem photosynthetic plasticity within a pristine coral atoll

The impacts of ocean acidification on coral reef macroalgal community composition and metabolism have implications for the habitat supporting capacity of future reefs. In this pilot study, we use co-located semi-hourly measurements of total dissolved inorganic carbon (DIC), total alkalinity, and the stable carbon isotope composition of DIC (δ13CDIC) over a 27 + h period from Tetiaroa Atoll, French Polynesia, to investigate the potential for reef carbonate chemistry to record information related to benthic photosynthetic community composition and response to natural gradients in ambient acidity and dissolved carbon dioxide. The results of this preliminary sampling and modeling exercise suggest that Tetiaroa’s macroalgal communities express plastic carbon-concentrating mechanisms (CCMs) over daily cycles of productivity but may potentially vary this expression as a function of ambient CO2 and acidity within the ecosystem. Additional studies are, therefore, underway to investigate the implications of these observations for reef macroalgal compositional differences under rapidly acidifying oceans.

Continue reading ‘Geochemical evidence of temporal ecosystem photosynthetic plasticity within a pristine coral atoll’

Ocean acidification and desalination increase the growth and photosynthesis of the diatom Skeletonema costatum isolated from the coastal water of the Yellow Sea

Highlights

  • This study aims to investigate the combined effects of pH (400 μatm and 1000 μatm), temperature (10 °C, 20 °C), and salinity (20 psu, 30 psu) on the diatom S. costatum.
  • In this study, we investigated the effects of ocean acidification and seawater desalination on Skeletonema costatum in varying seasonal temperatures.
  • We found that ocean acidification and seawater desalination promoted the growth of S. costatum under the simulated conditions.

Abstract

Global climate changes induce substantial alterations in the marine system, including ocean acidification (OA), desalination and warming of surface seawater. Here, we examined the combined effects of OA and reduced salinity under different temperatures on the growth and photosynthesis of the diatom Skeletonema costatum. After having been acclimated to 2 CO2 concentrations (400 μatm, 1000 μatm) and 2 salinity levels (20 psu, 30 psu) at temperature levels of 10 °C and 20 °C, the diatom showed enhanced growth rate at the lowered salinity and elevated pCO2 irrespective of the temperature. The OA treatment increased the net photosynthetic rate and biogenic silica (Bsi) contents. Increasing the temperature from 10 to 20 °C raised the net photosynthetic rate by over twofold. The elevated pCO2 increased the net and gross photosynthetic rates by 20%–40% and by 16%–32%, respectively, with the higher enhancement observed at the higher levels of salinity and temperature. Our results imply that OA and desalination along with warming to the levels tested can enhance S. costatum‘s competitiveness in coastal phytoplankton communities under influence of future climate changes.

Continue reading ‘Ocean acidification and desalination increase the growth and photosynthesis of the diatom Skeletonema costatum isolated from the coastal water of the Yellow Sea’

Examining the effects of elevated CO2 on the growth kinetics of two microalgae, Skeletonema dohrnii (Bacillariophyceae) and Heterosigma akashiwo (Raphidophyceae)

Carbon dioxide (CO2) serves as the primary substrate for the photosynthesis of phytoplankton, forming the foundation of marine food webs and mediating the biogeochemical cycling of C and N. We studied the effects of CO2 variation on the Michaelis-Menten equations and elemental composition of Skeletonema dohrnii and Heterosigma akashiwo. CO2 functional response curves were conducted from 100 to 2000 ppm. The growth of both phytoplankton was significantly affected by CO2, but in different trends. The growth rate of S. dohrnii increased as CO2 levels rose up to 400 ppm before reaching saturation. In contrast to S. dohrnii, the growth rate of H. akashiwo increased with CO2 increasing up to 1000 ppm, and then CO2 saturated. In addition, H. akashiwo showed a slower growth rate than S. dohrnii for all CO2 concentrations, aside from 1000 ppm, and the Michaelis-Menten equations revealed that the half-saturation constant of H. akashiwo was higher than S. dohrnii. An increase in CO2 concentration was seen to significantly affected the POC: Chl-a of both S. dohrnii and H. akashiwo, however, the effects on their elemental composition were minimal. Overall, our findings indicate that H. akashiwo had a more positive reaction to elevated CO2 than S. dohrnii, and with higher nutrient utilization efficiency, while S. dohrnii exhibited higher carbon fixation efficiency, which is in line with their respective carbon concentrating mechanisms. Consequently, elevated CO2, either alone or in combination with other limiting factors, may significantly alter the relative relationships between these two harmful algal blooms (HAB) species over the next century.

Continue reading ‘Examining the effects of elevated CO2 on the growth kinetics of two microalgae, Skeletonema dohrnii (Bacillariophyceae) and Heterosigma akashiwo (Raphidophyceae)’

Short periods of decreased water flow may modulate long-term ocean acidification in reef-building corals

Ocean acidification (OA) poses a major threat to reef-building corals. Although water flow variability is common in coral reefs and modulates coral physiology, the interactive effects of flow and OA on corals remain poorly understood. Therefore, we performed a three-month OA experiment investigating the effect of changes in flow on coral physiology. We exposed the reef-building corals Acropora cythereaPocillopora verrucosa, and Porites cylindrica to control (pH 8.0) and OA (pH 7.8) conditions at moderate flow (6 cm s-1) and monitored OA effects on growth. Throughout the experiment, we intermittently exposed all corals to low flow (2 cm s-1) for 1.5 h and measured their photosynthesis:photosynthesis (P:R) ratio under low and moderate flow. On average, corals under OA calcified 18 % less and grew 23 % less in surface area than those at ambient pH. We observed species-specific interactive effects of OA and flow on coral physiology. P:R ratios decreased after 12 weeks of OA in A. cytherea (22 %) and P. cylindrica (28 %) under moderate flow, but were unaffected by OA under low flow. P:R ratios were stable in P. verrucosa. These results suggest that short periods of decreased water flow may modulate OA effects on some coral species, indicating that flow variability is a factor to consider when assessing long-term effects of climate change.

Continue reading ‘Short periods of decreased water flow may modulate long-term ocean acidification in reef-building corals’

The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario

Highlights

  • Growth rates of two diatoms remained insensitive to fluctuating pH or seawater acidification.
  • Fluctuating pH enhanced the light-saturated photosynthetic rate of the diatom Thalassiosira weissflogii by 20%.
  • Photosynthetic rates of two diatoms remained unaltered in response to acute pH changes ranging from 7.2 to 8.4.

Abstract

Coastal waters undergo dynamic changes in seawater carbonate chemistry due to natural and anthropogenic factors. Despite this, our current understanding of how coastal phytoplankton respond to fluctuating pH is limited. In the present study, we investigated the physiological responses of two coastal diatoms Thalassiosira pseudonana and Thalassiosira weissflogii to seawater acidification and diurnally fluctuating pH under natural solar irradiance. Seawater acidification did not significantly impact the growth, maximum and effective quantum yield of PSII, and photosynthetic rates of the two species. However, it did increase the maximum relative electron transport rate of T. weissflogii by 11%. Overall, fluctuating pH had neutral or positive effects on both species. It enhanced the light-saturated photosynthetic rate of T. weissflogii by 20% compared to cells grown under seawater acidification condition. Results from the short-term pH exposure experiment revealed that the photosynthetic rates of both species remained unaffected by acute pH changes, indicating their tolerance to varying pH. Nevertheless, it is crucial to consider dynamic pH when predicting changes in primary production in coastal waters, given the interplay of various environmental drivers.

Continue reading ‘The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario’

Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification

Highlights

  • Effects of light availability and pCO2 on Kappaphycus alvarezii were examined.
  • Moderate increases in light intensity and pCO2 had positive effects on K. alvarezii.
  • OA and high light promoted carbon accumulation, but they had negative impacts on nitrogen.

Abstract

The concentration of atmospheric carbon dioxide (CO2) has increased drastically over the past several decades, resulting in the pH of the ocean decreasing by 0.44 ± 0.005 units, known as ocean acidification (OA). The Kappaphycus alvarezii (Rhodophyta, Solieriaceae), is a commercially and ecologically important red macroalga with significant CO2 absorption potential from seawater. The K. alvarezii also experienced light variations from self-shading and varied cultivation depths. Thus, the aim of present study was to investigate the effects of two pCO2 levels (450 and 1200 ppmv) and three light intensities (50, 100, and 150 μmol photons·m−2·s−1) on photosynthesis and the biochemical components in K. alvarezii. The results of the present study showed that a light intensity of 50 μmol photons·m−2·s−1 was optimal for K. alvarezii photosynthesis with 0.663 ± 0.030 of Fv/Fm and 0.672 ± 0.025 of Fv’/Fm. Phycoerythrin contents at two pCO2 levels decreased significantly with an increase in light intensity by 57.14–87.76%, while phycocyanin contents only decreased from 0.0069 ± 0.001 mg g−1 FW to 0.0047 ± 0.001 mg g−1 FW with an increase in light intensity at 1200 ppmv of pCO2. Moreover, moderate increases in light intensity and pCO2 had certain positive effects on the physiological performance of K. alvarezii, specifically in terms of increasing soluble carbohydrate production. Although OA and high light levels promoted total organic carbon accumulation (21.730 ± 0.205% DW) in K. alvarezii, they had a negative impact on total nitrogen accumulation (0.600 ± 0.017% DW).

Continue reading ‘Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification’

Physiological impacts of CO2-Induced acidification and UVR on invasive alga Caulerpa racemosa

Anthropogenically increasing atmospheric CO2 causes changes in the carbon chemistry of seawater. With these changes, the HCO3 and CO2 concentration of seawater increases, while the pH decreases. CO2-induced ocean acidification by interacting with ultraviolet radiation (UVR) affects the metabolic pathways of seaweeds such as photosynthesis, growth, and nutrient uptake in a species-specific manner. This study was designed to determine the future ecological success of Caulerpa racemosa, an invasive species in the Mediterranean. In laboratory culture, C. racemosa was exposed to CO2-induced low pH (pH: 7.7) with or without UVR (UVA: 1.2 W m−2; UVB: 0.55 W m−2) and its physiological responses were investigated. Maximum quantum yield of photosystem-II (Fv/Fm) and light utilization efficiency (α) of C. racemosa was negatively affected by low pH and UVR. However, low pH increased the rETRmax (maximum relative electron transfer rate) of C. racemosa. This increased rETRmax indicated that the photosynthesis of C. racemosa was not photosynthetically saturated at the ambient inorganic carbon pool. This could be an advantage in competing with other species in the predicted future ocean acidification. The combined effect of low pH and UVR affected the rETRmax of C. racemosa in different ways along with the incubation time. The synergistic effect observed in the first two weeks turned into an antagonistic effect in the last two weeks. The data obtained from this study suggest that incubation time is the most effective factor in the response of C. racemosa to CO2-induced low pH and moderate-level UVR. In addition, our results support the hypothesis that C. racemosa may be one of the species that will benefit from CO2-induced ocean acidification.

Continue reading ‘Physiological impacts of CO2-Induced acidification and UVR on invasive alga Caulerpa racemosa’

Phosphorus deficiency regulates the growth and photophysiology responses of an economic macroalga Gracilariopsis lemaneiformis to ocean acidification and warming

Ocean acidification and warming caused by elevated CO2 are urgent problems facing the marine ecological environment. With the strengthening of environmental governance in China, anthropogenic inputs of terrestrial phosphorus into the coastal ocean have drastically decreased, resulting in frequent phosphorus deficiency in seawater. These environmental factors in the future may affect algal growth, photosynthesis and yield. As an important economic macroalga suitable for large-scale cultivation, Gracilariopsis lemaneiformis is also potentially affected by the coupling of ocean acidification, warming and phosphorus deficiency. In this study, G. lemaneiformis was cultured outdoors under two pCO2 levels (LC, 400 μatm; HC, 1000 μatm), two temperatures (LT, 20 ℃; HT, 24 ℃) and two phosphorus concentrations (LP, 0.1 μmol L−1; HP, 10 μmol L−1) to investigate its growth and photosynthetic performance. The results showed that LP significantly decreased the relative growth rates (RGR) and the maximum photosynthesis rate (Pm) of G. lemaneiformis both under LC and HC conditions. Under P depletion condition, the effects of warming and ocean acidification on the growth and photosynthetic performance of G. lemaneiformis showed an opposite trend, that is, HC caused a decrease in the growth, Pm, maximum relative electron transfer rate (rETRmax) and light utilization efficiency (α) from the rapid light response curve of G. lemaneiformis, and HT improved these parameters. Under LP condition, HC significantly inhibited the RGR of G. lemaneiformis in the LT group but had no significant effect on RGR in the HT group. Additionally, under LP condition, HC insignificantly affected PE and PC contents in the LT group, but significantly reduced these contents in the HT group. These findings suggest that phosphorus deficiency results in a decline in the growth of G. lemaneiformis and, under LP condition, the inhibition effect of ocean acidification on the growth of G. lemaneiformis could be mitigated by warming. This study provides scientific guidance for the field cultivation and selective breeding of G. lemaneiformis in phosphorus-deficient seawater under global climate change.

Continue reading ‘Phosphorus deficiency regulates the growth and photophysiology responses of an economic macroalga Gracilariopsis lemaneiformis to ocean acidification and warming’

The impact of extreme weather events exceeds those due to global-change drivers on coastal phytoplankton assemblages

Highlights

  • Extreme wind and rainfall events have become frequent phenomena in coastal ecosystems.
  • We simulated these events under global change for five phytoplankton assemblages.
  • Extreme events were responsible for the bulk of variability on photosynthesis efficiency.
  • The impact of extreme events is low in assemblages with high diversity and evenness
  • Extreme events should be considered in global change studies.

Abstract

Extreme wind and rainfall events have become more frequent phenomena, impacting coastal ecosystems by inducing increased mixing regimes in the upper mixed layers (UML) and reduced transparency (i.e. browning), hence affecting phytoplankton photosynthesis. In this study, five plankton assemblages from the South Atlantic Ocean, from a gradient of environmental variability and anthropogenic exposure, were subjected to simulated extreme weather events under a global change scenario (GCS) of increased temperature and nutrients and decreased pH, and compared to ambient conditions (Control). Using multiple linear regression (MLR) analysis we determined that evenness and the ratio of diatoms/ (flagellates + dinoflagellates) significantly explained the variations (81–91 %) of the photosynthesis efficiency (i.e. Pchla/ETRchla ratio) for each site under static conditions. Mixing speed and the optical depth (i.e. attenuation coefficient * depth, kdz), as single drivers, explained 40–76 % of the variability in the Pchla/ETRchla ratio, while GCS drivers <9 %. Overall, assemblages with high diversity and evenness were less vulnerable to extreme weather events under a GCS. Extreme weather events should be considered in global change studies and conservation/management plans as even at local/regional scales, they can exceed the predicted impacts of mean global climate change on coastal primary productivity.

Continue reading ‘The impact of extreme weather events exceeds those due to global-change drivers on coastal phytoplankton assemblages’

Ocean acidification alters shellfish-algae nutritional value and delivery

Highlights

  • Ocean acidification promotes microalgae growth.
  • The nutrient value of microalgae is positively altered under acidifying conditions.
  • Nutrient changes in primary producers can have indirect effects through trophic transfer.
  • Fatty acid content of food sources affects shellfish macromolecular ratios.

Abstract

The ecological effects of climate change and ocean acidification (OA) have been extensively studied. Various microalgae are ecologically important in the overall pelagic food web as key contributors to oceanic primary productivity. Additionally, no organism exists in isolation in a complex environment, and shifts in food quality may lead to indirect OA effects on consumers. This study aims to investigate the potential effects of OA on algal trophic composition and subsequent bivalve growth. Here, the growth and nutrient fractions of Chlorella sp., Phaeodactylum tricornutum and Chaetocetos muelleri were used to synthesize and assess the impact of OA on primary productivity. Total protein content, total phenolic compounds, and amino acid (AA) and fatty acid (FA) content were evaluated as nutritional indicators. The results demonstrated that the three microalgae responded positively to OA in the future environment, significantly enhancing growth performance and nutritional value as a food source. Additionally, certain macromolecular fractions found in consumers are closely linked to their dietary sources, such as phenylalanine, C14:0, C16:0, C16:1, C20:1n9, C18:0, and C18:3n. Our findings illustrate that OA affects a wide range of crucial primary producers in the oceans, which can disrupt nutrient delivery and have profound impacts on the entire marine ecosystem and human food health.

Continue reading ‘Ocean acidification alters shellfish-algae nutritional value and delivery’

Turf algae drives coral bioerosion under high CO2

Turf algal prevalence will increase in coral ecosystems under ocean acidification yet their contribution towards the ongoing and projected degradation of reefs is often overlooked. Turf algal settlement was induced on exposed coral skeleton adjacent to live coral tissue to investigate coral-turf algal interactions through a combination of laboratory and field transplantation (shallow volcanic CO2 seep) experiments across two temperature regimes. Here, we show that turf algae are competitively favored over corals under high pCO2 conditions. Turf algae-associated biological activity locally acidified the microenvironment overlying the exposed coral skeleton, leading to its bioerosion. Increases in coral-turf algal interactions could shift coral ecosystems towards net dissolution and should be integrated into global accretion models when considering future carbonate budgets under climate change.

Continue reading ‘Turf algae drives coral bioerosion under high CO2’

Cool-edge populations of the kelp Ecklonia radiata under global ocean change scenarios: strong sensitivity to ocean warming but little effect of ocean acidification

Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7–26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.

Continue reading ‘Cool-edge populations of the kelp Ecklonia radiata under global ocean change scenarios: strong sensitivity to ocean warming but little effect of ocean acidification’

Physiological responses of Caulerpa spp. (with different dissolved inorganic carbon physiologies) to ocean acidification

Caulerpa is a widely distributed genus of chlorophytes (green macroalgae) which are important for their dietary, social and coastal ecosystem value. Ocean acidification (OA) threatens the future of marine ecosystems, favouring macroalgal species that could benefit from increased seawater carbon dioxide (CO2) concentrations. Most macroalgae species possess CO2 concentrating mechanisms (CCMs) that allow active uptake of bicarbonate (HCO3). Those species without CCMs are restricted to using CO2, which is currently the least abundant species of dissolved inorganic carbon (DIC) in seawater. Thus, macroalgae without CCMs are predicted to be likely benefit from OA. Caulerpa is one of the rare few genera that have species both with and without CCMs. The two most common Caulerpa species in New Zealand are C. geminata (possesses a CCM) and C. brownii (non-CCM). We investigated the responses of growth, photo-physiology and DIC utilisation of C. geminata and C. brownii to four mean seawater pH treatments (8.03, 7.93, 7.83 and 7.63) that correspond to changes in pH driven by increases in pCO2 simulating future OA. There was a tendency for the mean growth rates for C. brownii (non-CCM) to increase under lower pH, and the growth rates of C. geminata (CCM) to decline with lower pH, although this was not statistically significant. However, this is likely because variability in growth rates also increased as seawater pH declined. There were few other differences in physiology of both species with pH, although there was tendency for greater preference for CO2 over HCO3 uptake in the CCM species with declining seawater pH. This study demonstrates that DIC-use alone does not predict macroalgal responses to OA.

Continue reading ‘Physiological responses of Caulerpa spp. (with different dissolved inorganic carbon physiologies) to ocean acidification’

Early stage ecological communities on artificial algae showed no difference in diversity and abundance under ocean acidification

Marine habitat-forming species create structurally complex habitats that host macroinvertebrate communities characterized by remarkable abundance and species richness. These habitat-forming species also play a fundamental role in creating favourable environmental conditions that promote biodiversity. The deployment of artificial structures is becoming a common practice to help offset habitat loss although with mixed results. This study investigated the suitability of artificial flexible turfs mimicking the articulated coralline algae (mimics) as habitat providers and the effect of ocean acidification (OA) on early stage ecological communities associated to flexible mimics and with the mature community associated to Ellisolandia elongata natural turfs. The mimics proved to be a suitable habitat for early stage communities. During the OA mesocosms experiment, the two substrates have been treated and analysed separately due to the difference between the two communities. For early stage ecological communities associated with the mimics, the lack of a biologically active substrate does not exacerbate the effect of OA. In fact, no significant differences were found between treatments in crustaceans, molluscs and polychaetes diversity and abundance associated with the mimics. In mature communities associated with natural turfs, buffering capability of E. elongata is supporting different taxonomic groups, except for molluscs, greatly susceptible to OA.

Continue reading ‘Early stage ecological communities on artificial algae showed no difference in diversity and abundance under ocean acidification’

High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification

Increased atmospheric CO2 concentrations not only change the components of inorganic carbon system in seawater, resulting in ocean acidification, but also lead to decreased seawater pH, resulting in ocean acidification. Consequently, increased inorganic carbon concentrations in seawater provide a sufficient carbon source for macroalgal photosynthesis and growth. Increased domestic sewage and industrial wastewater discharge into coastal areas has led to nutrient accumulation in coastal seawaters. Combined with elevated pCO2 (1200 ppmv), increased nutrient availability always stimulates the growth of non-calcifying macroalgae, such as red economical macroalga Gracilariopsis lemaneiformis. Here, we evaluated the interactive effects of nutrients with elevated pCO2 on the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in a factorial 21-day coupling experiment. The effects of increased nutrient availability on photosynthesis and photosynthetic pigments of Kalvarezii were greater than those of pCO2 concentration. The highest Fv/Fm values (0.660 ± 0.019 and 0.666 ± 0.030, respectively) were obtained at 2 μmol L−1 of NO3–N at two pCO2 levels. Under the elevated pCO2 condition, the Chl-a content was lowest (0.007 ± 0.004 mg g−1) at 2 μmol L−1 of NO3–N and highest (0.024 ± 0.002 mg g−1) at 50 μmol L−1 of NO3–N. The phycocyanin content was highest (0.052 ± 0.012 mg g−1) at 150 μmol L−1 of NO3–N under elevated pCO2 condition. The malondialdehyde content declined from 32.025 ± 4.558 nmol g−1 to 26.660 ± 3.124 nmol g−1 with the increased nutrients at under low pCO2. To modulate suitable adjustments, soluble biochemical components such as soluble carbohydrate, soluble protein, free amino acids, and proline were abundantly secreted and were likely to protect the integrity of cellular structures under elevated nutrient availability. Our findings can serve as a reference for cultivation and bioremediation methods under future environmental conditions.

Continue reading ‘High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification’

Functional changes across marine habitats due to ocean acidification

Global environmental change drives diversity loss and shifts in community structure. A key challenge is to better understand the impacts on ecosystem function and to connect species and trait diversity of assemblages with ecosystem properties that are in turn linked to ecosystem functioning. Here we quantify shifts in species composition and trait diversity associated with ocean acidification (OA) by using field measurements at marine CO2 vent systems spanning four reef habitats across different depths in a temperate coastal ecosystem. We find that both species and trait diversity decreased, and that ecosystem properties (understood as the interplay between species, traits, and ecosystem function) shifted with acidification. Furthermore, shifts in trait categories such as autotrophs, filter feeders, herbivores, and habitat-forming species were habitat-specific, indicating that OA may produce divergent responses across habitats and depths. Combined, these findings reveal the importance of connecting species and trait diversity of marine benthic habitats with key ecosystem properties to anticipate the impacts of global environmental change. Our results also generate new insights on the predicted general and habitat-specific ecological consequences of OA.

Continue reading ‘Functional changes across marine habitats due to ocean acidification’

Thermal fluctuations and CO2 enrichment synergistically accelerate biomass yield of Neopyropia yezoensis

Due to the rising atmospheric pCO2, the greenhouse effect in the natural environment has intensified, leading to ocean acidification and frequently extreme temperature events. Limited research has been conducted on the effects of near-shore temperature fluctuations and ocean acidification on macroalgae. In this study, Neopyropia yezoensis (Bangiales, Rhodophyta) was cultured under two CO2 concentrations (LC: 400 μatm and HC: 1000 μatm) and three temperature conditions (10 ℃, 14 ℃, and fluctuation: increased from 10 ℃ to 14 ℃ and then decreased back to 10 ℃ with a fluctuation of 1 ℃ per day). The growth, chlorophyll fluorescencephotosynthetic pigments, and soluble carbohydrate of N. yezoensis were measured. The results showed that the relative growth rate, rETRmax, contents of chlorophyll aphycoerythrin, and carotenoid in the thalli increased at 14 ℃ and thermal fluctuation, while the content of soluble carbohydrate were inhibited. Moreover, the effect of pCO2 on growth was significant only under temperature fluctuation. Even when the temperature dropped to 10 ℃, the physiological responses of N. yezoensis were still promoted by the thermal fluctuation condition. These findings indicate that the yield and quality of N. yezoensis could potentially improve in the future warming scenarios, and changes observed in N. yezoensis could serve as an early indicator for global climate change.

Continue reading ‘Thermal fluctuations and CO2 enrichment synergistically accelerate biomass yield of Neopyropia yezoensis’

Future warming stimulates growth and photosynthesis in an Arctic microalga more strongly than changes in light intensity or pCO2

We assessed the responses of solitary cells of Arctic Phaeocystis pouchetii grown under a matrix of temperature (2°C vs. 6°C), light intensity (55 vs. 160 μmol photons m−2 s−1) and pCO2 (400 vs. 1000 μatm CO2, i.e., 40.5 vs. 101.3 Pa). Next to acclimation parameters (growth rates, particulate and dissolved organic C and N, Chlorophyll a content), we measured physiological processes in vivo (electron transport rates and net photosynthesis) using fast-repetition rate fluorometry and membrane-inlet mass spectrometry. Within the applied driver ranges, elevated temperature had the most pronounced impacts, significantly increasing growth, elemental quotas and photosynthetic performance. Light stimulations manifested more prominently under 6°C, underlining temperature’s role as a “master-variable”. pCO2 was the least effective driver, exerting mostly insignificant effects. The obtained data were used for a simplistic upscaling simulation to investigate potential changes in P. pouchetii‘s bloom dynamics in the Fram Strait with increasing temperatures over the 21st century. Although solitary cells might not be fully representative of colonial cells commonly observed in the field, our results suggest that global warming accelerates bloom dynamics, with earlier onsets of blooms and higher peak biomasses. Such a temperature-induced acceleration in the phenology of Phaeocystis and likely other Arctic phytoplankton might cause temporal mismatches, e.g., with the development of grazers, and therefore substantially affect the biogeochemistry and ecology of the Arctic.

Continue reading ‘Future warming stimulates growth and photosynthesis in an Arctic microalga more strongly than changes in light intensity or pCO2’

Physio-biochemical and metabolomic analyses of the agarophyte Gracilaria salicornia indicates its tolerance to elevated pCO2 levels

Gracilaria salicornia is an agar-producing red macroalga commonly found growing in the intertidal and upper subtidal on various substrates with distribution across the Indo-Pacific. The ability of G. salicornia to survive under harsh conditions suggests potential use as a candidate for sustainable farming and alternative source of livelihood for the local coastal communities under future climate conditions. An earlier study investigated the effects of future predicted pCO2 level on the photosynthesis and respiration of G. salicornia but studies on the metabolomic responses of this alga to constant elevated pCO2 level is lacking. Here, elevated pCO2 level was simulated on G. salicornia for 14 days to compare its growth, photosynthetic efficiency, pigment content, agar properties and metabolite composition under current pCO2 level (∼pH 8.1) and end-of-century future-predicted (∼pH 7.8) pCO2 level. The observed biomass growth, coupled with unaffected photosynthetic parameters and agar-related properties underscore G. salicornia’s ability to adapt to higher pCO2 levels. The modulation of metabolites showcases the alga’s adaptive strategies at elevated pCO2 whereby stress-mediating compounds such as gallic acid and oxalic acid were increased while stress-indicating metabolites such as serine, glycine, and ascorbic acid did not show significant changes. Interestingly, the metabolome profile imply that the alga regulates its metabolism according to culture duration rather than the pCO2 level.

Continue reading ‘Physio-biochemical and metabolomic analyses of the agarophyte Gracilaria salicornia indicates its tolerance to elevated pCO2 levels’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources