Posts Tagged 'performance'

Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions

Properties of the shells and byssus filaments secreted by marine mussels are affected by environmental and biotic factors. In this study, we investigated the effects of pH and temperature on shell and byssus in artificially created monospecific and mixed aggregations of the indigenous mussel Mytilus galloprovincialis and the invasive mussel Xenostrobus securis. The variability in the response of the mussels was mainly explained by species-specific interactions derived from the type of aggregation. In the mixed groups, acidic conditions caused a decrease in byssus strength in M. galloprovincialis, but an increase in byssus strength in X. securis. Increased temperature positively affected shell strength in X. securis, but only in mixed aggregations. Interactive effects of acidification and warming were only detected in the organic matter of shells, the strength of which decreased in M. galloprovincialis in mixed aggregations. Although the invasive mussel may be able to take advantage of changed conditions by enhancing byssal attachment, the effects that acidification has on shells may make this species more vulnerable to some predators. The study findings provide some insight into the responses of protective and attachment structures of mussels to biotic and abiotic stressors, highlighting how species interactions may shape the future of mytilid populations.

Continue reading ‘Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions’

Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales

California’s coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) μatm PCO2 and 8.0 (normoxic) and 4.5 mg l−1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.

Continue reading ‘Juvenile rockfish show resilience to CO2-acidification and hypoxia across multiple biological scales’

Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins


• Ocean acidification increase the feeding rates of juveniles of P. lividus on algae reared at low pH.
• However the effects of ocean acidification on feeding rates of D. africanum were not differences between algae reared under low pH and control pH.
• This investigation highlights indirect effects of ocean acidification such as increase in herbivores pressure as consequence of change in algae palatability.
• Ocean acidification affects growth of 9 algae species from Canary Islands.
• A future scenario of climate change could affect the palatability of algae and their growth.


The recent decrease in seawater pH has stimulated a great deal of research on the effects of ocean acidification on various organisms. Most of these studies have mainly focused on the direct effects of acidification on organisms. However, the effects on ecological interactions have been poorly studied. In this paper we have focused on determining the effects of acidification on feeding rates of two species of sea urchins, Paracentrotus lividus and Diadema africanum through laboratory experiments. Nine algae species were reared under two pH treatmens (ph = 8.1 vs. pH = 7.6) for 10 days. We evaluated possible changes in calcification rates, growth and internal structure. Then these algae were offered to juvenile sea urchins for 7 days, evaluating the consumption rates of juvenile sea urchins under these different pH conditions. The algae reared in the control treatment showed higher growth rates and concentration of calcium carbonate, however no internal structural changes were observed in any algae. Juvenile Paracentrotus lividus showed higher consumption rates on algae previously subjected to pH 7.6 than on algae reared under control conditions and between algae species in low pH.The algae most consumed were C. liebetruthii, C. abies-marina and C. elongata by P. lividus juveniles from low pH treatment. However in D. africanum the feeding rates were similar between treatments. This study demonstrated the negative effects of low pH on various species of algae in growth, and indirectly the increase in herbivory rates of juvenile sea urchins on algae reared under low pH.

Continue reading ‘Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins’

CO2 emissions boost the benefits of crop production by farming damselfish

Farming is a technique employed by both humans and animals to enhance crop yields, allowing their populations to increase beyond the natural carrying capacity of the environment. Using volcanic CO2 vents, we investigate how a species of herbivorous fish (the black scalyfin Parma alboscapularis) may use increasing anthropogenic CO2 emissions to enhance its crop yields. We found that these farming fish can take advantage of this resource enrichment, to grow crops within smaller territories and increase the capacity of the environment to support more densely packed fish populations.

Continue reading ‘CO2 emissions boost the benefits of crop production by farming damselfish’

Sensory system responses to human-induced environmental change

Sensory input to the central nervous system is the primary means by which animals respond to variation in their physical and biological environments. It is well established that key threats such as habitat destruction, the introduction of non-native species, and climate change are imposing significant pressures on natural ecosystems, yet surprisingly few studies have examined how these threats impact the senses or determine species’ responses to environmental change. This review focuses on how anthropogenic impacts on aquatic ecosystems can have a detrimental effect on the sensory systems of aquatic organisms and how these modalities can act to influence genetic and non-genetic (e.g., developmental) responses to environmental change, which in turn can cause knock-on effects in a range of other biological systems. Species often exhibit unique sensory specializations that are suited to their behavioral requirements; at present it is unclear whether and how sensory systems have the capacity to respond to environmental change through genetic adaptation and/or sensory plasticity, and on what timescale this might occur. Sensory systems lie at the forefront of how various species respond to environmental perturbation. As such, determining the important role they play in determining fitness is critical for understanding the effects of external processes such as habitat degradation and climate change. Given the current consensus that human impacts and environmental changes are potentially highly detrimental to the delicate balance of the biome, knowing how organisms respond, and to what degree adaptation is physiologically and behaviorally limited, warrants urgent attention.

Continue reading ‘Sensory system responses to human-induced environmental change’

Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden

Polar oceans are predicted to be the first marine environments affected by ocean acidification (OA). Thysanoessa inermis is one of the most abundant krill species in northern waters of the Atlantic and a key species in the food web of this ecosystem. Yet, we know very little about potential OA effects on this species. We studied the effects of elevated pCO2 on T. inermis in a laboratory experiment by exposing individuals for 11 weeks to low and high pCO2 (450 and 1200 µatm, respectively, n = 12 per pCO2 treatment). Survival, growth, and moulting frequency was monitored during the experiment, and feeding and oxygen consumption rates (n = 3–5 per pCO2 treatment) were measured at the end of the experiment. No significant effects of high pCO2 on survival, growth, moulting, oxygen consumption, and feeding rate were observed, indicating that T. inermis is tolerant to predicted high OA levels. We also explored physical and chemical properties of waters near the collection area of krill, Rijpfjorden (Svalbard 80° North) during the polar summer (July–August). In situ measurements showed large temperature and salinity gradients from surface to bottom and pCO2 and pH ranged, respectively, 161–417 µatm and 7.99–8.37. Even though substantial spatial variability in pCO2 could be observed, krill in this area is not confronted yet with the investigated high pCO2 levels.

Continue reading ‘Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden’

Exposure to elevated carbon dioxide does not impair short‐term swimming behaviour or shelter‐seeking in a predatory coral‐reef fish

Adult bluespotted rockcod Cephalopholis cyanostigma, a coral‐reef grouper, were acclimated to either ambient (mean ± S.D. 41.12 ± 2.13 Pa;) or high pCO2 (95.75 ± 11.75 Pa) conditions in a laboratory for 8–9 days, then released at the water surface directly above a reef (depth c. 5 m) and followed on video camera (for 191 ± 21 s) by scuba divers until they sought cover in the reef. No differences were detected between groups in any of the six measured variables, which included the time fish spent immobile after release, tail beat frequency during swimming and the time required to locate and enter the protective shelter of the reef.

Continue reading ‘Exposure to elevated carbon dioxide does not impair short‐term swimming behaviour or shelter‐seeking in a predatory coral‐reef fish’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,399 hits


Ocean acidification in the IPCC AR5 WG II

OUP book