Posts Tagged 'Antarctic'

Report card: Potential tipping points for life in the Southern Ocean

There is now clear scientific evidence that the increasing magnitude and rate of anthropogenic carbon dioxide (CO2) emissions are causing rapid and unprecedented changes to the global ocean. These will have potentially serious impacts during the 21st century on the sustainability and management of many marine and coastal ecosystems. Research has shown that the Southern Ocean, in particular, is encountering significant changes linked to climate change. The changes in pH, temperature, circulation and sea ice – along with potential for increased fishing pressure – are all likely to have far-reaching consequences for all species that currently inhabit the Southern Ocean.

One of the fundamental questions for marine scientists studying the Southern Ocean is how climate change will alter the growth of key prey species including phytoplankton, zooplankton and krill. Phytoplankton are the base Baleen whale. iStock of the marine food web, and even seemingly small changes in sea-ice, ocean circulation, chemistry and temperature will affect which species live, thrive and die in the ocean. The biological outcomes from these changes will be determined by the environment, timing, rate and magnitude of change in each stressor, the order in which the changes occur, and the potential for consequences to be compounded when multiple stressors change concurrently.

Hence, understanding the impacts of climate change on Southern Ocean life requires us to consider which key species will be more sensitive to change, if change will have benefical or detrimental effects on marine life, and how change will vary from region to region. These new scientific insights will have important implications for management of fish stocks and high conservation value species throughout the region.

Continue reading ‘Report card: Potential tipping points for life in the Southern Ocean’

Lipid biochemistry and physiology of Antarctic krill (Euphausia superba) in the present day and under future ocean acidification scenarios

Antarctic krill (Euphausia superba, hereafter ‘krill’) are lipid-rich euphausiids with an important role in the Southern Ocean, including as the primary prey of Antarctic megafauna (whales, seals, penguins), fish, squid and seabirds. They contain high levels of nutritious long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA), specifically eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). The sheer abundance of krill in the Southern Ocean means that the ecosystem is largely driven by energy derived from krill lipids. In addition to their ecological importance, a Scotia Sea krill fishery harvests krill, including for commercial use of their LC-PUFA. The existence of this year-round krill fishery provides a unique opportunity to collect krill samples for research over large spatial and temporal scales, which is unfeasible using scientific research vessels.

In this thesis, fishery caught krill samples were used to investigate the fatty acid content and composition of krill, during all seasons and over consecutive years (2013 – 2016). This research (presented in Chapter 2) aimed to fill knowledge gaps on the seasonal diet of krill (particularly in winter) in the Scotia Sea region, using fatty acids as dietary biomarkers. Krill were primarily herbivorous in summer (higher levels of 20:5n-3 and 22:6n-3, and low 18:1n-9c/18:1n-7c ratios) and became more omnivorous from autumn to spring (increasing ratios of 18:1n-9c/18:1n-7c and percentages of Σ 20:1 + 22:1 isomers). Seasonal proportions of herbivory and omnivory differed between years, and fatty acid composition differed between fishing locations. Selected samples were also used to investigate the composition of fatty acids in the structural (phospholipids) and storage lipids (triacylglycerols) of krill (Chapter 3). Triacylglycerol fatty acids (thought to better represent recent diet), reflected omnivorous feeding with highest percentages of flagellate biomarkers (18:4n-3) occurring in summer, diatom biomarkers (16:1n-7c) from autumn-spring, and greater carnivory (higher Σ 20:1 + 22:1 and 18:1n-9c/18:1n-7c ratios) in autumn. Phospholipid fatty acids were less variable and were higher in the essential membrane fatty acids 20:5n-3 and 22:6n-3. Percentages of the major krill sterol, cholesterol, were significantly higher in winter and spring compared with summer and autumn. Results presented in Chapters 2 and 3 highlighted the dynamic nature of krill lipids, and the flexible diet of krill, which likely contributes to their huge biomass and success as one of the most abundant organisms on Earth.

Because krill are so important in the Southern Ocean food web, any decreases in krill biomass could result in a major ecological regime shift. Very little is known about how climate change will affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Long-term laboratory studies are needed to understand how keystone species such as krill may respond to predicted future pCO2 levels. A long term experiment was conducted to test whether rising ocean pCO2 is likely to impact krill physiology and biochemistry (Chapters 4 and 5). Adult krill were exposed to near-future ocean acidification (1000 – 2000 μatm pCO2) for one year in the laboratory. Krill reared in near-future pCO2 conditions were able to survive, grow, store fat, mature, and maintain normal respiration rates. Haemolymph pH, lipid and fatty acid composition were also maintained at the same levels as krill in ambient pCO2 (400 μatm). Negative effects on physiology and lipid biochemistry were only observed in extreme pCO2 conditions (4000 μatm), which krill will not experience in the wild. These results place adult krill among the most resilient species in ocean acidification studies to date.

In summary, results in this thesis highlight the remarkable adaptability of krill in a changing environment, from short-term seasonal or annual scales, to longer-term decadal scales. Their flexible phenotype may aid their survival in an ocean that is rapidly changing with increasing anthropogenic CO2 emissions. The data obtained in this thesis can be used for fisheries management to guide fishing activities, and in fisheries models to predict how krill biomass may be affected by climate change. Krill lipid energy fuels the Southern Ocean ecosystem and to date, lipid data has not been included in Antarctic ecosystem models. The large scale of lipid data in this study makes it ideal for inclusion in such models, and it has important implications for the health of the wider Southern Ocean ecosystem.

Continue reading ‘Lipid biochemistry and physiology of Antarctic krill (Euphausia superba) in the present day and under future ocean acidification scenarios’

Elevated temperature and decreased salinity both affect the biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei, but not increased pCO2

Areas in western Antarctica are experiencing rapid climate change, where ocean warming results in more sea ice melt simultaneously as oceanic CO2 levels are increasing. In this study, we have tested how increased temperature (from −1.8 to 3 °C) and decreased salinity (from 35 to 20 and 10) synergistically affect the growth, photophysiology and biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei. In a separate experiment, we also addressed how ocean acidification (from 400 to 1000 µatm partial pressure of CO2) affects these key physiological parameters. Both positive and negative changes in specific growth rate, particulate organic carbon to particulate organic nitrogen ratio, chl a fluorescence kinetics, lipid peroxidation, carbohydrate content, protein content, fatty acid content and composition were observed when cells were exposed to warming and desalination. However, when cells were subjected to increased pCO2, only Fv/Fm, non-photochemical quenching and lipid peroxidation increased (by 3, 16 and 14%, respectively), and no other of the abovementioned biochemical properties were affected. These results suggest that changes in temperature and salinity may have more effects on the biochemical composition of N. lecointei than ocean acidification. Sea-ice algae are important component of polar food webs, and their nutritional quality may be affected as a result of altered environmental conditions due to climate change and sea ice melt.

Continue reading ‘Elevated temperature and decreased salinity both affect the biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei, but not increased pCO2’

Hidden biogeochemical anonymities under Antarctic fast ice

Climate change is negatively affecting the extent of summer sea ice and the global oceanic oxygen concentrations, it is therefore imperative to decipher the life processes under the Antarctic fast ice. The biogeochemical parameters like dissolved oxygen, inorganic carbon, macronutrients, phytoplankton, and chlorophyll a (Chl a) were studied under the fast ice (by drilling 1.8 m thick ice) around Larsemann Hills, East Antarctica during India’s Scientific Expedition to Antarctica (31-ISEA-2011/12 and 33-ISEA-2013/14). The waters under ice cover were characterized by hyperoxia (up to 10.6 ml/L). Macronutrient concentrations under sea ice were depleted (<0.1 M NO3, PO4 and <2 M SiO4); this could be ascribed to the nutrient demand from under ice algae. The water under the ice cover exhibited higher algal biomass (Chl a up to 6.1 mg/m3) and CO2 under saturation (pCO2 <10 atm). This is reflected through the Spearman rank correlation indicating a negative correlation between Chl a and pCO2 (). The strong negative correlation between dissolved oxygen and pCO2 () suggests that photosynthesis regulates the concentrations of both these climatically important gases. The waters under the sea ice cover had brownish mucilaginous aggregates comprised of tube-forming diatoms Berkeleya adelienses and Nitzschia lecointei. These unusual biogeochemical changes were seen only at the ice water interface, and not at deeper depths. This study suggests that with global warming and sea ice melting, Antarctica might witness phytoplankton community shifts.

Continue reading ‘Hidden biogeochemical anonymities under Antarctic fast ice’

Life in the freezer : the role of dimethylsulfoniopropionate (DMSP) in the physiological and biochemical adaptations of Antarctic microalgae

Marine microalgae are the fuel of the Antarctic ecosystem and changes in primary production can impact the entire food web, as well as the nutritional value at the base of the food web which is dependant not only on biomass but also the macromolecular content of the individual species. Primary production by Antarctic microalgae is also of key importance in the biogeochemical cycling of carbon and sulfur. Antarctica has a unique and dynamic environment where microalgae are evolutionarily adapted to live in freezing temperatures under extreme and oscillating environmental gradients exposing them to solar, osmotic, oxidative and nutrient stress. This thesis investigated the physiological and biochemical adaptations of Antarctic microalgae, focusing on the role dimethylsulfoniopropionate (DMSP) plays in surviving in the harsh Antarctic environment. This thesis provides new knowledge into who are the DMSP producers in Antarctica, the spatial dynamics and role of DMSP in natural Antarctic microbial communities. In a screening study, 16 species of Antarctic microalgae were characterised by their growth rates, physiological health, carbon content, DMSP production and DMSP lyase activity. We found that DMSP production and rates of lyase activity were species-specific, varying within taxa, and that diatom species can produce significant levels of DMSP, in the same magnitude as known DMSP producing haptophytes, 𝘗𝘩𝘢𝘦𝘰𝘤𝘺𝘴𝘵𝘪𝘴 𝘴𝘱𝘱.. In a descriptive study, we take a geographical look at the DMSP content and lyase activity, macromolecular profiles and productivity of three different Antarctic microalgal communities from three unique Antarctic environments; the open ocean to the sea ice and a hypersaline lake. We reveal that species diversity is reduced with more challenging environmental conditions and the species with the greatest phenotypic plasticity dominate in harsher settings. This thesis found that macromolecular content of microalgae changes based on environment, whereby sea-ice microalgae were higher in caloric value due to heavy investment in lipids compared to pelagic species. Using manipulative laboratory studies, we delivered new insight into the response of DMSP to environmental stress and future climate change scenarios as well as macromolecular responses at the species and community levels. Exposure to hypersaline conditions did not induce increased DMSP production, potentially due to the salinity shift being too rapid. In addition, there was no significant change in DMSP or macromolecular concentrations in response to ocean acidification at the species level, however there was a difference at the community level due to a shift in community composition.

Continue reading ‘Life in the freezer : the role of dimethylsulfoniopropionate (DMSP) in the physiological and biochemical adaptations of Antarctic microalgae’

Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill

Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g−1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

Continue reading ‘Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill’

Acidification diminishes diatom silica production in the Southern Ocean

Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.

Continue reading ‘Acidification diminishes diatom silica production in the Southern Ocean’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,298,088 hits


Ocean acidification in the IPCC AR5 WG II

OUP book