Posts Tagged 'performance'

Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea


• We addressed the impact of ocean acidification and seawater temperature increases on scyphozoan planulae.
A. coerulea planulae can cope well with decreased pH conditions through rapid settlement.
• Elevated seawater temperature appears to be a crucial stress factor for A. coerulea planulae.


Rapidly rising levels of atmospheric CO2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases.

Continue reading ‘Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea’

Correlated effects of ocean acidification and warming on behavioral and metabolic traits of a large pelagic fish

Ocean acidification and warming are co-occurring stressors, yet their effects on early life stages of large pelagic fishes are not well known. Here, we determined the effects of elevated CO2 and temperature at levels projected for the end of the century on activity levels, boldness, and metabolic traits (i.e., oxygen uptake rates) in larval kingfish (Seriola lalandi), a large pelagic fish with a circumglobal distribution. We also examined correlations between these behavioral and physiological traits measured under different treatments. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO2 (~500 µatm and ~1000 µatm) and temperature (21 °C and 25 °C). Activity levels were higher in fish from the elevated temperature treatment compared with fish reared under ambient temperature. However, elevated CO2 did not affect activity, and boldness was not affected by either elevated CO2 or temperature. Both elevated CO2 and temperature resulted in increased resting oxygen uptake rates compared to fish reared under ambient conditions, but neither affected maximum oxygen uptake rates nor aerobic scope. Resting oxygen uptake rates and boldness were negatively correlated under ambient temperature, but positively correlated under elevated temperature. Maximum oxygen uptake rates and boldness were also negatively correlated under ambient temperature. These findings suggest that elevated temperature has a greater impact on behavioral and physiological traits of larval kingfish than elevated CO2. However, elevated CO2 exposure did increase resting oxygen uptake rates and interact with temperature in complex ways. Our results provide novel behavioral and physiological data on the responses of the larval stage of a large pelagic fish to ocean acidification and warming conditions, demonstrate correlations between these traits, and suggest that these correlations could influence the direction and pace of adaptation to global climate change.

Continue reading ‘Correlated effects of ocean acidification and warming on behavioral and metabolic traits of a large pelagic fish’

Trematode infection modulates cockles biochemical response to climate change


• Higher infection success with water salinity decrease, warming and acidification
• Under lower water salinity, parasite infection reduced cockle antioxidant defence.
• Under higher water temperature, parasite infection increased cockle cellular damage.
• Under higher pCO2, parasite infection induced cockle metabolic depression.


Resulting mainly from atmospheric carbon dioxide (CO2) build-up, seawater temperature rise is among the most important climate change related factors affecting costal marine ecosystems. Global warming will have implications on the water cycle, increasing the risk of heavy rainfalls and consequent freshwater input into the oceans but also increasing the frequency of extreme drought periods with consequent salinity increase. For Europe, by the end of the century, projections describe an increase of CO2 concentration up to 1120 ppm (corresponding to 0.5 pH unit decrease), an increase in the water temperature up to 4 °C and a higher frequency of heavy precipitation. These changes are likely to impact many biotic interactions, including host–parasite relationships which are particularly dependent on abiotic conditions. In the present study, we tested the hypothesis that the edible cockle, Cerastoderma edule, exposed to different salinity, temperature and pH levels as proxy for climate change, modify the infection success of the trematode parasite Himasthla elongata, with consequences to cockles biochemical performance. The results showed that the cercariae infection success increased with acidification but higher biochemical alterations were observed in infected cockles exposed to all abiotic experimental stressful conditions tested. The present study suggested that changes forecasted by many models may promote the proliferation of the parasites infective stages in many ecosystems leading to enhanced transmission, especially on temperate regions, that will influence the geographical distribution of some diseases and, probably, the survival capacity of infected bivalves.

Continue reading ‘Trematode infection modulates cockles biochemical response to climate change’

Living in a high CO2 world: a global meta‐analysis shows multiple trait‐mediated fish responses to ocean acidification

Understanding how marine organisms will be affected by global change is of primary importance to ensure ecosystem functioning and nature contributions to people. This study meets the call for addressing how life‐history traits mediate effects of ocean acidification on fish. We built a database of overall and trait‐mediated responses of teleost fish to future CO2 levels by searching the scientific literature. Using a meta‐analytical approach, we investigated the effects of projected CO2 levels by IPCC for 2050–2070 and 2100 on fish eco‐physiology and behavior from 320 contrasts on 42 species, stemming from polar to tropical regions. Moreover, since organisms may experience a mosaic of carbonate chemistry in coastal environments (e.g., in estuaries, upwelling zones and intertidal habitats), which may have higher pCO2 values than open ocean waters, we assessed responses from additional 103 contrasts on 21 fish species using pCO2 levels well above IPCC projections. Under mid‐century and end‐of‐century CO2 emission scenarios, we found multiple CO2‐dose‐dependent effects on calcification, resting metabolic rate, yolk, and behavioral performances, along with increased predation risk and decreased foraging, particularly for larvae. Importantly, many of the traits considered will not confer fish tolerance to elevated CO2 and far‐reaching ecological consequences on fish population replenishment and community structure will likely occur. Extreme CO2 levels well above IPCC projections showed effects on fish mortality and calcification, while growth, metabolism, and yolk were unaffected. CO2 exposures in short‐term experiments increased fish mortality, which in turn decreased in longer‐term exposures. Whatever the elevated CO2 levels considered, some key biological processes (e.g., reproduction, development, habitat choice) were critically understudied. Fish are an important resource for livelihoods in coastal communities and a key component for stability of marine ecosystems. Given the multiple trait‐mediated effects evidenced here, we stress the need to fill the knowledge gap on important eco‐physiological processes and to expand the number and duration of ocean acidification studies to multi‐generational, multiple stressor (e.g., warming, hypoxia, fishing), and species interactions experiments to better elucidate complex ecosystem‐level changes and how these changes might alter provisioning of ecosystem services.

Continue reading ‘Living in a high CO2 world: a global meta‐analysis shows multiple trait‐mediated fish responses to ocean acidification’

The duality of ocean acidification as a resource and a stressor

Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2‐driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.

Continue reading ‘The duality of ocean acidification as a resource and a stressor’

Characterization of a γ‐aminobutyrate type A receptor‐associated protein gene, which is involved in the response of Portunus trituberculatus to CO2‐induced ocean acidification

The γ‐aminobutyrate type A receptor‐associated protein (GABARAP) is a ubiquitin‐like modifier implicated in membrane trafficking and fusion events involving the γ‐aminobutyrate type A receptor, autophagy and apoptosis. In this study, the gene encoding GABARAP was cloned from swimming crab Portunus trituberculatus (PtGABARAP) based on the expression sequence tag (EST). The full‐length cDNA of 664 bp includes a 5′ untranslated region (UTR) of 87 bp, a 3′ UTR of 223 bp with a poly(A) tail, and an open reading frame (ORF) of 354 bp encoding a polypeptide of 117 amino acids with a predicted molecular weight of 13.96 kDa. The deduced amino acid sequence shares high similarity (93%–100%) with GABARAPs from other species and includes a conserved Atg8 domain. In a phylogenetic analysis PtGABARAP clustered with GABARAPs from other species, and more widely with other GABARAP family proteins. The impact of elevated ocean acidification (OA) on P. trituberculatus behaviours was investigated, and real‐time RT‐PCR revealed that PtGABARAP expression was up‐regulated after OA exposure. Ocean acidification also caused crabs anxiety‐like behaviours, like the shoal average speed increase, preference for dark environment (scototaxis) and fast exploration. The results indicated that GABARAP might be involved in the interactions of GABAA receptors and elevated‐CO2 seawater.

Continue reading ‘Characterization of a γ‐aminobutyrate type A receptor‐associated protein gene, which is involved in the response of Portunus trituberculatus to CO2‐induced ocean acidification’

Trans‐life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens

Experimental simulation of near‐future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans‐generational exposure to near‐future acidification levels.

Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans‐generational plasticity using morphological and physiological endpoints.

Acclimation of adults to pHT 7.2 (pCO2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pHT 7.4; pCO2 2000μatm). Parental pre‐acclimation to pHT 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre‐acclimation to pHT 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget.

Parental pre‐acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pHT 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA.

Continue reading ‘Trans‐life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,082,426 hits


Ocean acidification in the IPCC AR5 WG II

OUP book