Posts Tagged 'performance'

Impact of climate change on direct and indirect species interactions

Recent marine climate change research has largely focused on the response of individual species to environmental changes including warming and acidification. The response of communities, driven by the direct effects of ocean change on individual species as well the cascade of indirect effects, has received far less study. We used several rocky intertidal species including crabs, whelks, juvenile abalone, and mussels to determine how feeding, growth, and interactions between species could be shifted by changing ocean conditions. Our 10 wk experiment revealed many complex outcomes which highlight the unpredictability of community-level responses. Contrary to our predictions, the largest impact of elevated CO2 was reduced crab feeding and survival, with a pH drop of 0.3 units. Surprisingly, whelks showed no response to higher temperatures or CO2 levels, while abalone shells grew 40% less under high CO2 conditions. Massive non-consumptive effects of crabs on whelks showed how important indirect effects can be in determining climate change responses. Predictions of species outcomes that account solely for physiological responses to climate change do not consider the potentially large role of indirect effects due to species interactions. For strongly linked species (e.g. predator-prey or competitor relationships), the indirect effects of climate change are much less known than direct effects, but may be far more powerful in reshaping future marine communities.

Continue reading ‘Impact of climate change on direct and indirect species interactions’

Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard

Ocean acidification induces strong behavioural alterations in marine fish as a consequence of acid-base regulatory processes in response to increasing environmental CO2 partial pressure. While these changes have been investigated in tropical and temperate fish species, nothing is known about behavioural effects on polar species. In particular, fishes of the Arctic Ocean will experience much greater acidification and warming than temperate or tropical species. Also, possible interactions of ocean warming and acidification are still understudied. Here we analysed the combined effects of warming and acidification on behavioural patterns of 2 fish species co-occurring around Svalbard, viz. polar cod Boreogadus saida and Atlantic cod Gadus morhua. We found a significant temperature effect on the spontaneous activity of B. saida, but not of G. morhua. Environmental CO2 did not significantly influence activity of either species. In contrast, behavioural laterality of B. saida was affected by CO2 but not by temperature. Behavioural laterality of G. morhua was not affected by temperature or CO2; however, in this species, a possible temperature dependency of CO2 effects on relative laterality may have been missed due to sample size restrictions. This study indicates that fish in polar ecosystems may undergo some, albeit less intense, behavioural disturbances under ocean acidification and in combination with ocean warming than observed in tropical species. It further accentuates species-specific differences in vulnerability.

Continue reading ‘Impact of ocean warming and acidification on the behaviour of two co-occurring gadid species, Boreogadus saida and Gadus morhua, from Svalbard’

Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.

Continue reading ‘Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins’

Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont

As atmospheric CO₂ concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. This PhD thesis explores the response of four abundant Great Barrier Reef species – the phototrophic Carteriospongia foliascens and Cymbastela coralliophila and the heterotrophic Stylissa flabelliformis and Rhopaloeides odorabile to OW and OA levels predicted for 2100, under two CO₂ Representative Concentration Pathways (RCPs). The overall aim of this research is to bridge gaps in our understanding of how these important coral reef organisms will respond to projected climate change, to begin to explore whether a sponge dominated state is a possible future trajectory for coral reefs.

To determine the tolerance of adult sponges to climate change, these four species were exposed to OW and OA in the Australian Institute of Marine Science’s (AIMS) National Sea Simulator (SeaSim) in a 3-month experimental study. The first data chapter explores the physiological responses of these sponges to OW and OA to gain a broad understanding of sponge holobiont survival and functioning under these conditions. In this chapter I also address the hypothesis that phototrophic and heterotrophic sponges will exhibit differential responses to climate change. In the second and third data chapters I explore the cellular lipid and fatty acid composition of sponges, and how these biochemical constituents vary with OW and OA. Lipids and fatty acids are not only vital energy stores, they form the major components of cell membranes, and the structure and composition of these biochemical constituents ultimately determines the integrity and physiological competency of a cell. Therefore through these analyses I aimed to determine how OW and OA affects the metabolic balance of sponges, and to understand mechanisms underpinning observed systemic sponge responses. Finally, to provide greater insight into the population level impacts of climate change on tropical sponges, in the last data chapter I explore the response of the phototrophic species Carteriospongia foliascens to OW/OA throughout its developmental stages.

I found that while sponges can generally tolerate climate change scenarios predicted under the RCP6.0 conditions for 2100 (30ºC/ pH 7.8), environmental projections for the end of this century under the RCP8.5 (31.5ºC/ pH 7.6) will have significant implications for their survival. Temperature effects were much stronger than OA effects for all species; however, phototrophic and heterotrophic species responded differently to OA. Elevated pCO₂ exacerbated temperature stress in heterotrophic sponges but somewhat ameliorated thermal stress in phototrophic species. Furthermore, sponges with siliceous spiculated skeletons resisted the RCP 8.5 conditions for longer than the aspiculate species. Biochemical analysis revealed that spiculated species also have greater cell membrane support features, which is likely to contribute to the observed stress tolerance. I also found that the additional energy available to phototrophic sponges under OA conditions may be used for investment into cell membrane support, providing protection against thermal stress. Finally, larval survival and settlement success of C. foliascens was unaffected by OW and OA treatments, and juvenile sponges exhibited greater tolerance than their adult counterparts, again with evidence that OA reduces OW stress for some of these life stages.

Based on the species studied here, this thesis confirms that sponges are better able to deal with OW and OA levels predicted for 2100 under RCP6.0, compared to many corals for which survival in a high CO₂ world requires OW to remain below 1.5°C. This suggests sponges may be future ‘winners’ on coral reefs under global climate change. However, if CO₂ atm concentrations reach levels predicted under RCP8.5, the prognosis for sponge survival by the end of this century changes as inter-species sponge tolerances to OW and OA differ. Under this projection it is likely we will also start to see a shift in sponge populations to those dominated by phototrophic sponges with siliceous spiculated skeletons. Overall, this thesis gives a holistic view of OW and OA impacts on tropical sponges and provides the basis from which to explore the potential for a sponge-coral regime shift in a high CO₂ world.

Continue reading ‘Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont’

Ocean acidification in the Baltic Sea : implications for the bivalve Macoma balthica

The Baltic Sea is one of the most human-impacted sea areas in the world and its ecosystems are exposed to a variety of stressors of anthropogenic origin. Large changes in the environmental conditions, species and communities of the Baltic Sea are predicted to occur due to global climate change, but the extent and magnitude of the future changes are challenging to estimate due to the multiple stressors simultaneously impacting the system. As an additional threat, future ocean acidification will play a role in modifying the environmental conditions, and these CO2-induced changes are predicted to be fast in the Baltic Sea. This is especially of concern for the species-poor, but functionally essential benthic communities where key species such as bivalve Macoma balthica live at the limits of their tolerance range, and are already regularly disturbed by environmental stressors such as hypoxia. Currently, only very limited knowledge about the effects of future ocean acidification exists for this species.

The overall aim of my thesis was to develop an understanding of the effects of CO2 increase on the vulnerability of Baltic Sea key species, and how this is related to other effects of climate change, e.g. an increase in bottom-water hypoxia. Specifically, I investigated how different life stages of the infaunal bivalve M. balthica could be affected by future ocean acidification. Survival, growth, behaviour and physiological responses were assessed in a combination of laboratory and mesocosm experiments by exposing different life stages of M. balthica to different pH levels over different time periods depending on the life stage in question. While some life stage-based differences in vulnerability and survival were found, the results indicate that reduced pH has a negative effect on all life stages. In larval M. balthica, even a slight pH decrease was found to cause significant negative changes during that delicate life stage, both by slowing growth and by decreasing survival. Other observed impacts included delayed settling of the post-larvae and increasing energetic demand of adult bivalves.

The results suggest consistent negative effects at all life stages with potential major implications for the resilience of M. Balthica populations, which are currently under threat from a range of anthropogenic stressors such as increasing hypoxia. The kind of experimental studies conducted in this thesis are useful for pinpointing mechanisms, but they are always simplifications of reality, however, and are usually conducted over time scales that are short in relation to the time scales over which ocean acidification is affecting populations, communities and ecosystems. To fully understand and to be able to estimate how the complex ecosystems are about to change in the future, incorporating more of the biotic interactions, impacting stressors and relevant environmental conditions are needed for increasing the level of realism in the experiments.

Continue reading ‘Ocean acidification in the Baltic Sea : implications for the bivalve Macoma balthica’

Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica

We examined prey selection and foraging behaviors of the crab Charybdis japonica exposed to four combinations of pH (7.3 and 8.1) and temperature (18 °C and 25 °C). The order of prey selection by C. japonica was Potamocorbula laevis, Ruditapes philippinarum, Tegillarca granosa and Mactra veneriformis. Under high pCO2, times for searching, breaking, eating and handling were all significantly longer than those at the normal pCO2, and the prey profitability and predation rate under high pCO2 were significantly lower than normal pCO2. Moreover, temperature significantly influenced the foraging behaviors, but its effects were not as strong as those of pH; times for searching, eating and handling under high temperature were significantly lower than the low temperature, and the prey predation rates under high temperature was significantly higher than low temperature. In conclusion, high pCO2 negatively affected the foraging behavior, but high temperature actively stimulated the foraging behaviors of crabs.

Continue reading ‘Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica’

Effects of ocean acidification on juveniles sea urchins: Predator-prey interactions

Increasing CO2 concentration in the atmosphere during the last decades has led to a significant decrease in ocean pH. Organisms that need carbonate to build their calcareous skeletons could be severely affected. In this study we focused on the effects of ocean acidification on juveniles of the sea urchins Paracentrotus lividus and Diadema africanum. We assessed the effects of decreased pH on two skeletal structures, spines and test, and their impacts on species performance to avoid predation events in the field. Juveniles of both study species were exposed for 100 days to two treatments of pH: a pH of 8.0 (413.2 μatm) and pH of 7.6 (1349 μatm). Our results showed that D. africanum juveniles from the acidic treatment were more predated than those kept in the control treatment. These differences were not observed between treatments in P. lividus. Diadema africanum may be more sensitive to the indirect effects of ocean acidification on predator avoidance than P. lividus. However juveniles reared in a pH of 7.6 showed changes in shape in skeletal structures in both species. Considering these results in future scenarios, P lividus may be considered a “winning species”, and D. africanum a “losing species” in the climate change stake.

Continue reading ‘Effects of ocean acidification on juveniles sea urchins: Predator-prey interactions’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits


Ocean acidification in the IPCC AR5 WG II

OUP book