Posts Tagged 'performance'



A comprehensive review of the effects of salinity, dissolved organic carbon, pH, and temperature on copper biotoxicity: implications for setting the copper marine water quality criteria

Highlights

  • Salinity, DOC, pH and temperature will significantly influence copper toxicity.
  • DOC is the most studied factor in the establishment of Cu WQCs in seawater.
  • Cu WQC values were primarily determined using BLM, WER, QSAR and regression models.
  • Salinity, DOC and temperature should be considered in determining the Cu marine WQCs.

Abstract

In recent years, there has been a growing concern about the ecological hazards associated with copper, which has sparked increased interest in copper water quality criteria (WQC). The crucial factors affecting the bioavailability of copper in seawater are now acknowledged to be salinitydissolved organic carbon (DOC), pH, and temperature. Research on the influence of these four water quality parameters on copper toxicity is rapidly expanding. However, a comprehensive and clear understanding of the relevant mechanisms is currently lacking, hindering the development of a consistent international method to establish the seawater WQC value for copper. As a response to this knowledge gap, this study presents a comprehensive summary with two key focuses: (1) It meticulously analyzes the effects of salinity, DOC, pH, and temperature on copper toxicity to marine organisms. It takes into account the adaptability of different species to salinity, pH and temperature. (2) Additionally, the study delves into the impact of these four water parameters on the acute toxicity values of copper on marine organisms while also reviewing the methods used in establishing the marine WQC value of copper. The study proposed a two-step process: initially zoning based on the difference of salinity and DOC, followed by the establishment of Cu WQC values for different zones during various seasons, considering the impacts of water quality parameters on copper toxicity. By providing fundamental scientific insights, this research not only enhances our understanding and predictive capabilities concerning water quality parameter-dependent Cu toxicity in marine organisms but also contributes to the development of copper seawater WQC values. Ultimately, this valuable information facilitates more informed decision-making in marine water quality management efforts.

Continue reading ‘A comprehensive review of the effects of salinity, dissolved organic carbon, pH, and temperature on copper biotoxicity: implications for setting the copper marine water quality criteria’

Sometimes (often?) responses to multiple stressors can be predicted from single-stressor effects: a case study using an agent-based population model of croaker in the Gulf of Mexico

Abstract

Objective

Rapid changes in the world’s oceans make assessment of fish population responses to multiple stressors, especially on scales relevant to management, increasingly important. I used an existing agent-based, spatially explicit model of Atlantic Croaker Micropogonias undulatus in the northern Gulf of Mexico to examine how temperature, hypoxia, and ocean acidification, singly and in combinations, affect long-term population dynamics.

Methods

I performed a factorial simulation experiment with each stressor at three levels and analyzed various treatment combinations to assess the additivity and multiplicity of interactions. The response variables were long-term equilibrium (final year) values of spawning stock biomass (SSB), recruitment, weight at age, and two measures of stock productivity (recruits per SSB and maximum recruitment) derived from the spawner–recruit relationship fitted to model output. I used the single-stressor effects from the experiment to predict how the response variables would change when all three stressors were changed. Single-stressor effects were combined as the sum of the fractional changes (additive scale) and the product of ratios of changes (multiplicative scale) and compared to the responses in simulations with all stressors imposed.

Result

Analyzing the factorial design for two-way and three-way interactions showed that there were many interactions on the additive scale but very few on the multiplicative scale. Thus, the responses to multiple stressors were well predicted from single stressor effects when combined as multiplicative effects.

Conclusion

I discuss how the lack of strong interactions could be due to model assumptions, the structure of the model, or oversimplified representation of stressor effects. Alternatively, the model and analysis may be sufficiently realistic and weak interactions on the multiplicative scale may be common. This would reduce a complicated multi-factor situation to a series of more tractable single-factor effects. A critical next step is to determine how we can a priori identify situations of low interactions (i.e., predictable from single-stressor effects) without having to already know the multi-stressor response.

Continue reading ‘Sometimes (often?) responses to multiple stressors can be predicted from single-stressor effects: a case study using an agent-based population model of croaker in the Gulf of Mexico’

A global biogeography analysis reveals vulnerability of surface marine zooplankton to anthropogenic stressors

Highlights

  • Multiple stress factors for zooplankton overlap in the surface ocean
  • Stress brought by surface warming and acidification strongly increased in ∼50 years
  • More research on anthropogenic impacts on zooplankton is urgently needed

Summary

Anthropogenic impacts on zooplankton at the surface ocean pose an urgent challenge because these keystone species are crucial for oceanic processes. Some anthropogenic stressors for zooplankton have been identified, such as acidification due to climate change, but a multitude of other stressors exist, and the combination of these may lead to unknown impacts. We utilized global biogeochemical models to assess the temporal and spatial distribution of zooplankton stress factors, including changes in sea surface temperature, acidification, prey quantity, food quality, and contaminants. We highlighted regional hotspots where multiple stress factors overlap and revealed that most stress factors are increasing. By linking stress factors to zooplankton distribution, we introduced a zooplankton vulnerability index. We found that the zooplankton vulnerability index has doubled in 50 years, and this suggests that zooplankton populations are increasingly at risk from anthropogenic stressors. Further research is needed to develop strategies for mitigating the impacts of anthropogenic stressors on zooplankton.

Continue reading ‘A global biogeography analysis reveals vulnerability of surface marine zooplankton to anthropogenic stressors’

Functional changes across marine habitats due to ocean acidification

Global environmental change drives diversity loss and shifts in community structure. A key challenge is to better understand the impacts on ecosystem function and to connect species and trait diversity of assemblages with ecosystem properties that are in turn linked to ecosystem functioning. Here we quantify shifts in species composition and trait diversity associated with ocean acidification (OA) by using field measurements at marine CO2 vent systems spanning four reef habitats across different depths in a temperate coastal ecosystem. We find that both species and trait diversity decreased, and that ecosystem properties (understood as the interplay between species, traits, and ecosystem function) shifted with acidification. Furthermore, shifts in trait categories such as autotrophs, filter feeders, herbivores, and habitat-forming species were habitat-specific, indicating that OA may produce divergent responses across habitats and depths. Combined, these findings reveal the importance of connecting species and trait diversity of marine benthic habitats with key ecosystem properties to anticipate the impacts of global environmental change. Our results also generate new insights on the predicted general and habitat-specific ecological consequences of OA.

Continue reading ‘Functional changes across marine habitats due to ocean acidification’

Low molecular weight carbohydrate patterns of mangrove macroalgae from different climatic niches under ocean acidification, warming and salinity variation

Ocean acidification has increased due to the enhanced solubility of CO2 in seawater. Mangrove macroalgae in tropical and subtropical coastal regions can benefit from the higher availability of CO2 for photosynthesis and primary production. However, they can be negatively affected by the simultaneously occurring warming and increased salinity in estuaries. Thus, we analyzed the isolated effects of ocean acidification and the interactive effects of increased temperature and salinity on the low molecular weight carbohydrate (LMWC) contents of the mangrove red macroalgae Bostrychia montagnei and Bostrychia calliptera from Brazilian tropical and subtropical populations. Specimens from both climatic niches were tolerant to pH decreased by CO2 enrichment and enhanced their LMWC contents under increased availability of CO2. Specimens from both climatic niches also accumulated their dulcitol and sorbitol contents to cope with warming and salt stress. Nevertheless, temperature of 34 °C was lethal for tropical macroalgae, while 29 °C and 31 °C were lethal for subtropical B. calliptera under salinity of 35. Tropical and subtropical B. montagnei synthesized dulcitol (5–110 mmol kg−1 dry weight) and sorbitol (5–100 mmol kg−1 dry weight) as osmoregulatory, energy and thermal protection compounds, whereas tropical and subtropical B. calliptera synthesized mainly dulcitol (10–210 mmol kg−1 dry weight). Although digeneaside has an energy function in Bostrychia spp., it is not an osmolyte or thermal protection compound. Our data demonstrated that both tropical and subtropical Bostrychia spp. benefit from ocean acidification by CO2 enrichment, increasing their LMWC contents. However, warming and increased salinity in estuaries will be detrimental to them, even they producing protective metabolites. Multifactorial approaches are recommended to investigate whether negative effects of increased temperature and salinity nullify positive effects of ocean acidification on these Bostrychia species/populations.

Continue reading ‘Low molecular weight carbohydrate patterns of mangrove macroalgae from different climatic niches under ocean acidification, warming and salinity variation’

Resilience against the impacts of climate change in an ecologically and economically significant native oyster

Highlights

  • Climate change is acidifying and warming oceans.
  • Building resilience of marine species will be essential to ensure their persistence.
  • Resilience to climate change in oysters was identified in a large-scale experiment as the capacity to defend acid-base balance and have a positive Scope for Growth.
  • Only 8 of 24 genetically distinct family lines of this economically and ecologically important oyster species had resilience.

Abstract

Climate change is acidifying and warming our oceans, at an unprecedented rate posing a challenge for marine invertebrates vital across the globe for ecological services and food security. Here we show it is possible for resilience to climate change in an ecologically and economically significant oyster without detrimental effects to the energy budget. We exposed 24 pair-mated genetically distinct families of the Sydney rock oysterSaccostrea glomerata to ocean acidification and warming for 4w and measured their resilience. Resilience was identified as the capacity to defend their acid-base balance without a loss of energy available for Scope for Growth (SFG). Of the 24 families, 13 were better able to defend their acid-base balance while eight had no loss of energy availability with a positive SFG. This study has found oyster families with reslience against climate change without a loss of SFG, is an essential mitigation strategy, in a critical mollusc.

Continue reading ‘Resilience against the impacts of climate change in an ecologically and economically significant native oyster’

Short-term impact assessment of ocean liming: a copepod exposure test

Highlights

  • Ocean liming (OL) may cause temporary pH peaks which can be dangerous for marine life.
  • Short-term exposure tests (<24 h) are required to evaluate the impact of OL.
  • At pH 9 for exposures lower than 6 h, copepods showed no adverse effects.
  • At pH ≥ 10, adverse effects on copepods were seen for exposures shorter than 3 h.

Abstract

Ocean liming (OL) is a potential carbon dioxide removal (CDR) method that aims to increase the ocean’s capacity to absorb atmospheric CO2 by adding hydrated lime to the surface ocean. Modeling studies indicate that OL may cause temporary pH spikes lasting several minutes, depending on the lime sparging rate. Little is known about the short-term effects of these spikes on marine organisms. Aim of the present study is to investigate these effects on the copepod Acartia tonsa. Copepods were exposed to different pH conditions (9, 10, 11, 12) by dosing different hydrated lime solutions. Copepod mortality, movements, and behavior were recorded. At pH 9 for short exposure times (<6 h), no negative effects were observed indicating a potential tolerable threshold for OL applications. At longer exposure times (>6 h) and pH higher than 9, negative effects (mortality and sublethal effects) were found significantly higher than in the control.

Continue reading ‘Short-term impact assessment of ocean liming: a copepod exposure test’

The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean

Gelatinous zooplankton are increasingly recognized to play a key role in the ocean’s biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Continue reading ‘The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean’

Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians

Highlights

  • Exposure to AM predominantly disrupted the purine metabolism pathway of A. irradians.
  • Exposure to OA affected the energy metabolism and ammonia metabolism of A. irradians.
  • The antagonistic effects of AM and OA exposure led to neurological disorders in A. irradians.

Abstract

Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracyclineoxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.

Continue reading ‘Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians’

Ocean acidification alters the transcriptomic response in the nervous system of Aplysia californica during reflex behaviour

Ocean acidification (OA) has numerous impacts on marine organisms including behaviour. While behaviours are controlled in the neuro system, its complexity makes linking behavioural impairments to environmental change difficult. Here we use a neurological model Aplysia californica with well-studied simple neuro system and behaviours. By exposing Aplysia to current day (~500 micro atm) or near-future CO2 conditions (~1100 micro atm), we test the effect of OA on their tail withdrawal reflex (TWR) and the underlying neuromolecular response of the pleural-pedal ganglia, responsible for the behaviour. Under OA, Aplysia relax tails faster due to increased sensorin-A expression, an inhibitor of mechanosensory neurons. We further investigate how OA affects habituation, which produced a ‘sensitization-like’ behaviour and affected vesicle transport and stress response, revealing an influence of OA on neuronal and behavioural outputs associated with learning. Finally, we test whether GABA-mediated neurotransmission is involved in impaired TWR, but exposure to gabazine did not restore normal behaviour and provoked little molecular response, rejecting the involvement in TWR impairment. Instead, vesicular transport and cellular signalling link other neurotransmitter processes directly with TWR impairment. Our study shows effects of OA on neurological tissue parts that control for behaviour revealing the neurological mechanisms when faced with OA.

Continue reading ‘Ocean acidification alters the transcriptomic response in the nervous system of Aplysia californica during reflex behaviour’

Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata

Coral reefs may experience lower pH values as a result of ocean acidification (OA), which has negative consequences, particularly for calcifying organisms. Thus far, the effects of this global factor have been mainly investigated on hard corals, while the effects on soft corals remain relatively understudied. We therefore carried out a manipulative aquarium experiment for 21 days to study the response of the widespread pulsating soft coral Xenia umbellata to simulated OA conditions. We gradually decreased the pH from ambient (~8.3) to three consecutive 7-day long pH treatments of 8.0, 7.8, and 7.6, using a CO2 dosing system. Monitored response variables included pulsation rate, specific growth rate, visual coloration, survival, Symbiodiniaceae cell densities and chlorophyll a content, photosynthesis and respiration, and finally stable isotopes of carbon (C) and nitrogen (N) as well as CN content. Pulsation decreased compared to controls with each consecutive lowering of the pH, i.e., 17% at pH 8.0, 26% at pH 7.8 and 32% at pH 7.6, accompanied by an initial decrease in growth rates of ~60% at pH 8.0, not decreasing further at lower pH. An 8.3 ‰ decrease of δ13C confirmed that OA exposed colonies had a higher uptake and availability of atmospheric CO2. Coral productivity, i.e., photosynthesis, was not affected by higher dissolved inorganic C availability and none of the remaining response variables showed any significant differences. Our findings suggest that pulsation is a phenotypically plastic mechanism for Xumbellata to adjust to different pH values, resulting in reduced growth rates only, while maintaining high productivity. Consequently, pulsation may allow Xumbellata to inhabit a broad pH range with minimal effects on its overall health. This resilience may contribute to the competitive advantage that soft corals, particularly Xumbellata, have over hard corals.

Continue reading ‘Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata’

Neuromolecular responses in disrupted mutualistic cleaning interactions under future environmental conditions

Background

Mutualistic interactions, which constitute some of the most advantageous interactions among fish species, are highly vulnerable to environmental changes. A key mutualistic interaction is the cleaning service rendered by the cleaner wrasse, Labroides dimidiatus, which involves intricate processes of social behaviour to remove ectoparasites from client fish and can be altered in near-future environmental conditions. Here, we evaluated the neuromolecular mechanisms behind the behavioural disruption of cleaning interactions in response to future environments. We subjected cleaner wrasses and surgeonfish (Acanthurus leucosternon, serving as clients) to elevated temperature (warming, 32 °C), increased levels of CO2 (high CO2, 1000 ppm), and a combined condition of elevated CO2 and temperature (warming and high CO2, 32 °C, and 1000 ppm) for 28 days.

Results

Each of these conditions resulted in behavioural disruptions concerning the motivation to interact and the quality of interaction (high CO2 − 80.7%, warming − 92.6%, warming and high CO2 − 79.5%, p < 0.001). Using transcriptomics of the fore-, mid-, and hindbrain, we discovered that most transcriptional reprogramming in both species under warming conditions occurred primarily in the hind- and forebrain. The associated functions under warming were linked to stress, heat shock proteins, hypoxia, and behaviour. In contrast, elevated CO2 exposure affected a range of functions associated with GABA, behaviour, visual perception, thyroid hormones and circadian rhythm. Interestingly, in the combined warming and high CO2 condition, we did not observe any expression changes of behaviour. However, we did find signs of endoplasmic reticulum stress and apoptosis, suggesting not only an additive effect of the environmental conditions but also a trade-off between physiological performance and behaviour in the cleaner wrasse.

Conclusions

We show that impending environmental shifts can affect the behaviour and molecular processes that sustain mutualistic interactions between L. dimidiatus and its clients, which could have a cascading effect on their adaptation potential and possibly cause large-scale impacts on coral reef ecosystems.

Continue reading ‘Neuromolecular responses in disrupted mutualistic cleaning interactions under future environmental conditions’

Complex dynamics of coral gene expression responses to low pH across species

Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges (‘Ojo’; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoidesPorites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.

Continue reading ‘Complex dynamics of coral gene expression responses to low pH across species’

Linking physiological effects of environmental stressors from cellular to whole-organismal levels in the early-life history stages of Crassostrea virginica (eastern oyster)

The Eastern oyster, Crassostrea virginica (Gmelin, 1791), is an ecologically and economically important species that resides in dynamic coastal ecosystems along the East and Gulf coasts of the United States. The success of oyster populations depends on the recruitment of their early life stages, which are especially vulnerable to environmental stress due to high developmental energy demands. As climate change continues, it is necessary to anticipate how the early life stages of the Eastern oyster will respond to environmental stressors under ecologically relevant scenarios. Therefore, the goal of this dissertation was to understand how the early life stages of C. virginica are physiologically affected by multiple global climate change stressors from a holistic perspective by incorporating local environmental data, observations across three life stages (i.e., carryover effects), responses from two important types of Eastern oysters, and physiological metrics from the cellular to whole-organism levels. To achieve this goal, chapter two observes the relative importance of three environmental tolerance mechanisms (selective mortality, carryover effects, and phenotypic plasticity) in shaping the performance of juvenile oysters in response to salinity exposures during the larval stage. Findings from this chapter indicate that typical differences in salinity among successive larval cultures in shellfish hatcheries likely do not impact performance as juveniles; rather, phenotypic plasticity likely underpins juvenile oyster performance as their physiology correlated with environmental conditions during the juvenile phase, not the larval exposures. Chapter three investigates carryover effects in more detail to explore how multiple global climate change stressors, ocean acidification and ocean warming, might affect the physiology of larval C. virginica, if those effects carry over to impact the performance of juvenile oysters and lastly, if those carryover effects change under different future environmental scenarios. Conditions of ocean acidification and ocean warming did affect the larval stage of the Eastern oyster and carry over into the juvenile stage, though these effects were nuanced and context dependent. Specifically, carryover effects from conditions of acidification were more persistent and negative, whereas warming had more fleeting carryover, and cross-tolerant, effects that were generally positive. Continuing to observe the effects of ocean acidification and ocean warming on the Eastern oyster, chapter four compares the larval responses of wild and selectively bred oysters. C. virginica larvae from wild and selectively bred oysters responded differently to conditions of acidification, but not warming. Furthermore, wild oyster larvae may be more resilient in the face of ongoing climate change. Despite exhibiting more lethal and negative effects of acidified conditions early in the larval stage, wild oyster larvae compensated for these earlier negative effects, while larvae from selectively bred oysters began showing signs of stress towards the end of the experiment. Lastly, exploring the development of carryover effects, chapter five observes how conditions of acidification during the settlement stage (i.e., settlement and metamorphosis) carried over to impact the juvenile stage. No detectable carryover effects were found, even though conditions of acidification negatively affected tissue growth at the beginning of the settlement stage. Overall, while Eastern oysters are able to withstand environmental stress to some degree, there were sub-lethal and carryover effects from multiple global climate change stressors identified in this dissertation that could have consequences for both wild and selectively bred populations in the future. The results from this dissertation will support subsequent studies to accurately predict the future success of wild oyster populations (e.g., effects to recruitment) and aquaculture production based on their physiological performances in the face of ongoing climate change.

Continue reading ‘Linking physiological effects of environmental stressors from cellular to whole-organismal levels in the early-life history stages of Crassostrea virginica (eastern oyster)’

Effects of ocean acidification and warming on physiological and behavioural responses of an herbivore snail to waterborne predator cues

Ocean Acidification (OA) and Ocean Warming (OW) represent major climate stressors that may disrupt species interactions. However, despite the knowledge about the impacts of OA and OW on the performance of individual species, it is still unclear how biological interactions can be modified by the combined effects of these stressors. Consequently, in this study, we assess the effects of changes in temperature (12 °C and 20 °C) and pCO2 (500 and 1600 μatm) levels in seawater, along with the presence/absence of waterborne cues from the predator crab Homalaspis plana on the physiological and behavioural performance of the snail Tegula atra. Snail consumption rate was positively affected by OW and negatively by predator cues whereas absorption efficiency (AE) was positively affected by OW without interactions among these stressors. Oxygen uptake of snails reared in OW conditions was greater than those in control conditions, but only at control pCO2 levels. When pCO2 level was also raised, the positive effect of warmer temperature on oxygen uptake was reduced. While biomass was negatively affected by OW, OA and predator cues, without interactions. In the presence of predator cues the self-righting times of snails were significantly slower in individuals reared at OW conditions. Additionally, OA and OW conditions do not affect the prey hunting, efficiency (consumption) and preference, and claw strength of the predatory crab. These results indicate that OA and OW affect physiological and behavioral traits of snails but no the predatory behavior of crab. This environmentally-induced decoupling of co-evolutionary predator-prey dynamics may have important consequences on the structure and stability of coastal communities and ecosystems under the influence of climate change.

Continue reading ‘Effects of ocean acidification and warming on physiological and behavioural responses of an herbivore snail to waterborne predator cues’

Ocean acidification and predation risk, in isolation and in combination, show strong effects on marine mussels

Carbon dioxide-induced ocean acidification is producing a range of new selection pressures on marine calcifying organisms that show phenotypic plasticity in their shell morphology in response to predators. Although there are numerous studies on the effects of ocean acidification and predation risk on marine bivalves in isolation, information concerning their combined effects is still lacking. To bridge this gap, we conducted a long-term mesocosm experiment using mussel populations with different histories of predator exposure: crab-experienced and crab-naïve. Mussels were exposed to either lower pH or crab cues and the combination of both of these treatments for 4 mo. We demonstrate that both crab-experienced and crab-naïve mussels have heavier, thicker, rounder and, thus, stronger shells in response to crab cues, whereas low pH significantly decreased shell mass, thickness and strength. Mussels with previous crab experience showed greater plasticity in response to crab cues than crab-naïve mussels. However, the differences in plasticity between naïve and crab-experienced mussels to crab cues disappeared in the acidification treatment. Exposure to low pH and crab cues resulted in antagonistic interactions for all traits, except for shell length, where the combined effect was additive. However, there was no difference between populations in the interaction type for any of the traits. Our study provides increased understanding of potential implications for mussel populations under climate change.

Continue reading ‘Ocean acidification and predation risk, in isolation and in combination, show strong effects on marine mussels’

The impact of ocean acidification and cadmium toxicity in the marine crab Scylla serrata: biological indices and oxidative stress responses

Highlights

  • Growth, food index, ALP, and heamocytes of crabs were decreased in OA + Cd exposure.
  • Antioxidants and metabolic enzymes were elevated in crabs under OA + Cd treatments.
  • Bioaccumulation of Cd was more in crabs subjected to OA + Cd.
  • OA + Cd interaction was higher on growth, protein, amino acid, and heamocytes of crabs.

Abstract

Ocean acidification (OA) and heavy metals pollution in marine environments are potentially threatening marine life. The interactive effect of OA and heavy metals could be more vulnerable to marine organisms than individual exposures. In the current study, the effect of OA on the toxicity of cadmium (Cd) in the crab Scylla serrata was evaluated. Crab instars (0.07 cm length and 0.1 g weight) were subjected to pH 8.2, 7.8, 7.6, 7.4, 7.2, and 7.0 with and without 0.01 mg l−1 of Cd for 60 days. We notice a significant decrease in growth, molting, protein, carbohydrate, amino acid, lipid, alkaline phosphatase, and haemocytes of crabs under OA + Cd compared to OA treatment. In contrast, the growth, protein, amino acid, and haemocyte levels were significantly affected by OA, Cd, and its interactions (OA + Cd). However, superoxide dismutase, catalase, lipid peroxidation, glutamic oxaloacetate transaminase, glutamic pyruvate transaminase, and accumulation of Cd in crabs were considerably elevated in OA + Cd treatments compared to OA alone treatments. The present investigation showed that the effect of Cd toxicity might be raised under OA on S. serrata. Our study demonstrated that ocean acidification significantly affects the biological indices and oxidative stress responses of S. serrata exposed to Cd toxicity.

Continue reading ‘The impact of ocean acidification and cadmium toxicity in the marine crab Scylla serrata: biological indices and oxidative stress responses’

Response to visual and mechano-acoustic predator cues is robust to ocean warming and acidification and is highly variable in European sea bass

Predator-prey interactions and, especially, the success of anti-predator responses are modulated by the sensory channels of vision, olfaction, audition and mechanosensation. If climate change alters fish sensory ability to avoid predation, community dynamics can be affected. We investigated whether mid-duration exposure to warming and/or acidification alters behavioural response to visual or mechano-acoustic predator cues in juvenile Dicentrarchus labrax. We measured kinematic variables before and after a visual or a mechano-acoustic challenge which mimicked an overflying bird shadow or a bird swoop attack, respectively. Due to large interindividual variability in responses before cue presentation, fish were categorized as slow and fast to account for baseline individual variability. Treatment did not impact kinematic variables as both slow and fast fish of every treatment elicited precautionary and escape responses. Interestingly, even slow fish swam as fast as fast fish after the cue, suggesting that regardless of initial category, fish managed to escape facing a danger. Anti-predator response varied according to the level of threat to survival with greater responses elicited after the swoop attack. Although wild juvenile sea bass aggregate in schools, school dynamics rely on single leaders which highlights the importance of the variability in individual behaviours. We demonstrated that anti-predator response in juvenile D. labrax is robust to mid-duration exposure to independent and combined effects of warming and acidification. If robustness is confirmed over long-duration, it could provide D. labrax with an evolutionary advantage in the future ocean, where cue transmission through changing environments can further modulate cue perception and predator-prey interactions.

Continue reading ‘Response to visual and mechano-acoustic predator cues is robust to ocean warming and acidification and is highly variable in European sea bass’

From reproductive behaviour to responses to predators: ocean acidification does not impact the behaviour of an herbivorous marine gastropod

Highlights

  • OA does not have any significant effect on the behavioural repertoire of adult abalone.
  • No change in the expression of genes involved in sensory performance and behaviour was detected.
  • The ecological niche of this species probably allows it to be relatively resilient to OA.

Abstract

Ocean acidification (OA), which reduces ocean pH and leads to substantial changes in seawater carbonate chemistry, may strongly impact organisms, especially those with carbonate skeletons. In marine molluscs, while the physiological effects of OA are well known, with a reduction of growth and shell calcification, there are few studies on behavioural effects. A large marine gastropod, Haliotis tuberculata, was exposed to ambient (pHT 8.0) or low pH (pHT 7.7) during a 5-month experiment. Because animal fitness can be affected through various behavioural changes, a broad spectrum of behavioural parameters was investigated, including situations involving no stress, responses to predators, righting to evaluate indirectly the level of energy reserves, and finally, reproductive behaviour. In addition, we measured the expression profile of the GABA A-like and serotonin receptor genes, often described as central neuromodulators of sensory performance and behaviour and known to be affected by OA in molluscs. No significant effect of low pH as compared to ambient pH was observed on abalone behaviour for any of these behavioural traits or gene expressions after either one week or several months of exposure to OA. The significance tests were corroborated by estimating the size of pH effects. The behaviour of this mollusc appears not to be affected by pH decrease expected by the end of the century, suggesting some resilience of the species to OA at the adult stage. This is probably related to the ecological niche of this abalone, where important pH variations can be observed at tidal, diurnal or seasonal scales.

Continue reading ‘From reproductive behaviour to responses to predators: ocean acidification does not impact the behaviour of an herbivorous marine gastropod’

Hermit crabs as model species for investigating the behavioural responses to pollution

Highlights

  • Pollution can impact behaviour directly and by disrupting cognition.
  • Individual responses can cascade to populations, communities and ecosystems.
  • Hermit crabs provide a globally distributed model for investigating info-disruption
  • Hermit crab behaviour is affected by climate change, chemicals, noise and light.
  • These effects can be readily studied across a wide range of behavioural contexts.

Abstract

Human impacts on the environment affect organisms at all levels of biological organisation and ultimately can change their phenotype. Over time, phenotypic change may arise due to selection but individual phenotypes are also subject to change via genotype × environment interactions. In animals, behaviour is the most flexible aspect of phenotype, and hence the most liable to change across environmental gradients including exposure to pollution. Here we review current knowledge on the impacts of pollution, broadly defined to include the release of substances, energy, and the effects of carbon emissions, on the behaviour of a highly studied group, the globally distributed hermit crabs. We first show how their obligate association with empty gastropod shells underpins their use as model organisms for the study of resource-assessment, contest, and risk-coping behaviours. Intense study of hermit crabs has advanced our understanding of how animals use information, and we discuss the ways in which pollutants can disrupt the cognitive processes involved. We then highlight current studies of hermit crabs, which paint a clear picture of behavioural changes due to multiple pollutants. Impacts on behaviour vary across pollutants and entire suites of behaviours can be influenced by a single pollutant, with the potential for interactive and cascade effects. Hermit crabs offer the opportunity for detailed behavioural analysis, including application of the repeated measures animal-personality framework, and they are highly amenable to experimental manipulations. As such, we show how they now provide a model system for studying the impacts of pollution on behaviour, yielding insights broadly applicable across animal diversity.

Continue reading ‘Hermit crabs as model species for investigating the behavioural responses to pollution’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources