Posts Tagged 'Antarctic'

Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high‐latitude Southern Ocean

Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased towards summer. Here we present new estimates of Southern Ocean air‐sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project during 2014‐2017. Compared to ship‐based CO2 flux estimates, the float‐based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon‐rich deep waters upwell to the surface ocean. Although interannual variability contributes, this difference principally stems from the lack of autumn and winter ship‐based observations in this high‐latitude region. These results suggest that our current understanding of the distribution of oceanic CO2 sources and sinks may need revision and underscore the need for sustained year‐round biogeochemical observations in the Southern Ocean.

Continue reading ‘Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high‐latitude Southern Ocean’

Climatic modulation of surface acidification rates through summertime wind forcing in the Southern Ocean

While the effects of the Southern Annular Mode (SAM), a dominant climate variability mode in the Southern Ocean, on ocean acidification have been examined using models, no consensus has been reached. Using observational data from south of Tasmania, we show that during a period with positive SAM trends, surface water pH and aragonite saturation state at 60°–55° S (Antarctic Zone) decrease in austral summer at rates faster than those predicted from atmospheric CO2 increase alone, whereas an opposite pattern is observed at 50°–45° S (Subantarctic Zone). Together with other processes, the enhanced acidification at 60°–55° S may be attributed to increased westerly winds that bring in more “acidified” waters from the higher latitudes via enhanced meridional Ekman transport and from the subsurface via increased vertical mixing. Our observations support climatic modulation of ocean acidification superimposed on the effect of increasing atmospheric CO2.

Continue reading ‘Climatic modulation of surface acidification rates through summertime wind forcing in the Southern Ocean’

Ocean acidification studies and the uncertainties relevance on measurements of marine carbonate system properties

The global ocean has a key role on the Earth’s climate system. It possesses a direct connection with the atmospheric gases, including the greenhouses, allowing exchanges between those compartments and oceanic storage of carbon. Through the years, this exchange of gases occurred based on gas equilibrium between ocean and atmosphere. After the Industrial Revolution, human activities have increased the emissions of greenhouse gases, mainly carbon dioxide (CO2), which changed the atmospheric concentration from ~280 ppm of CO2 to values as high as 391 ppm between c.a. 1750 and 2011 (Ciais et al., 2013). Recently, the measured CO2 atmospheric values are ranging near or above 400 ppm, as recorded by the Mauna Loa observatory, in Hawaii (daily CO2 measurements information available on www.scripps.ucsd.edu). A regional study in the south-southeast Brazilian continental shelf agrees with this value, which has measured an average of 396.7±2.5 ppm in the atmosphere during the spring of October 2014 (Kerr et al., 2016). This enhancement is reflected in the ocean, which has absorbed about 25% to 30% of the anthropogenic atmospheric CO2 emissions (Sabine and Tanhua, 2010); Le Quére et al., 2016). The CO2 uptake by the oceans directly affects the seawater chemistry and marine biogeochemical processes, impacting both the ecosystems and their respective biota (Doney et al., 2009).

Continue reading ‘Ocean acidification studies and the uncertainties relevance on measurements of marine carbonate system properties’

Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica

The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change—environmentally relevant temperature treatments (−0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at −0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at −0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.

Continue reading ‘Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica’

Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity

Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate system buffer capacity, which characterizes the system’s chemical resilience to changes in CO2, generating the potential for enhanced variability in pCO2 and the concentration of carbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0001], bicarbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0002], and protons [H+] in the future ocean. We conducted a meta‐analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short‐term CO2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short‐term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO2within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO2 in both the modern and future ocean. Specifically, cell size‐related acclimation and adaptation to regional environmental variability, as characterized by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio‐temporal scales.

Continue reading ‘Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity’

Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms

Observations from Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling Argo floats are used to characterize the climatological seasonal cycles and drivers of dissolved inorganic carbon, total alkalinity, pH, the partial pressure of carbon dioxide (CO2), and the saturation state of aragonite (ΩAr) at the surface and at 200 m across five Southern Ocean frontal regimes, including under sea ice. The Southern Ocean ranges from a temperature‐dominated system in the northernmost Subtropical Zone to a biologically dominated system in the most poleward Seasonal Sea Ice Zone. In all zones, the ingassing or outgassing of CO2 must be balanced by geostrophic and Ekman transport, mixing from below, and particle transport of carbon into or out of the euphotic zone. The climatological seasonal cycles spanning the period from 2014 to 2017 compare favorably with existing climatologies in spring and summer and less so during winter months, at higher latitudes, and in ice‐covered regions due, in part, to limited wintertime observations before SOCCOM. We observe increases in the carbon and nutrient content of surface waters south of the Subantarctic Front between climatological data products and the SOCCOM float climatologies, even after adjusting for anthropogenic change, suggesting a large‐scale increase in the amount of upwelled carbon‐ and nutrient‐rich deep waters. This increased upwelling corresponds to a positive Southern Annular Mode Index over 2014‐2017 and likely acts to decrease the magnitude of the Southern Ocean sink of total carbon by increasing outgassing of natural CO2, especially during winter months.

Continue reading ‘Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms’

A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean

Cephalopods play an important role in polar marine ecosystems. In this review, we compare the biodiversity, distribution and trophic role of cephalopods in the Arctic and in the Antarctic. Thirty-two species have been reported from the Arctic, 62 if the Pacific Subarctic is included, with only two species distributed across both these Arctic areas. In comparison, 54 species are known from the Antarctic. These polar regions share 15 families and 13 genera of cephalopods, with the giant squid Architeuthis dux the only species confirmed to occur in both the Arctic and Antarctic. Polar cephalopods prey on crustaceans, fish, and other cephalopods (including cannibalism), whereas predators include fish, other cephalopods, seabirds, seals and whales. In terms of differences between the cephalopod predators in the polar regions, more Antarctic seabird species feed on cephalopods than Arctic seabirds species, whereas more Arctic mammal species feed on cephalopods than Antarctic mammal species. Cephalopods from these regions are likely to be more influenced by climate change than those from the rest of the World: Arctic fauna is more subjected to increasing temperatures per se, with these changes leading to increased species ranges and probably abundance. Antarctic species are likely to be influenced by changes in (1) mesoscale oceanography (2) the position of oceanic fronts (3) sea ice extent, and (4) ocean acidification. Polar cephalopods may have the capacity to adapt to changes in their environment, but more studies are required on taxonomy, distribution, ocean acidification and ecology.

Continue reading ‘A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,505 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book