Posts Tagged 'Antarctic'

Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic peninsula

We show an annual overview of the sea-air CO2 exchanges and primary drivers in the Gerlache Strait, a hotspot for climate change that is ecologically important in the northern Antarctic Peninsula. In autumn and winter, episodic upwelling events increase the remineralized carbon in the sea surface, leading the region to act as a moderate or strong CO2 source to the atmosphere of up to 40 mmol m–2 day–1. During summer and late spring, photosynthesis decreases the CO2 partial pressure in the surface seawater, enhancing ocean CO2 uptake, which reaches values higher than − 40 mmol m–2 day–1. Thus, autumn/winter CO2 outgassing is nearly balanced by an only 4-month period of intense ocean CO2 ingassing during summer/spring. Hence, the estimated annual net sea-air CO2 flux from 2002 to 2017 was 1.24 ± 4.33 mmol m–2 day–1, opposing the common CO2 sink behaviour observed in other coastal regions around Antarctica. The main drivers of changes in the surface CO2 system in this region were total dissolved inorganic carbon and total alkalinity, revealing dominant influences of both physical and biological processes. These findings demonstrate the importance of Antarctica coastal zones as summer carbon sinks and emphasize the need to better understand local/regional seasonal sensitivity to the net CO2 flux effect on the Southern Ocean carbon cycle, especially considering the impacts caused by climate change.

Continue reading ‘Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic peninsula’

Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula


  • Measured respiration and excretion of the Antarctic pteropod Limacina.
  • Analyzed effects of future temperature and food conditions on pteropod metabolism.
  • Highest metabolism occurred under higher temperatures with less response to food.
  • Metabolic ratios of C, N, and P were all below the canonical Redfield ratio.
  • Pteropod metabolism responsive to ocean change, affecting biogeochemical cycles.


Pteropods (pelagic snails) are abundant zooplankton in the Southern Ocean where they are important grazers of phytoplankton, prey for higher trophic levels, and sensitive to environmental change. The Western Antarctic Peninsula (WAP) is a highly dynamic and productive region that has undergone rapid warming, but little is known about how environmental changes there will affect pteropod physiology. In this study, the effects of warming seawater temperatures and shifting food availability on Limacina helicina antarctica metabolism (respiration and excretion) were determined by conducting shipboard experiments that exposed pteropods to a range of temperatures and phytoplankton (food) concentrations. Highest respiration (up to 69 μmol O2 gDW−1 h−1) and usually highest excretion rates occurred under higher temperature with more limited metabolic response to food concentration, indicating these factors do not always have an additive effect on pteropod metabolism. The proportion of dissolved organic matter (DOM) to total organic and inorganic dissolved constituents was high and was also significantly affected by shifts in temperature and food. Dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP) were on average 27, 51, and 11.5% of the total C, N, and P metabolized, respectively. The proportion of total N excreted as DON and the proportion of total P excreted as DOP were significantly affected by a combination of shifting temperature and food concentrations. There were no effects of temperature or food on DOC excretion (mean 8.79 μmol C gDW−1 h−1; range 0.44 to 44) as a proportion of total C metabolized. Metabolic O2:N ratio ranged from 2 to 9 and decreased significantly with increasing temperature and food, indicating a shift toward increased protein catabolism. Metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which has implications for phytoplankton nutrient uptake and bacterial production. Respiration rates at ambient conditions of other WAP pteropods, and excretion rates for Clio pyramidata, were also measured, with respiration rates ranging from 24.39 (Spongiobranchaea australis) to 28.86 (L. h. antarctica) μmol O2 gDW−1 h−1. Finally, a CO2 perturbation experiment measuring L. h. antarctica metabolism under pre-industrial and elevated dissolved pCO2 conditions showed no significant change in mean L. h. antarctica respiration or excretion rates with higher pCO2. These insights into the metabolic response of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula’

Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula

Pteropods (pelagic snails) are ubiquitous zooplankton in the Southern Ocean and abundant along the Western Antarctic Peninsula (WAP), one of the most rapidly warming regions on the planet. They are important prey for higher trophic levels, grazers of phytoplankton, and contribute to particulate organic and inorganic carbon export. Pteropods are heralded as bioindicators of ecosystem health due to the vulnerability of their aragonitic shells under ocean acidification conditions, which could greatly affect their abundances in the future. Despite their importance within Antarctic food webs, few studies have analyzed the effects of climate change on pteropod physiology and biogeography in the Southern Ocean. I utilized zooplankton net tows and sediment trap samples collected as part of the Palmer Antarctica Long Term Ecological Research (PAL LTER) program to determine long-term changes in pteropod biogeography and phenology (life history). I also conducted shipboard experiments on PAL LTER research cruises to analyze the effects of shifting temperature and food conditions on pteropod metabolism. Lastly, to examine WAP pteropod feeding ecology, I utilized high-throughput sequencing techniques and analyzed pteropod gut contents at an unprecedented taxonomic resolution. Pteropod populations along the WAP from 1993-2017 either remained stable (shelled pteropods) or increased (non-shelled pteropods) and were most strongly controlled by La Niña conditions the year prior, which led to warmer, ice-free waters. There was a weak relationship between pteropod abundance and carbonate chemistry, and no detectable long-term trend in carbonate chemistry parameters (i.e., aragonite saturation), thus ocean acidification is not presently a factor influencing WAP pteropod abundance. More open-water areas the year prior also increased growth rates of the shelled pteropod, Limacina helicina antarctica, and caused earlier time of appearance in the PAL LTER sediment trap. There was considerable interannual variability in the time of appearance of a new pteropod cohort, which ranged from year day 22 to 255, but no long-term, directional change in time of appearance or growth rate. The effects of warming seawater temperatures and shifting food availability on L. h. antarctica metabolism revealed that highest respiration and usually highest excretion rates occurred under higher temperatures, but the effect of food concentration was more limited. The proportion of dissolved organic matter to total organic and inorganic dissolved constituents was high and the metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which can directly affect phytoplankton growth and bacterial production in the WAP. Analysis of L. h. antarctica gut contents revealed its microbiome for the first time with Mollicutes bacteria the most abundant prokaryote. Pteropods were mainly herbivorous in summer, consuming predominantly diatoms but also supplementing their diet with microzooplankton such as ciliates. My dissertation shows that pteropods along the WAP are sensitive to changes in the environment from daily to interannual time scales. These insights into the metabolic and ecologic responses of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula’

Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean


• Changes in primary production in the Southern Ocean are analyzed in a comprehensive manner.

• General production increase is the sign of climate change in the Southern Ocean.

• Associated biogeochemical variables show regionally heterogenous signals of climate change.

• Sea ice affecting iron supply and stratification is a primary factor for CCSZ production change.

• Production change in SIZ is sensitive to change in iron supply arising from various mechanisms.


Climate change in the Southern Hemisphere has exerted impact on the primary production in the Southern Ocean (SO). Using a recently released reanalysis dataset on global biogeochemistry, a comprehensive analysis was conducted on the complex biogeochemical seasonal cycle and the impact of climate change with a focus in areas within the meridional excursion of the sea ice boundary—coastal and continental shelf zone (CCSZ) and seasonal sea ice zone (SIZ). The seasonal cycles of primary production and related nutrients are closely linked with the seasonal changes in sea ice and sea surface temperatures. As sea ice retreats and allows energy and gas exchange across the sea surface, phytoplankton growth is initiated, consuming accumulated nutrients within the shallow depth of ~40 m. The seasonal evolutions of physical, biological and chemical variables show both spatial and temporal consistency with each other. Climate change has altered the timing and amplitude of the seasonal cycle. While primary production has generally increased along with an intensified uptake of CO2, some areas show a reduction in production (e.g., Prydz Bay, eastern Indian Ocean). In the CCSZ, increased iron utilization and light availability allowed production to be increased. However, the mechanism by which these factors are altered varies from one location to another, including changes in sea ice cover, surface stratification, and downwelling/upwelling. In the SIZ, where iron is generally a limiting factor, iron supply is a key driver of changes in primary production regardless of other nutrients. There is a clear influence of climatic change on the biogeochemical cycle although the signal is still weak.

Continue reading ‘Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean’

Understanding the metabolic capacity of Antarctic fishes to acclimate to future ocean conditions

Antarctic fishes have evolved under stable, extreme cold temperatures for millions of years. Adapted to thrive in the cold environment, their specialized phenotypes will likely render them particularly susceptible to future ocean warming and acidification as a result of climate change. Moving from a period of stability to one of environmental change, species persistence will depend on maintaining energetic equilibrium, or sustaining the increased energy demand without compromising important biological functions such as growth and reproduction. Metabolic capacity to acclimate, marked by a return to metabolic equilibrium through physiological compensation of resting metabolic rate (RMR), will likely determine which species will be better poised to cope with shifts in environmental conditions. Focusing on the suborder Notothenioidei, a dominant group of Antarctic fishes, and in particular 4 well-studied species, Trematomus bernacchii, Pagothenia borchgrevinki, Notothenia rossii and N. coriiceps, we discuss metabolic acclimation potential to warming and CO2-acidification using an integrative and comparative framework. There are species-specific differences in the physiological compensation of RMR during warming and the duration of acclimation time required to achieve compensation; for some species RMR fully recovered within 3.5 weeks of exposure, such as P. borchgrevinki, while for other species, such as N. coriiceps, RMR remained significantly elevated past 9 weeks of exposure. In all instances, added exposure to increased PCO2, further compromised the ability of species to return RMR to pre-exposure levels. The period of metabolic imbalance, marked by elevated RMR, was underlined by energetic disturbance and elevated energetic costs, which shifted energy away from fitness-related functions, such as growth. In T. bernacchii and N. coriiceps, long duration of elevated RMR impacted condition factor and/or growth rate. Low growth rate can affect development and ultimately the timing of reproduction, severely compromising the species’ survival potential and the biodiversity of the notothenioid lineage. Therefore, the ability to achieve full compensation of RMR, and in a short-time frame, in order to avoid long term consequences of metabolic imbalance, will likely be an important determinant in a species’ capacity to persist in a changing environment. Much work is still required to develop our understanding of the bioenergetics of Antarctic fishes in the face of environmental change, and a targeted approach of nesting a mechanistic focus in an ecological and comparative framework will better aid our predictions on the effect of global climate change on species persistence in the polar regions.

Continue reading ‘Understanding the metabolic capacity of Antarctic fishes to acclimate to future ocean conditions’

Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates

High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNFs), nano- and picophytoplankton, and prokaryotes (heterotrophic Bacteria and Archaea) in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥634 µatm, HNF abundance was reduced, coinciding with increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNFs. Nanophytoplankton abundance was elevated in the 634 µatm treatment, suggesting that moderate increases in CO2 may stimulate growth. The taxonomic and morphological differences in CO2 tolerance we observed are likely to favour dominance of microbial communities by prokaryotes, nanophytoplankton, and picophytoplankton. Such changes in predator–prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean, intensifying organic-matter recycling in surface waters; reducing vertical carbon flux; and reducing the quality, quantity, and availability of food for higher trophic levels.

Continue reading ‘Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates’

Geochemical reconstructions of Southern Ocean pH and temperature over the last glacial cycle

The Southern Ocean is widely thought to play an important role in atmospheric CO₂ change over glacial-interglacial cycles. It has been suggested that as the region that ventilates the majority of the world’s carbon-rich deep waters today, reduced exchange between deep waters and the atmosphere in the Southern Ocean acted to draw down CO₂ over glacial timescales. However, direct evidence of the Southern Ocean’s role in glacial CO₂ drawdown has been lacking thus far. Here I apply the boron-isotope pH-proxy to foraminifera from the Antarctic Zone sediment core PS1506 over the last glacial cycle. The low boron concentrations in these polar foraminifera makes these samples particularly sensitive to boron blank and so a close examination of the sources of blank, and an assessment of the precision of blank measurements, has been made. The ratios of trace elements to calcium in foraminiferal shells are widely applied as proxies for palaeoenvironmental parameters such as temperature. As Southern Ocean carbonate sediments are particularly prone to dissolution, which can affect trace element concentrations, an assessment of dissolution has been made. Firstly, dissolution experiments were conducted to constrain the impact of dissolution in a controlled setting, and secondly, shell mass and trace elements were evaluated for the downcore record. Imaging reveals similar etching textures in both experimentally dissolved samples and deglacial intervals, when shell mass is also low and several trace elements exhibit an excursion to lower values. Boron isotope data for PS1506 show that during the penultimate interglacial, surface water pH was low. At the onset of atmospheric CO₂ drawdown, pH increased, indicating low CO₂ surface waters. This is consistent with the signature predicted for a more stratified Southern Ocean, and is evidence that stratification in the Antarctic Zone acted to contribute to CO₂ drawdown early in the transition to a glacial state.

Continue reading ‘Geochemical reconstructions of Southern Ocean pH and temperature over the last glacial cycle’

Effects of ocean acidification on Antarctic microbial communities

Antarctic waters are amongst the most vulnerable in the world to ocean acidification due to their cold temperatures, naturally low levels of calcium carbonate and upwelling that brings deep CO2-rich waters to the surface. A meta-analysis demonstrated groups of Antarctic marine biota in waters south of 60!S have a range of tolerances to ocean acidification. Invertebrates and phytoplankton showed negative effects above 500 μatm and 1000 μatm CO2 respectively, while bacteria appear tolerant to elevated CO2. Phytoplankton studied as part of a natural microbial community were found to be more
sensitive than those studied as a single species in culture. This highlights the importance of community and ecosystem level studies, which incorporate the interaction and competition among species and trophic levels, to accurately assess the effects of ocean acidification on the Antarctic ecosystem.

Antarctic marine microbes (comprising phytoplankton, protozoa and bacteria) drive ocean productivity, nutrient cycling and mediate trophodynamics and the biological pump. While they appear vulnerable to changes in ocean chemistry, little is known about the nature and magnitude of their responses to ocean acidification, especially for natural communities. To address this lack of information, a six level, dose-response ocean acidification experiment was conducted in Prydz Bay, East Antarctica, using 650 L incubation tanks (minicosms). The minicosms were filled with Antarctic nearshore water and adjusted to a gradient of carbon dioxide (CO2) from 343 to 1641 μatm. Microscopy
and phylogenetic marker gene sequence analysis found the microbial community
composition altered at CO2 levels above approximately 1000 μatm. The CO2-
induced responses of microeukaryotes (>20 μm) and nanoeukaryotes (2 to 20 μm) were taxon-specific. For diatoms the response of taxa was related to cell size with micro-sized diatoms (>20 μm) increasing in abundance with moderate CO2 (506 to 634 μatm), while above this level their abundance declined. In contrast, nano-size diatoms (<20 μm) tolerated elevated CO2. Like large diatoms, Phaeocystis antarctica increased in abundance between 343 to 634 μatm CO2 but fell at higher levels. 18S and 16S rDNA sequencing showed that picoeukaryotic and prokaryotic composition was unaffected by CO2, despite having higher abundances at CO2 levels !634 μatm. This was likely due to the lower abundance of heterotrophic nanoflagellates at CO2 levels exceeding 953 μatm, which reduced the top-down control of their pico- and nanoplanktonic prey. As a result of the differences in the tolerance of individual taxa/size categories, CO2 caused a
significant change in the microbial community structure to one dominated by nano-sized diatoms, picoeukaryotes and prokaryotes.

Based on the CO2-induced changes in the microbial community, modelling was performed to investigate the future effects of different levels of elevated CO2 on the structure and function of microbial communities in Antarctic coastal systems. These models indicate CO2 levels predicted toward the end of the century under a “business as usual scenario” elicit changes in microbial composition, significantly altering trophodynamic pathways, reducing energy transfer to higher trophic levels and favouring respiration of carbon within the microbial loop. Such responses would alter elemental cycles, jeopardise the productivity that underpins the wealth and diversity of life for which Antarctica is renowned. In addition, it would reduce carbon sequestration in coastal Antarctic waters thereby having a positive feedback on global climate change.

Continue reading ‘Effects of ocean acidification on Antarctic microbial communities’

Variability and stability of anthropogenic CO2 in Antarctic Bottom Waters observed in the Indian sector of the Southern Ocean, 1978-2018

Antarctic bottom waters (AABWs) are known as a long term sink for anthropogenic CO2 (Cant) but is hardly quantified because of the scarcity of the observations, specifically at an interannual scale. We present in this manuscript an original dataset combining 40 years of carbonate system observations in the Indian sector of the Southern Ocean (Enderby Basin) to evaluate and interpret the interannual variability of Cant in the AABW. This investigation is based on regular observations collected at the same location (63° E/56.5° S) in the frame of the French observatory OISO from 1998 to 2018 extended by GEOSECS and INDIGO observations (1978, 1985 and 1987).

At this location the main sources of AABW sampled is the fresh and younger Cape Darnley bottom water (CDBW) and the Weddell Sea deep water (WSDW). Our calculations reveal that Cant concentrations increased significantly in AABW, from about +7 µ in 1978-1987 to +13 µ 18 in 2010-2018. This is comparable to previous estimates in other SO basins, with the exception of bottom waters close to their formation sites where Cant concentrations are about twice as large. Our analysis shows that the CT and Cant increasing rates in AABW are about the same over the period 1978-2018, and we conclude that the long-term change in CT is mainly due to the uptake of anthropogenic CO2 in the different formation regions. This is however modulated by significant interannual to pluriannual variability associated with variations in hydrological (ϴ, S) and biogeochemical (CT, AT, O2) properties. A surprising result is the apparent stability of Cant concentrations in recent years despite the increase in CT and the gradual acceleration of atmospheric CO2.

The Cant sequestration by AABWs is more variable than expected and depends on a complex combination of physical, chemical and biological processes at the formation sites and during the transit of the different AABWs. The interannual variability at play in AABW needs to be carefully considered on the extrapolated estimation of Cant sequestration based on sparse observations over several years.

Continue reading ‘Variability and stability of anthropogenic CO2 in Antarctic Bottom Waters observed in the Indian sector of the Southern Ocean, 1978-2018’

Effects of ocean acidification on Antarctic marine organisms: a meta‐analysis

Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta‐analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta‐analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem‐level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.

Continue reading ‘Effects of ocean acidification on Antarctic marine organisms: a meta‐analysis’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,021 hits


Ocean acidification in the IPCC AR5 WG II

OUP book