Posts Tagged 'performance'

Effect of ocean acidification on bacterial metabolic activity and community composition in oligotrophic oceans, inferred from short-term bioassays

Increasing anthropogenic CO2 emissions in recent decades cause ocean acidification (OA), affecting carbon cycling in oceans by regulating eco-physiological processes of plankton. Heterotrophic bacteria play an important role in carbon cycling in oceans. However, the effect of OA on bacteria in oceans, especially in oligotrophic regions, was not well understood. In our study, the response of bacterial metabolic activity and community composition to OA was assessed by determining bacterial production, respiration, and community composition at the low-pCO2 (400 ppm) and high-pCO2 (800 ppm) treatments over the short term at two oligotrophic stations in the northern South China Sea. Bacterial production decreased significantly by 17.1–37.1 % in response to OA, since bacteria with high nucleic acid content preferentially were repressed by OA, which was less abundant under high-pCO2 treatment. Correspondingly, shifts in bacterial community composition occurred in response to OA, with a high fraction of the small-sized bacteria and high bacterial species diversity in a high-pCO2 scenario at K11. Bacterial respiration responded to OA differently at both stations, most likely attributed to different physiological responses of the bacterial community to OA. OA mitigated bacterial growth efficiency, and consequently, a larger fraction of DOC entering microbial loops was transferred to CO2.

Continue reading ‘Effect of ocean acidification on bacterial metabolic activity and community composition in oligotrophic oceans, inferred from short-term bioassays’

The dual benefit of ocean acidification for the laminarialean kelp, Saccharina latissima: enhanced growth and reduced herbivory

The laminarialean kelp, Saccharina latissima, is a common macroalgae along rocky shorelines that is also frequently used in aquaculture. This study examined how ocean acidification may alter the growth of S. latissima as well as grazing on S. latissima by the gastropod, Lacuna vincta. Under elevated nutrients, S. latissima experienced significantly enhanced growth at pCO2 levels >1,200 µatm compared to ambient pCO2 (~400 µatm). Elevated pCO2 (>830 µatm) also significantly reduced herbivory of L. vincta grazing on S. latissima relative to ambient pCO2. There was no difference in grazing of S. latissima previously grown under elevated or ambient pCO2, suggesting lowered herbivory was due to harm to the gastropods rather than alteration of the biochemical composition of the kelp. Decreased herbivory was specifically elicited when L. vincta were exposed to elevated pCO2 in the absence of food for >18 h prior to grazing, with reduced grazing persisting 72 h. Elevated growth of S. latissima and reduced grazing by L. vincta at 1,200 µatm pCO2 combined to increase net growth rates of S. latissima by more than four-fold relative to ambient pCO2L. vincta consumed 70% of daily production by S. latissima under ambient pCO2 but only 38% and 9% at 800 µatm and 1,200 µatm, respectively. Collectively, decreased grazing by L. vincta coupled with enhanced growth of S. latissima under elevated pCO2 demonstrates that increased CO2 associated with climate change and/or coastal processes will dually benefit commercially and ecologically important kelps by both promoting growth and reducing grazing pressure. 

Continue reading ‘The dual benefit of ocean acidification for the laminarialean kelp, Saccharina latissima: enhanced growth and reduced herbivory’

The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat

The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioral and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite: calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioral interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed.

Continue reading ‘The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat’

Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed

Ocean acidification driven by anthropogenic climate change is causing a global decrease in pH, which is projected to be 0.4 units lower in coastal shallow waters by the year 2100. Previous studies have shown that seaweeds grown under such conditions may alter their growth and photosynthetic capacity. It is not clear how such alterations might impact interactions between seaweed and herbivores, e.g. through changes in feeding rates, nutritional value, or defense levels. Changes in seaweeds are particularly important for coastal food webs, as they are key primary producers and often habitat-forming species. We cultured the habitat-forming brown seaweed Fucus vesiculosus for 30 days in projected future pCO2 (1100 μatm) with genetically identical controls in ambient pCO2 (400 μatm). Thereafter the macroalgae were exposed to grazing by Littorina littorea, acclimated to the relevant pCO2-treatment. We found increased growth (measured as surface area increase), decreased tissue strength in a tensile strength test, and decreased chemical defense (phlorotannins) levels in seaweeds exposed to high pCO2-levels. The herbivores exposed to elevated pCO2-levels showed improved condition index, decreased consumption, but no significant change in feeding preference. Fucoid seaweeds such as Fvesiculosus play important ecological roles in coastal habitats and are often foundation species, with a key role for ecosystem structure and function. The change in surface area and associated decrease in breaking force, as demonstrated by our results, indicate that Fvesiculosus grown under elevated levels of pCO2 may acquire an altered morphology and reduced tissue strength. This, together with increased wave energy in coastal ecosystems due to climate change, could have detrimental effects by reducing both habitat and food availability for herbivores.

Continue reading ‘Ocean acidification decreases grazing pressure but alters morphological structure in a dominant coastal seaweed’

Calcification does not necessarily protect articulated coralline algae from urchin grazing

Calcification is widely thought to be an adaptation that reduces the impact of herbivory. Recent work has shown that ocean acidification may negatively impact calcification of marine organisms, including coralline red algae, which could theoretically increase the susceptibility of corallines to benthic grazers. By manipulating calcium carbonate content of three articulated coralline algal species, we demonstrated that calcification has a variable and species-specific effect on urchin grazing. For two species, Corallina vancouveriensis and Corallina officinalis var. chilensis, reductions in calcium carbonate content did not cause a significant increase in urchin grazing, raising questions about the benefit of calcification in these species. For Calliarthron tuberculosum, reduced calcium carbonate content caused an increase in urchin grazing rates but only after calcium carbonate had been reduced by more than 15%, suggesting that only dramatic shifts in calcification would make C. tuberculosum more susceptible to urchin grazing. We hypothesize that the herbivory-reducing benefits of calcification likely depend upon coralline thallus morphology. Negative impacts of ocean acidification on calcification in coralline algae may not necessarily increase herbivory rates.

Continue reading ‘Calcification does not necessarily protect articulated coralline algae from urchin grazing’

Assessing the impact of static and fluctuating ocean acidification on the behavior of Amphiprion percula

Coral reef organisms are exposed to both an increasing magnitude of pCO2, and natural fluctuations on a diel scale. For coral reef fishes, one of the most profound effects of ocean acidification is the impact on ecologically important behaviors. Previous behavioral research has primarily been conducted under static pCO2 conditions and have recently come under criticism. Recent studies have provided evidence that the negative impacts on behavior may be reduced under more environmentally realistic, fluctuating conditions. We investigated the impact of both present and future day, static (500 and 1000 μatm) and diel fluctuating (500 ± 200 and 1000 ± 200 μatm) pCO2 on the lateralization and chemosensory behavior of juvenile anemonefish, Amphiprion percula. Our static experimental comparisons support previous findings that under elevated pCO2, fish become un-lateralized and lose the ability to discriminate olfactory cues. Diel-fluctuating pCO2 may aid in mitigating the severity of some behavioral abnormalities such as the chemosensory response, where a preference for predator cues was significantly reduced under a future diel-fluctuating pCO2 regime. This research aids in ground truthing earlier findings and contributes to our growing knowledge of the role of fluctuating conditions.

Continue reading ‘Assessing the impact of static and fluctuating ocean acidification on the behavior of Amphiprion percula’

Ocean acidification boosts reproduction in fish via indirect effects

Ocean acidification affects species populations and biodiversity through direct negative effects on physiology and behaviour. The indirect effects of elevated CO2 are less well known and can sometimes be counterintuitive. Reproduction lies at the crux of species population replenishment, but we do not know how ocean acidification affects reproduction in the wild. Here, we use natural CO2 vents at a temperate rocky reef and show that even though ocean acidification acts as a direct stressor, it can indirectly increase energy budgets of fish to stimulate reproduction at no cost to physiological homeostasis. Female fish maintained energy levels by compensation: They reduced activity (foraging and aggression) to increase reproduction. In male fish, increased reproductive investment was linked to increased energy intake as mediated by intensified foraging on more abundant prey. Greater biomass of prey at the vents was linked to greater biomass of algae, as mediated by a fertilisation effect of elevated CO2 on primary production. Additionally, the abundance and aggression of paternal carers were elevated at the CO2 vents, which may further boost reproductive success. These positive indirect effects of elevated CO2 were only observed for the species of fish that was generalistic and competitively dominant, but not for 3 species of subordinate and more specialised fishes. Hence, species that capitalise on future resource enrichment can accelerate their reproduction and increase their populations, thereby altering species communities in a future ocean.

Continue reading ‘Ocean acidification boosts reproduction in fish via indirect effects’

Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring

Ocean warming (OW) and acidification (OA) affects nearly all aspects of marine organism physiology and it is important to consider both stressors when predicting responses to climate change. We investigated the effects of long-term exposure to OW and OA on the physiology of adults of the sea urchin, Heliocidaris erythrogramma, a species resident in the southeast Australia warming hotspot. The urchins were slowly introduced to stressor conditions in the laboratory over a 7-week adjustment period to three temperature (ambient, +2°C, +3°C) and two pH (ambient: pHT 8.0; −0.4 units: pHT 7.6) treatments. They were then maintained in a natural pattern of seasonal temperature and photoperiod change, and fixed pH, for 22 weeks. Survival was monitored through week 22 and metabolic rate was measured at 4 and 12 weeks of acclimation, feeding rate and ammonia excretion rate at 12 weeks and assimilation efficiency at 13 weeks. Acclimation to +3°C was deleterious regardless of pH. Mortality from week 6 indicated that recent marine heatwaves are likely to have been deleterious to this species. Acclimation to +2°C did not affect survival. Increased temperature decreased feeding and increased excretion rates, with no effect of acidification. While metabolic rate increased additively with temperature and low pH at week 4, there was no difference between treatments at week 12, indicating physiological acclimation in surviving urchins to stressful conditions. Regardless of treatment, H. erythrogramma had a net positive energy budget indicating that the responses were not due to energy limitation. To test for the effect of parental acclimation on offspring responses, the offspring of acclimated urchins were reared to the juvenile stage in OW and OA conditions. Parental acclimation to warming, but not acidification altered juvenile physiology with an increase in metabolic rate. Our results show that incorporation of gradual seasonal environmental change in long-term acclimation can influence outcomes, an important consideration in predicting the consequences of changing climate for marine species.

Continue reading ‘Impacts of acclimation in warm-low pH conditions on the physiology of the sea urchin Heliocidaris erythrogramma and carryover effects for juvenile offspring’

Animal size and sea water temperature, but not pH, influence a repeatable startle response behavior in a wide-ranging marine mollusc


  • We measured startle response (time to open) in mussels following a predator cue.
  • We tested effects of temperature, pH and size and measured repeatability.
  • Larger mussels opened faster; repeatable startle response; evidence of habituation.
  • High temperature increased time to open; no effect of pH.
  • Blue mussels are sensitive to temperature and vulnerable to climate change.


Startle response behaviours are important in predator avoidance and escape for a wide array of animals. For many marine invertebrates, however, startle response behaviours are understudied, and the effects of global change stressors on these responses are unknown. We exposed two size classes of blue mussels (Mytilus edulis × trossulus) to different combinations of temperature (15 and 19 °C) and pH (8.2 and 7.5 pHT) for 3 months and subsequently measured individual time to open following a tactile predator cue (i.e. startle response time) over a series of four consecutive trials. Time to open was highly repeatable in the short term and decreased linearly across the four trials. Individuals from the larger size class had a shorter time to open than their smaller-sized counterparts. High temperature increased time to open compared to low temperature, while pH had no effect. These results suggest that bivalve time to open is repeatable, related to relative vulnerability to predation and affected by temperature. Given that increased closure times impact feeding and respiration, the effect of temperature on closure duration may play a role in the sensitivity to ocean warming in this species and contribute to ecosystem level effects.

Continue reading ‘Animal size and sea water temperature, but not pH, influence a repeatable startle response behavior in a wide-ranging marine mollusc’

Ocean acidification inhibits the sperm motility of Tegillarca granosavia disturbing ATP synthesis and intracellular CA2+ activity (Chinese)

Since the industrial revolution, massive amount of anthropogenic carbon dioxide (CO2) have been generated to elevate the atmospheric CO2 concentration. Some anthropogenic CO2 have been absorbed by the ocean to cause “ocean acidification” (OA). Although the negative impacts of OA on sperm motility are increasingly found in various marine invertebrate species, the cellular and molecular mechanisms for these effects are still poorly understood. This study investigated the effect of OA (pH7.8 and 7.4) on sperm motility and energy supplying pathway in blood clam Tegillarca granosa. The results showed that the sperm swimming speed reduced significantly in acidified seawater. Since the adenosine triphosphate (ATP) level of sperm is closely related to its motility, we analyzed the sperm ATP content and activities of key enzymes during ATP synthesis under different OA scenarios. OA treatments significantly reduced ATP content as well as activities of 6-phosphofructokinase and pyruvate kinase in the sperm of T. granosa. The sperm Ca2+-ATPase of various animals has been reported to regulate sperm motility. Therefore, we explored the Ca2+-ATPase activity of T. granosa sperm under OA treatment. The results found that Ca2+-ATPase activities in the sperm of T. granosa were significantly declined under OA scenarios. In conclusion, these results suggested that OA could constrain sperm motility through inhibiting ATP synthesis and disturbing intracellular Ca2+ regulation.

Continue reading ‘Ocean acidification inhibits the sperm motility of Tegillarca granosavia disturbing ATP synthesis and intracellular CA2+ activity (Chinese)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,428,650 hits


Ocean acidification in the IPCC AR5 WG II

OUP book