Posts Tagged 'Antarctic'

Southern Ocean pteropods at risk from ocean warming and acidification

Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology. High larval mortality (up to 39%) was observed in individuals exposed to perturbed conditions. Warming and OA induced extensive shell malformation and dissolution, respectively, increasing shell fragility. Furthermore, shell growth decreased, with variation between treatments and exposure time. Our results demonstrate that short-term exposure through passing through hotspots of OA and warming poses a serious threat to pteropod recruitment and long-term population viability.

Continue reading ‘Southern Ocean pteropods at risk from ocean warming and acidification’

Impact of climate change variables on nutrient cycling by marine microorganisms in the Southern California Bight and Ross Sea, Antarctica

Ocean environments are being impacted by climate warming, elevated carbon dioxide (CO2) levels, and shifting nutrient sources and sinks. It is essential to quantify the sensitivity of microorganisms to these effects of global change because they form the base of the marine food web and are an integral component of nutrient cycling on the planet. Their role in photosynthesis, nutrient uptake, and transfer of organic matter into higher trophic levels or to the deep ocean via the biological pump render microorganisms key in ecosystem structure and function and in regulating the global climate. The goal of this dissertation research was to determine how changing environmental conditions impact microbial communities and the rates at which they take up nutrients. Research for this dissertation took place in the Southern California Bight and in the Ross Sea, Antarctica, where fully factorial designs were used to investigate the response of microorganisms to multiple global change parameters. Nutrient uptake rates were measured using 13C and 15N stable isotopes for carbon and nitrogen substrates and 33P radioisotopes for phosphorus substrates. In the Southern California Bight, a microbial assemblage was collected and incubated in an ‘ecostat’ continuous culture system, where elevated temperature, CO2, and the dominant nitrogen substrate (nitrate or urea) in the diluent were manipulated. During this experiment uptake rates of dissolved inorganic carbon (DIC), nitrate (NO3-), and urea were determined for two microbial size classes (0.7-5.0 μm and >5.0 μm). Urea uptake rates were greater than NO3-, and uptake rates of urea and DIC for both size fractions increased at elevated temperature, while uptake rates of NO3- by smaller microorganisms increased when CO2 levels were high. In the Ross Sea, the impact of elevated temperature, CO2, and iron addition on DIC and NO3- uptake rates by two size classes (0.7-5.0 μm and >5.0 μm ) of a late-season microbial community were investigated using a semi-continuous and continuous ‘ecostat’ culturing approach. Temperature impacted the microbial community the most, significantly increasing NO3- and DIC uptake rates by larger microorganisms. The effects of iron addition were more apparent when temperature was also elevated, and CO2 did not impact rates. Bioassay experiments were also conducted in the Ross Sea to determine how increasing and decreasing the N:P supply ratio in combination with other parameters (temperature and iron) impact uptake rates of DIC, NO3-, and amino acids. Results from these experiments show that changes to the dissolved N:P supply ratio have the potential to alter nutrient uptake rates over short time scales, but that temperature elevation and iron addition have a larger impact. Additional experiments were completed on diatoms (Fragilariopsis cylindrus and Pseudo-nitzschia subcurvata) and Phaeocystis antarctica, three important phytoplankton species collected from the Ross Sea, to assess how temperature elevation and iron addition impact uptake rates of a number of inorganic and organic carbon, nitrogen, and phosphorus substrates. These culture studies generally show that when temperature is increased, diatoms are able to take up nutrients more rapidly than Phaeocystis antarctica.
Results from this dissertation show that nutrient cycles and phytoplankton communities in the Southern California Bight and the Ross Sea, Antarctica will likely be different in the future. Although all variables tested were found to exert some influence on microbial nutrient cycling, temperature elevation generally had the largest effect, increasing biomass and uptake rates, structuring the composition of the microbial community, and altering stoichiometry. This research did not include top down effects and it is limited spatially and temporally, however, it demonstrates the importance of studying different nutrient substrates and looking at multiple interactive stressors to gain a more comprehensive view of potential change.

Continue reading ‘Impact of climate change variables on nutrient cycling by marine microorganisms in the Southern California Bight and Ross Sea, Antarctica’

Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification

Background
Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost.

Results
In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression.

Conclusions
Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO2. In a global change context, exposure of L. h. antarctica to the low pH, high pCO2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The transcriptomic response at both acute and longer-term acclimation time frames indicated that contemporary L. h. antarctica may not have the physiological plasticity necessary for adaptation to OA conditions expected in future decades. Lastly, the differential gene expression results further support the role of shelled pteropods such as L. h. antarctica as sentinel organisms for the impacts of ocean acidification.

Continue reading ‘Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification’

Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences

Increased anthropogenic atmospheric CO2 concentrations have resulted in ocean warming and alterations in ocean carbonate chemistry, decreasing seawater pH (ocean acidification). The combination of ocean warming and acidification (OWA) may alter trophic interactions in marine benthic communities along the western Antarctic Peninsula (WAP). Abundant and diverse macroalgae–grazer assemblages, dominated by macroalgae (e.g. chemically defended Desmarestia anceps and D. menziesii) and gammarid amphipods (e.g. Gondogeneia antarctica), occur on the nearshore benthos along the WAP. In the present study, the amphipod G. antarctica and macroalgae D. anceps and D. menziesii were exposed for 39 and 79 d, respectively, to combinations of current and predicted near-future temperature (1.5 and 3.5°C, respectively) and pH (8.0 and 7.6, respectively). Protein and lipid levels of macroalgal tissues were quantified, and 5-way choice amphipod feeding assays were performed with lyophilized macroalgal tissues collected at time zero and following exposure to the 4 temperature-pH treatments. For D. anceps, we found a significant interactive temperature-pH effect on lipid levels and significantly lower protein levels at reduced pH. In contrast, tissues of D. menziesii exhibited significantly greater lipid levels after exposure to reduced pH, but there was no temperature effect on lipid or protein levels. Despite shifts in macroalgal biochemical composition, there were no changes in amphipod feeding preferences. Our results indicate that despite altered macroalgal nutritional quality under OWA, both macroalgae retained their ability to deter amphipod feeding. This deterrent capacity could become an important contributor to net community resistance of macroalgae-mesograzer assemblages of the WAP to predicted OWA.

Continue reading ‘Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences’

Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization

Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m−2 s−1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.

Continue reading ‘Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization’

Late-summer biogeochemistry in the Mertz Polynya: East Antarctica

A marked reconfiguration of the Mertz Polynya following the 2010 calving of the Mertz Glacier Tongue has been associated with a decrease in the size and activity of the polynya. We report observations of the oceanic carbonate (CO2) system in late-summer 2013, the third post-calving summer season. Estimates of seasonal net community production (NCP) based on inorganic carbon deficits and the oxygen-argon ratio indicate that the waters on the shelf to the east of Commonwealth Bay (adjacent to the Mertz Glacier) remain productive compared to pre-calving conditions. The input of residual or excess alkalinity from melting sea ice is found to contribute to the seasonal enhancement of carbonate saturation state and pH in shelf waters. Mean rates of NCP in 2012–2013 are more than twice as large as those observed in the pre-calving summers of 2001 and 2008 and suggest that the new (post-calving) configuration of the polynya favors enhanced net community production and a stronger surface ocean sink for atmospheric CO2 due at least in part to the redistribution of sea ice and associated changes in summer surface stratification.

Continue reading ‘Late-summer biogeochemistry in the Mertz Polynya: East Antarctica’

Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification

The rise in anthropogenic CO2 and the associated ocean acidification (OA) will change trace metal solubility and speciation, potentially altering Southern Ocean (SO) phytoplankton productivity and species composition. As iron (Fe) sources are important determinants of Fe bioavailability, we assessed the effect of Fe-laden dust versus inorganic Fe (FeCl3) enrichment under ambient and high pCO2 levels (390 and 900 μatm) in a naturally Fe-limited SO phytoplankton community. Despite similar Fe chemical speciation and net particulate organic carbon (POC) production rates, CO2-dependent species shifts were controlled by Fe sources. Final phytoplankton communities of both control and dust treatments were dominated by the same species, with an OA-dependent shift from the diatom Pseudo nitzschia prolongatoides towards the prymnesiophyte Phaeocystis antarctica. Addition of FeCl3 resulted in high abundances of Nitzschia lecointei and Chaetoceros neogracilis under ambient and high pCO2, respectively. These findings reveal that both the characterization of the phytoplankton community at the species level and the use of natural Fe sources are essential for a realistic projection of the biological carbon pump in the Fe-limited pelagic SO under OA. As dust deposition represents a more realistic scenario for the Fe-limited pelagic SO under OA, unaffected net POC production and dominance of P. antarctica can potentially weaken the export of carbon and silica in the future.

Continue reading ‘Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,040,240 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book