Posts Tagged 'performance'

Sperm characteristics of wild and captive lebranche mullet Mugil liza (Valenciennes, 1836), subjected to sperm activation in different pH and salinity conditions


•Spermatology of Mugil liza in the wild and captive states.
•Morphometry and effects of pH and salinity on sperm motility.
•Optimize the “in vitro” handling of spermatozoa.


In this article we describe basic aspects of the sperm biology of lebranche mullet (Mugil liza) in the wild and in captivity, in particular assessing the effects of salinity (0, 10, 20, 30, 35, 40, 50 and 60 g L-1) and pH (6, 7, 8, 9 and 10) on sperm motility. Our results indicate that the highest percentage of motility was recorded with salinity 34.6 g L-1 (95 ± 10%) and the longest motility time was obtained with a salinity of 34.8 g L-1 (189 ± 15 s). Variations in the salinity between 30 and 35 g L-1 did not produce any significant alterations in sperm motility; however salinities of 20 and 50 g L-1 produced a significant loss of sperm motility. The highest percentage of motility was obtained at pH 8.5 (93 ± 12%), and the longest motility period at pH 8.7 (218 ± 13 s), while pH lower than or equal to 7 and equal to 10 both produced a significant loss in sperm motility. A positive correlation was found between pH/salinity and the motility percentage (R2 = 0.94 and R2 = 0.97) and motility time (R2 = 0.86 and R2 = 0.98). In seminal and morphometric parameters, statistically significant differences were observed in semen volume, sperm density, plasma membrane integrity and sperm morphometry between the groups studied, showing that the characteristics of the fish have a direct influence on sperm quality. The information generated in this research will be useful for developing biotechnology tools for the effective management of Mugil liza gametes. Continue reading ‘Sperm characteristics of wild and captive lebranche mullet Mugil liza (Valenciennes, 1836), subjected to sperm activation in different pH and salinity conditions’

Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions

Aquatic acidification, caused by elevating levels of atmospheric carbon dioxide (CO2), is increasing in both freshwater and marine ecosystems worldwide. However, few studies have examined how acidification will affect oxygen (O2 ) transport and, therefore, performance in fishes. Although data are generally lacking, the majority of fishes investigated in this meta-analysis exhibited no effect of elevated CO2 at the level of O2 uptake, suggesting that they are able to maintain metabolic performance during a period of acidosis. Notably, the mechanisms that fish employ to maintain performance and O2 uptake have yet to be verified. Here, we summarize current data related to one recently proposed mechanism underpinning the maintenance of O2 uptake during exposure to aquatic acidification, and reveal knowledge gaps that could be targeted for future research. Most studies have examined O2 uptake rates while fishes were resting and did not calculate aerobic scope, even though aerobic scope can aid in predicting changes to whole-animal metabolic performance. Furthermore, research is lacking on different age classes, freshwater species and elasmobranchs, all of which might be impacted by future acidification conditions. Finally, this Review further seeks to emphasize the importance of developing collaborative efforts between molecular, physiological and ecological approaches in order to provide more comprehensive predictions as to how future fish populations will be affected by climate change.

Continue reading ‘Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions’

Sand smelt ability to cope and recover from ocean’s elevated CO2 levels


• Sand smelt larvae were exposed to short and long-term acidification scenarios.
• Cope and recover were assessed at behavioural, morphometric and biochemical levels.
• Exposure to high pCO2 induces different responses at distinct exposure times.
• Contrary to biochemical and morphometric responses, lateralization was unaffected.
• Larvae were not able to recover from acidified scenarios within the study period.


Considered a major environmental concern, ocean acidification has induced a recent research boost into effects on marine biodiversity and possible ecological, physiological, and behavioural impacts. Although the majority of literature indicate negative effects of future acidification scenarios, most studies are conducted for just a few days or weeks, which may be insufficient to detect the capacity of an organism to adjust to environmental changes through phenotypic plasticity. Here, the effects and the capacity of sand smelt larvae Atherina presbyter to cope and recover (through a treatment combination strategy) from short (15 days) and long-term exposure (45 days) to increasing pCO2 levels (control: ~515 μatm, pH = 8.07; medium: ~940 μatm, pH = 7.84; high: ~1500 μatm, pH = 7.66) were measured, addressing larval development traits, behavioural lateralization, and biochemical biomarkers related with oxidative stress and damage, and energy metabolism and reserves. Although behavioural lateralization was not affected by high pCO2 exposure, morphometric changes, energetic costs, and oxidative stress damage were impacted differently through different exposures periods. Generally, short-time exposures led to different responses to either medium or high pCO2 levels (e.g. development, cellular metabolism, or damage), while on the long-term the response patterns tend to become similar between them, with both acidification scenarios inducing DNA damage and tending to lower growth rates. Additionally, when organisms were transferred to lower acidified condition, they were not able to recover from the mentioned DNA damage impacts.

Overall, results suggest that exposure to future ocean acidification scenarios can induce sublethal effects on early life-stages of fish, but effects are dependent on duration of exposure, and are likely not reversible. Furthermore, to improve our understanding on species sensitivity and adaptation strategies, results reinforce the need to use multiple biological endpoints when assessing the effects of ocean acidification on marine organisms.

Continue reading ‘Sand smelt ability to cope and recover from ocean’s elevated CO2 levels’

Effects of water temperature and pH value on covering behavior of the sea urchin Glyptocidaris crenularis

As marine calcifying organisms, sea urchins are sensitive in the changing ocean. More information is needed about the effects of pH value and water temperature on behaviors of sea urchins. Here, we reported that pH value and water temperature significantly affected the covering behavior of sea urchins Glyptocidaris crenularis. Lower pH value (pH = 7.4) significantly reduced the time to first covering (p = 0.026), while significantly decreased number of covered sea urchins (p = 0.029) and number of shells used for covering (p = 0.007) in G. crenularis. Water temperature did not significantly affect the time to first covering (p = 0.180) or number of covered sea urchins (p = 0.157), though significantly affected number of shells used for covering (p = 0.042). The present study provides preliminary information on behavioral ecology of sea urchins. Notably, the effects of CO2 induced acidification should be further investigated in future.

Continue reading ‘Effects of water temperature and pH value on covering behavior of the sea urchin Glyptocidaris crenularis’

Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 to 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.

Continue reading ‘Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system’

pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)

Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions) and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster. The acidic pH of the gonad (5.82 ± 0.22) maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe) when released in seawater (SW). At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi) of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW) was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰), and pH values above 7.5 (within a range of 4.5 to 9.5).

Continue reading ‘pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas)’

Ecological complexity buffers the impacts of future climate on marine consumers

Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1,2,3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

Continue reading ‘Ecological complexity buffers the impacts of future climate on marine consumers’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,066,623 hits


Ocean acidification in the IPCC AR5 WG II

OUP book