Posts Tagged 'reproduction'

Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB

Highlights

  • A simulation model based on DEB theory was parameterized for the Manila clam.
  • The pH forecast in 2100 will limit the growth of Manila clam.
  • The temperature forecast in 2100 enhances the reproductive potential of Manila clam.

Abstract

We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the Manila clam Ruditapes philippinarum under different temperature and pH conditions, based on environmental values forecasted for the end of the 21st c. under climate change scenarios. The parameters of the DEB model were calibrated with the results of seasonal growth experiments under two levels of temperature (ambient and plus 2–3 °C) and three levels of pH (8.1 used as control and 7.7 and 7.3 representing acidification). The results showed that R. philippinarum is expected to have moderate growth in length or individual body mass (ultimate length and body weight would be larger than current values by 2–3%) when taking into account only the effect of temperature increase. However, acidification is likely to have a deleterious effect on growth, with a decrease of 2–5% length or body weight under the pH value of 7.7 forecasted for the end of the 21st c, or 10–15% under a more extreme scenario (pH = 7.3). However, the aggregated reproductive potential, integrated along a lifetime of 10 years, is likely to increase by 30% with temperature increase. Decreasing pH would impact negatively on reproductive potential, but in all simulations under warmer conditions, reproductive potential values were higher than current, suggesting that temperature increase would compensate losses due to acidification. The results are discussed in relation to their possible impact on aquaculture and fisheries of this important commercial bivalve.

Continue reading ‘Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB’

The effect of ocean acidification on the enzyme activity of Apostichopus japonicus

Highlights

  • The long-time impact of ocean acidification on enzyme activity of sea cucumbers were studied.
  • The significant difference of enzyme assemblage existed among three experimental groups by the multivariate statistical results.
  • The acidic environment has a great effect on immune process by influencing the elimination of reactive oxygen species (ROS).

Abstract

The influence of ocean acidification (OA) is particularly significant on calcifying organisms. The sea cucumber Apostichopus japonicus is an important cultured calcifying organism in the northern China seas. Little was known about the effects of OA on this economically important species. In this study, individuals from embryo to juveniles stage of A. japonicus, cultured in different levels of acidified seawater, were measured their enzymes activities, including five metabolic enzymes and three immune enzymes. The activity of acid phosphatase (ACP) and alkaline phosphatase (ALP) was significantly lower in the severely acid group (pH 7.1), while the content of lactate dehydrogenase (LDH) was significantly higher. Superoxide dismutase (SOD) and catalase (CAT) were significantly lower in the severely acid group. The multivariate statistical results showed that the significant difference of enzyme assemblage existed among three experimental groups. This study indicated that OA could reduce the biomineralization capacity, influence the anaerobic metabolism and severely affect the immune process of A. japonicas. More researches are needed in the future to reveal the mechanisms of enzyme regulation and expression of A. japonicas underlying mixture environmental stress.

Continue reading ‘The effect of ocean acidification on the enzyme activity of Apostichopus japonicus’

Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean

Understanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the oceans. Seawater pH levels have already decreased by 0.1 and are predicted to decline by ~ 0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). These negative effects may become even exacerbated by increasing sea temperatures. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make predictions about how OA might affect different taxa. We consider their geographic range, skeletal mineralogy, biological traits and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate shows response variation depending on mineralogical composition. Species-specific responses due to mineralogical composition suggest taxa with calcitic, aragonitic and HMC skeletons may be more vulnerable to the expected carbonate chemistry alterations, and low magnesium calcite (LMC) species may be mostly resilient. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits and physiological processes are also expected to influence species specific responses.

Continue reading ‘Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean’

Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth

Chemical changes in the diffusive boundary layer (DBL) generated by photosynthesising macroalgae are expected to play an important role in modulating the effects of ocean acidification (OA), but little is known about the effects on early life stages of marine invertebrates in modified DBLs. Larvae that settle to macroalgal surfaces and remain within the DBL will experience pH conditions markedly different from the bulk seawater. We investigated the interactive effects of seawater pH and DBL thickness on settlement and early post-settlement growth of the sea urchin Pseudechinus huttoni, testing whether coralline-algal DBLs act as an environmental buffer to OA. DBL thickness and pH levels (estimated from well-established relationships with oxygen concentration) above the crustose coralline algal surfaces varied with light availability (with photosynthesis increasing pH to as high as pH 9.0 and respiration reducing pH to as low as pH 7.4 under light and dark conditions, respectively), independent of bulk seawater pH (7.5, 7.7, and 8.1). Settlement success of P. huttoni increased over time for all treatments, irrespective of estimated pH in the DBL. Juvenile test growth was similar in all DBL manipulations, showing resilience to variable and low seawater pH. Spine development, however, displayed greater variance with spine growth being negatively affected by reduced seawater pH in the DBL only in the dark treatments. Scanning electron microscopy revealed no observable differences in structural integrity or morphology of the sea urchin spines among pH treatments. Our results suggest that early juvenile stages of P. huttoni are well adapted to variable pH regimes in the DBL of macroalgae across a range of bulk seawater pH treatments.

Continue reading ‘Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth’

DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis

Highlights

  • Low pH stress resulted in hyper- and hypo-methylated genes in the pediveliger larvae of the Hong Kong oyster
  • Differentially methylated loci were concentrated in the exon region within the gene bodies
  • High capability of oyster larvae to acclimate and adapt to low pH condition within single generation despite poor habitat selection for attachment
  • Differential methylation is associated to higher metamorphosis success rate and poor larval substratum selection under low pH stress.

Abstract

Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Continue reading ‘DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis’

Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia

The onset of symbiosis and the early development of most broadcast spawning corals play pivotal roles in recruitment success, yet these critical early stages are threatened by multiple stressors. However, molecular mechanisms governing these critical processes under ocean warming and acidification are still poorly understood. The present study investigated the interactive impact of elevated temperature (∼28.0°C and ∼30.5°C) and partial pressure of carbon dioxide (pCO2) (∼600 and ∼1,200 μatm) on early development and the gene expression patterns in juvenile Acropora intermedia over 33 days. The results showed that coral survival was >89% and was unaffected by high temperature, pCO2, or the combined treatment. Notably, high temperature completely arrested successful symbiosis establishment and the budding process, whereas acidification had a negligible effect. Moreover, there was a positive exponential relationship between symbiosis establishment and budding rates (y = 0.0004e6.43xR = 0.72, P < 0.0001), which indicated the importance of symbiosis in fueling asexual budding. Compared with corals at the control temperature (28°C), those under elevated temperature preferentially harbored Durusdinium spp., despite unsuccessful symbiosis establishment. In addition, compared to the control, 351 and 153 differentially expressed genes were detected in the symbiont and coral host in response to experimental conditions, respectively. In coral host, some genes involved in nutrient transportation and tissue fluorescence were affected by high temperature. In the symbionts, a suite of genes related to cell growth, ribosomal proteins, photosynthesis, and energy production was downregulated under high temperatures, which may have severely hampered successful cell proliferation of the endosymbionts and explains the failure of symbiosis establishment. Therefore, our results suggest that the responses of symbionts to future ocean conditions could play a vital role in shaping successful symbiosis in juvenile coral.

Continue reading ‘Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia’

Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic

Climate change has already altered the environmental conditions of the world’s oceans. Here we report declines in gastropod abundances and recruitment of mussels (Mytilus edulis) and barnacles (Semibalanus balanoides) over the last two decades that are correlated with changes in temperature and ocean conditions. Mussel recruitment is declining by 15.7% per year, barnacle recruitment by 5.0% per year, and abundances of three common gastropods are declining by an average of 3.1% per year (Testudinalia testudinalisLittorina littorea, and Nucella lapillus). The declines in mussels and the common periwinkle (L. littorea) are correlated with warming sea temperatures and the declines in T. testudinalis and N. lapillus are correlated with aragonite saturation state, which affects rates of shell calcification. These species are common on shores throughout the North Atlantic and their loss is likely to lead to simplification of an important food web on rocky shores.

Continue reading ‘Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic’

Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2

Highlights

  • The temperature has a significant effect on the hatching time of C. royercresseyi.

  • Combination of pCO2 and temperature has a significant effect on survival in C. rogercresseyi.

  • The combination of pCO2 and temperature had no impact on the size of nauplius I, nauplius II and copepodid stage.

  • Only the temperature has a significant effect on oxygen consumption rate of C. royercresseyi.

Abstract

Anthropogenic CO2 emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO2 (400 and 1200 μatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I. But both factors affected the development time of nauplius II (<temperature = longer development time). Copepodid survival time was also affected by temperature and pCO2, at 10 °C and 400 μatm, survival was 30 and 44% longer than at 15 and 20 °C. OCRs were impacted by temperature but not by pCO2. In all treatments, OCR was lower for nauplius II than for the copepodid. Our results show the need to further evaluate the effects of a combination of environmental drivers on the performance of C. rogercresseyi, in a changing and uncertain future.

Continue reading ‘Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2’

Effects of temperature and pH on the egg production and hatching success of a common Korean copepod

The recent accelerated ocean acidification and global warming caused by increased atmospheric carbon dioxide may have an impact on the physiology and ecology of marine animals. This study was conducted to determine the egg production rate (EPR) and hatching success (EHS) of Acartia ohtsukai in response to the combined effects of an increase in temperature and a lower pH. Acartiaohtsukai with fresh surface seawater were collected in the northwestern Yeoja Bay of Korea in September 2017. The temperature and pH conditions applied included two different pH levels (representing the present: 7.9 and the future: 7.6) and three temperature values (26 °C, 28 °C, and 30 °C). In the pH 7.9, EPR significantly increased with increased temperature, but in pH 7.6, it significantly decreased as the temperature increased. EHS was lower in pH 7.6 than in pH 7.9. These results suggest that changes in the marine environment due to global warming and ocean acidification may affect Acartia populations and cause overall fluctuations in copepods of the genus Acartia.

Continue reading ‘Effects of temperature and pH on the egg production and hatching success of a common Korean copepod’

Temperature affects the reproductive outputs of coral-eating starfish Acanthaster spp. after adult exposure to near-future ocean warming and acidification

Highlights

  • It is possible to keep adult COTS in modified conditions for several months with minimal losses.

  • The natural peak of reproduction for COTS in New Caledonia is around the end of the calendar year.

  • A +2 °C warming exposure of 3–4 months have detrimental effects on quality and quantity of COTS eggs along with fertilisation success.

  • During sub-optimal spawning season, COTS fertilisation success drops by 3-fold for animals exposed to elevated temperature.

Abstract

Outbreaks of the coral-eating crown-of-thorns starfish Acanthaster spp. (COTS) have become to be amongst the most severe threats to coral reefs worldwide. Although most research has focused on COTS early development, it remains unclear how COTS populations will keep pace with changing ocean conditions. Since reproduction is a key process contributing to outbreaks, we investigated the reproductive success of adult COTS acclimated for 3–4 months to different treatment combinations of ambient conditions, ocean warming (+2 °C) and acidification (−0.35 pH). Our results suggest that the optimal breeding season in New Caledonia is concentrated around the end of the calendar year, when water temperature reaches >26 °C. We found negative effects of temperature on egg metrics, fertilisation success, and GSI, conflicting with previously documented effects of temperature on echinoderm reproductive outputs. Fertilisation success dropped drastically (more than threefold) with elevated temperature during the late breeding season. In contrast, we detected no effects of near-future acidification conditions on fertilisation success nor GSI. This is the first time that COTS reproduction is compared among individuals acclimated to different conditions of warming and acidification. Our results highlight the importance of accounting for adult exposure to better understand how COTS reproduction may be impacted in the face of global change.

Continue reading ‘Temperature affects the reproductive outputs of coral-eating starfish Acanthaster spp. after adult exposure to near-future ocean warming and acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,309 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives