Posts Tagged 'chemistry'

Ocean acidification in the western Pacific: boron isotopic composition recorded in a tropical massive coral core from Lanyu Islet SE Taiwan

Boron (B) and B isotopic compositions (δ11B) in biogenic carbonates are useful proxies for pH reconstruction in the ocean. However, high-resolution archives are scarce due to associated sampling and analytical difficulty. In this study, a modern long-lived massive coral skeleton (Porites lobata) from Lanyu Islet off southeast Taiwan was drilled and used for high-resolution major/trace element analyses, including trace elements B and δ11B, as well as oxygen and carbon isotopes, to investigate the associated environmental changes during 1991–1997. To avoid complicated biological influence, the top-most tissue layer was excluded in this study. The coralline records show a clear temporal trend in metal/Ca-based sea surface temperatures (SSTs) on annual and monthly timescales. In particular, the Mg/Ca-SSTs, the most sensitive temperature proxy at the site, show a significant warming trend (+0.2°C year−1) during the study period. On the other hand, subtle changes in the annual δ11B record were identified, corresponding to ~0.2 pH unit, which is comparable with other coral records in the Pacific, e.g., the South China Sea (SCS), Guam Island, Flinders, and Arlington Reef, as well as the in-situ seawater pH measurement at Hawaii station. This corresponds to an acidification rate of ~0.25 pH unit 100 year−1, similar to other coralline data, in-situ pH/pCO2 measurement, or model predictions, and emphasizes the importance of ocean acidification due to anthropogenic activities. Combined with the Mg/Ca-SST, the intra-annual data show a clear seasonal cycle with higher pH in winter, consistent with the pCO2 at the oceanic surface. These chemical and isotopic results in corals conclude that marine biogenic carbonates are informative for oceanic pH reconstruction and can provide new insights into the relationships between climate changes and environmental responses on the coast of Taiwan.

Continue reading ‘Ocean acidification in the western Pacific: boron isotopic composition recorded in a tropical massive coral core from Lanyu Islet SE Taiwan’

Inventory of water masses and carbonate system from Brazilian’s northeast coast: monitoring ocean acidification

This manuscript presents an inventory of the carbonate system from the main water masses comprising the marine current system on Brazil’s northeast coast (South Atlantic Ocean). For this purpose, four transects were conducted with an approximate length of 357 km (each one) through the platform and continental slope of the Sergipe–Alagoas sedimentary basin. Water samples were then collected in vertical profiles measuring from 5 to 1,799 meters depth, totaling 34 stations. Total alkalinity, calcium, and total boron were obtained analytically from these samples and by relationships with salinity. Speciation and concentration of the carbonate system were obtained by means of thermodynamic modeling. The results revealed that the empirical models used to calculate the concentrations of TA, calcium and total boron showed relevant variation when compared to the analytical values (TA: 5.0–6.5%; Ca: 0.4–4.8%; BT: 7.0–18.9%). However, the speciation and concentration of the carbonate system (CA, DIC, CO32-, CO2(aq), ΩCalc, and ΩArag) obtained from the empirical values of TA, calcium and total boron did not differ significantly from those obtained analytically (0.0–6.1%). On the other hand, the parameters of pH, HCO3 , CO32-(aq), CO2(aq), ρCO2, ΩCalc, and ΩArag varied significantly within the different water masses (p < 0.05). This study supports and encourages acidification monitoring projects in the South Atlantic Ocean, based on modeling the carbonate system parameters generated in real-time.

Continue reading ‘Inventory of water masses and carbonate system from Brazilian’s northeast coast: monitoring ocean acidification’

Limits and CO2 equilibration of near-coast alkalinity enhancement

Ocean Alkalinity Enhancement (OAE) has recently gained attention as a potential method for negative emissions at gigatonne scale, with near-coast OAE operations being economically favorable due to proximity to mineral and energy sources. In this paper we study critical questions which determine the scale and viability of OAE: Which coastal locations are able to sustain a large flux of alkalinity at minimal pH and ΩArag (aragonite saturation) changes? What is the interference distance between adjacent OAE projects? How much CO2 is absorbed per unit of alkalinity added? How quickly does the induced CO2 deficiency equilibrate with the atmosphere?

Using the LLC270 (0.3deg) ECCO global circulation model we find that the steady-state OAE rate varies over 1–2 orders of magnitude between different coasts and exhibits complex patterns and non-local dependencies which vary from region to region. In general, OAE in areas of strong coastal currents allow the largest fluxes and depending on the direction of coastal currents, neighboring OAE sites can exhibit dependencies as far as 400 km or more. We found that within relatively conservative constraints set on ∆pH or ∆Omega, most regional stretches of coastline are able to accommodate on the order of tens to hundreds of megatonnes of negative emissions within 300 km of the coast. We conclude that near-coastal OAE has the potential to scale globally to several GtCO2/yr of drawdown with conservative pH constraints, if the effort is spread over the majority of available coastlines.

Depending on the location, we find a diverse set of equilibration kinetics, determined by the interplay of gas exchange and surface residence time. Most locations reach an uptake-efficiency plateau of 0.6–0.8mol CO2 per mol of alkalinity after 3–4 years, after which there is little further CO2 uptake. The most ideal locations, reaching an uptake of around 0.8 include north Madagascar, San Francisco, Brazil, Peru and locations close to the southern ocean such as Tasmania, Kerguelen and Patagonia, where the gas exchange appears to occur faster than the surface residence time. Some locations (e.g. Hawaii) take significantly longer to equilibrate (up to 8–10 years), though can still eventually achieve high uptake. If the alkalinity released advects into regions of significant downwelling (e.g. around Iceland) up to half of the OAE potential can be lost to bottom waters.

Continue reading ‘Limits and CO2 equilibration of near-coast alkalinity enhancement’

Gaining insights into the seawater carbonate system using discrete fCO2 measurements

Understanding the ocean carbon sink and its future acidification-derived changes requires accurate and precise measurements with good spatiotemporal coverage. In addition, a deep knowledge of the thermodynamics of the seawater carbonate system is key to interconverting between measured and calculated variables. To gain insights into the remaining inconsistencies in the seawater carbonate system, we assess discrete water column measurements of carbon dioxide fugacity (fCO2), dissolved inorganic carbon (DIC), total alkalinity (TA), and pH measured with unpurified indicators, from hydrographic cruises in the Atlantic, Pacific, and Southern Oceans included in GLODAPv2.2020 (19,013 samples). An agreement of better than ± 3% between fCO2 measured and calculated from DIC and pH is obtained for 94% of the compiled dataset, while when considering fCO2 measured and calculated from DIC and TA, the agreement is better than ± 4% for 88% of the compiled dataset, with a poorer internal consistency for high-CO2 waters. Inspecting all likely sources of uncertainty from measured and calculated variables, we conclude that the seawater carbonate system community needs to (i) further refine the thermodynamic model of the seawater carbonate system, especially K2, including the impact of organic compounds and other acid-base systems on TA; (ii) update the standard operating procedures for the seawater carbonate system measurements following current technological and analytical advances, paying particular attention to the pH methodology that is the one that evolved the most; (iii) encourage measuring discrete water column fCO2 to further check the internal consistency of the seawater carbonate system, especially given the new era of sensor-based seawater measurements; and (iv) develop seawater Certified Reference Materials (CRMs) for fCO2 and pH together with seawater CRMs for TA and DIC over the range of values encountered in the global ocean. Our conclusions also suggest the need for a re-evaluation of the adjustments applied by GLODAPv2 to pH, which were based on DIC and TA consistency checks but not supported by fCO2 and DIC consistency.

Continue reading ‘Gaining insights into the seawater carbonate system using discrete fCO2 measurements’

The changing ocean carbon sink in the earth system

Eunice Foote, who was the first to measure the solar heating of CO2 in her early experiments already in the 1850s noted: “An atmosphere of that gas would give to our Earth a high temperature“ (Foote, 1856). Indeed, our planet is warming unprecedently fast due to rising anthropogenic CO2 emissions (Masson-Delmotte et al., 2021). Next to catastrophic floodings, wildfires and droughts on land, with tragic consequences for people, the ocean silently suffers from the ongoing heating, acidification, and deoxygenation with tragic impacts for marine systems.

The ocean plays an essential role in regulating Earth’s climate; it is also essential for regulating the Earth’s carbon cycle. The ocean contains around 38,000 Gt of carbon. This is 16 times more than the terrestrial biosphere (plant and the underlying soils), and about 60 times more than the pre-industrial atmosphere (Canadell et al., 2021). Therefore, even a small perturbation to the ocean carbon content by changing its capacity to store carbon would impact atmospheric CO2 concentrations (Fig.1.1), making the ocean carbon sink a major regulator of the Earth’s climate on a time scale of hundreds to thousands of years. As the ocean currently continuously absorbs anthropogenic carbon from the atmosphere, it thereby has a key role in moderating ongoing climate change.

Based on the Global Carbon Budget (GCB) estimates (Friedlingstein et al., 2020), the global ocean has already taken up about one third of the cumulative anthropogenic CO2 emissions (Fig.1.2). The strength of the ocean carbon sink is determined by chemical reactions in seawater (carbonate system), biological processes (photosynthesis, export flux, and remineralization by aerobic and anaerobic respiration), and physical processes (including ocean circulation and vertical mixing). But even though these key mechanisms are identified (Landschutzer et al., 2021), there are considerable uncertainties regarding their interannual and decadal variations, as well as their susceptibility to ongoing climate change. Here, a major uncertainty arises from the lack of knowledge regarding the contribution of the natural variability of the climate system (Ilyina, 2016).

In this essay, I present my research contributions based on my papers explicitly mentioned in the text. My research was guided by the following questions:

  1. How do ocean biogeochemical cycles accommodate perturbations brought about by anthropogenic activities or natural forcings?
  2. What are the predictability horizons of variations in the ocean carbon sink?
  3. What is the potential of the ocean carbon sink, artificially enhanced by ocean alkalinity additions, to mitigate climate change?

Continue reading ‘The changing ocean carbon sink in the earth system’

Spatial and temporal variability of the physical, carbonate and CO2 properties in the Southern Ocean surface waters during austral summer (2005-2019)

Highlights

  • Latitudinal and temporal variability of physical and carbonate parameters are studied south of Tasmania.
  • Physical and carbonate parameters are impacted by mesoscale activity in the STZ and north of SAR.
  • The region is a sink of CO2 during summer with a mean CO2 flux of −4.0 ± 2.8 mmol m−2 d−1.
  • New empirical relationships for AT and CT during austral summer are determined.
  • The increase in CT and decrease in pH linked to rising anthropogenic emissions.

Abstract

In situ measurements of sea surface temperature (SST), salinity (SSS), Total Alkalinity (AT) and Total Carbon (CT) were obtained during austral summer (mid-February to mid-March) from 2005 to 2019 in the Southern Ocean (SO), along a transect between Hobart, Tasmania and Dumont d’Urville French Antarctic Station. The studied transect is divided in four regions from North to South: the Subtropical Zone (STZ), the Subantarctic Region (SAR), the Antarctic Region (AAR) and the Coastal Antarctic Zone (CAZ). Latitudinal distribution of measured SST, SSS, AT, CT as well as calculated pH, CO2 parameters (seawater fugacity of CO2 (fCO2sw), difference between seawater and atmospheric fugacity (ΔfCO2), CO2 flux (FCO2)) and satellite-derived Chlorophyll a (Chl-a) are discussed. We show that the variability of physical and carbonate parameters in the STZ and north of the SAR are related to the mesoscale activity. In the CAZ, the freshwater inputs from sea-ice melting strongly impact the variability of all parameters. The comparison between physical and carbonate parameters highlights that AT and CT are directly related to the latitudinal variability of SST and SSS. Study of the CO2 parameters shows that the transect is a sink of CO2 during February and March, with a mean FCO2 of −4.0 ± 2.8 mmol m−2 d−1. The most negative values of FCO2 are found in the STZ and SAR north of 50°S and in the AAR south of 62°S, where biological activity is high. New simple empirical relationships are developed for AT from SST and SSS and for CT using SST, SSS and atmospheric fCO2 (fCO2atm) for the austral summer in the studied area. Using high resolution SSS and SST from the SURVOSTRAL program, trends of AT and CT are determined in the SAR and the AAR from 2005 to 2019. SST, SSS and AT increase over this period in the SAR, which might be explained by the southward migration of the Subtropical Front. In the AAR, no clear trend is detected. CT increases by 1.0 ± 0.2 and 0.8 ± 0.3 μmol kg−1 y−1 in the SAR and AAR respectively. The trend in the AAR is attributed to the increase in anthropogenic CO2 emissions in the atmosphere while, in the SAR, hydrographic changes also contribute to the increase. Using the coefficient associated with fCO2atm in the equation of CT, we estimate the impact of atmospheric CO2 increase on CT at 1.18 ± 0.14 μmol kg−1 y−1 and 1.07 ± 0.13 μmol kg−1 y−1 in the SAR and AAR respectively. Decreases in pH are observed in both regions (−0.0018 ± 0.0001 and −0.0026 ± 0.0003 per year in the SAR and AAR respectively), indicating the sensitivity of surface waters in the area towards the development of ocean acidification processes under rising anthropogenic emissions.

Continue reading ‘Spatial and temporal variability of the physical, carbonate and CO2 properties in the Southern Ocean surface waters during austral summer (2005-2019)’

Limits and CO2 equilibration of near-coast alkalinity enhancement

Ocean Alkalinity Enhancement (OAE) has recently gained attention as a potential method for negative emissions at gigatonne scale, with near-coast OAE operations being economically favorable due to proximity to mineral and energy sources. In this paper we study critical questions which determine the scale and viability of OAE: Which coastal locations are able to sustain a large flux of alkalinity at minimal pH and ΩArag (aragonite saturation) changes? What is the interference distance between adjacent OAE projects? How much CO2 is absorbed per unit of alkalinity added? How quickly does the induced CO2 deficiency equilibrate with the atmosphere?

Using the LLC270 (0.3deg) ECCO global circulation model we find that the steady-state OAE rate varies over 1–2 orders of magnitude between different coasts and exhibits complex patterns and non-local dependencies which vary from region to region. In general, OAE in areas of strong coastal currents allow the largest fluxes and depending on the direction of coastal currents, neighboring OAE sites can exhibit dependencies as far as 400 km or more. We found that within relatively conservative constraints set on ∆pH or ∆Omega, most regional stretches of coastline are able to accommodate on the order of tens to hundreds of megatonnes of negative emissions within 300 km of the coast. We conclude that near-coastal OAE has the potential to scale globally to several GtCO2/yr of drawdown with conservative pH constraints, if the effort is spread over the majority of available coastlines.

Depending on the location, we find a diverse set of equilibration kinetics, determined by the interplay of gas exchange and surface residence time. Most locations reach an uptake-efficiency plateau of 0.6–0.8mol CO2 per mol of alkalinity after 3–4 years, after which there is little further CO2 uptake. The most ideal locations, reaching an uptake of around 0.8 include north Madagascar, San Francisco, Brazil, Peru and locations close to the southern ocean such as Tasmania, Kerguelen and Patagonia, where the gas exchange appears to occur faster than the surface residence time. Some locations (e.g. Hawaii) take significantly longer to equilibrate (up to 8–10 years), though can still eventually achieve high uptake. If the alkalinity released advects into regions of significant downwelling (e.g. around Iceland) up to half of the OAE potential can be lost to bottom waters.

Continue reading ‘Limits and CO2 equilibration of near-coast alkalinity enhancement’

The effects of acidification on arsenic concentration and speciation in offshore shallow water system

Highlights

  • Acidification simulation experiments were conducted in lab scale tanks.
  • Effects of acidification on speciation and transportation of arsenic were studied.
  • Acidification could cause more DIAs transport into overlying water from sediments.
  • Acidification would be favorable to the existence of As3+ in overlying waters.

Abstract

The effects of acidification on speciation and transportation of arsenic in shallow seawater system were investigated based on data from acidification simulation experiments in lab scale tanks, in which enhanced levels of pCO2 corresponding to pHT were processed. The results showed that: (1) the concentration of DIAs (Dissolved inorganic arsenic), As5+ and As3+ in the overlying water increased with experimental CO2 enrichment; (2) while the ratio of As5+/As3+ decreased; (3) acidification could cause more DIAs transport into the overlying water from sediments or suspended particulate matters, and would be favorable to the existence of As3+. Thus, DIAs is available to microorganisms and can be taken in effectively by microorganisms in the shallow water system, resulting in toxic effects of As on microorganisms and thus the inhibition of the growth of microorganisms.

Continue reading ‘The effects of acidification on arsenic concentration and speciation in offshore shallow water system’

Physiological control on carbon isotope fractionation in marine phytoplankton

One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (εp) in phytoplankton in response to changing CO2 concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO2 levels. Phytoplankton organic carbon is depleted in 13C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO2 concentrations [CO2] on εp. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in εp for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production  [CO2]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in εp between studies, although day length was an important predictor for εp in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments.

Continue reading ‘Physiological control on carbon isotope fractionation in marine phytoplankton’

Physical and biogeochemical controls of the carbonate system of the Yucatan Shelf

Highlights

  • The carbonate system (CS) of the Yucatan Shelf remains inadequately characterized.
  • CS variation depends on water mass advection and submarine groundwater discharge.
  • The CS is influenced by seasonality.
  • Organic matter respiration and CaCO3 dissolution influenced the CS in Nortes season.
  • Caribbean Surface Water and high evaporation influenced the CS in the rainy season.

Abstract

The dynamics and distribution of the carbonate system and the processes that regulate it over the Yucatan Shelf (YS), a region of karst geology and high productivity that is influenced by submarine groundwater discharges (SGDs) and upwelling, were explored with data from two oceanographic cruises. The first oceanographic cruise was conducted in November 2015 during the Nortes season, a period of intense northerly wind activity, and a second cruise was conducted during the rainy season in August/September 2016. Notable biogeochemical differences were present between them. At the surface, Caribbean Surface Water (CSW) predominated over the shelf in both periods. During the Nortes cruise, a surface nearshore-offshore gradient showed high dissolved inorganic carbon (DIC; ∼2470 μmol kg−1) and total alkalinity (TA; ∼2460 μmol kg−1) values near the coast and average pHTotal and pCO2 values of 7.42 ± 0.10 and 2206 ± 546 μatm, respectively. These geochemical characteristics were attributed to the influence of SGDs, punctuated by relatively low δ13CDIC values between −4.18‰ and −2.49‰, which reflects an important oxidation of organic carbon and the dissolution of carbonate minerals. The presence of upwelled water on the eastern side of the YS showed average DIC and pHTotal values of 2260 ± 15 μmol kg−1 and 7.69 ± 0.08, respectively, which were lower than coastal values. During the rainy cruise, the advection of CSW by the Yucatan Current was traced by its thermohaline properties. However, the surface water carbonate system was relatively homogeneous, with average DIC, TA, pHTotal, and pCO2 values of 2047 ± 16 μmol kg−1, 2388 ± 11 μmol kg−1, 8.02 ± 0.02, and 440 ± 27 μatm, respectively. Lastly, the δ13CDIC values during this cruise ranged from −1.21‰ to 1.25‰, which suggests that the carbonate system is mainly regulated by organic matter production and respiration.

Continue reading ‘Physical and biogeochemical controls of the carbonate system of the Yucatan Shelf’

Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord

The stratified Chilean Comau Fjord sustains a dense population of the cold-water coral (CWC) Desmophyllum dianthus in aragonite supersaturated shallow and aragonite undersaturated deep water. This provides a rare opportunity to evaluate CWC fitness trade-offs in response to physico-chemical drivers and their variability. Here, we combined year-long reciprocal transplantation experiments along natural oceanographic gradients with an in situ assessment of CWC fitness. Following transplantation, corals acclimated fast to the novel environment with no discernible difference between native and novel (i.e. cross-transplanted) corals, demonstrating high phenotypic plasticity. Surprisingly, corals exposed to lowest aragonite saturation (Ωarag < 1) and temperature (T < 12.0 °C), but stable environmental conditions, at the deep station grew fastest and expressed the fittest phenotype. We found an inverse relationship between CWC fitness and environmental variability and propose to consider the high frequency fluctuations of abiotic and biotic factors to better predict the future of CWCs in a changing ocean.

Continue reading ‘Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord’

Evidence for carbonate system mediated shape shift in an intertidal predatory gastropod

Phenotypic plasticity represents an important first-line organism response to newly introduced or changing environmental constraints. Knowledge about structural responses to environmental stressors could thus be an essential measure to predict species and ecosystem responses to a world in change. In this study, we combined morphometric analyses with environmental modelling to identify direct shape responses of the predatory gastropod Nucella lapillus to large-scale variability in sea surface temperature and the carbonate system. Our models suggest that the state of the carbonate system and, more specifically, the substrate inhibitor ratio ([HCO3][H+]−1) (SIR) has a dominant effect on the shell shape of this intertidal muricid. Populations in regions with a lower SIR tend to form narrower shells with a higher spire to body whorl ratio, whereas populations in areas with a higher SIR form wider shells with a much lower spire to body whorl ratio. These results indicate that a widespread phenotypic response of N. lapillus to continuing ocean acidification can be expected, potentially altering the phenotypic response pattern to predator or wave exposure regimes with profound implications for North Atlantic rocky shore communities.

Continue reading ‘Evidence for carbonate system mediated shape shift in an intertidal predatory gastropod’

Assessment of ocean acidification in a selected tropical coastal lagoon in Mauritius

This assessment of ocean acidification at Flic-en-Flac (FF), located in the west of Mauritius, is a first-time study conducted from 2017 to 2021. The variations of pH and total alkalinity (AT) were monitored. Over the course of this study, temperature varied from 23 °C to 31 °C, whereas salinity was constant at 35 %. The summer season lasted from October to March and the winter season from April to September. The lowest mean pH value, (7.94 ± 0.02), was noted in April 2019 winter month whereas the highest mean pH value (8.17 ± 0.03) was noted in October 2017 summer month. The overall mean pH values (8.06 ± 0.06) were slightly higher in all summer periods compared to winter ones (8.01 ± 0.07). However, it was observed that the mean pH values in summer 2018 (7.97 ± 0.03), were lower than in 2017 (8.06 ± 0.06) and 2019 (8.03 ± 0.05) due to a tropical storm. The mean AT for the three sampling periods was (2404.1 ± 174.8) µmolkg−1 , in line with the global mean of (2300 ± 200) µmolkg−1 . The mean alkalinity varied from (2094.8 ± 68.0) µmol/kg (September 2019) and the highest mean AT of (2880.0 ± 14.1) µmol/kg (November 2018). In most cases, results following the t-test show that they were significant when the pH values of summer and winter were compared. However, all the t-test results were not significant with regards to alkalinity. 

Continue reading ‘Assessment of ocean acidification in a selected tropical coastal lagoon in Mauritius’

Biogeochemistry of carbon, nitrogen and oxygen in the Bay of Bengal: new insights through re-analysis of data

Primary production is reported to be a fraction of heterotrophic carbon demand in the Bay of Bengal (BoB), and it is attributed to the unavailability of inorganic nutrients and faster sinking of organic matter in association with mineral particles. The contribution of nutrients through external sources to total primary production is low (<5%), suggesting internal cycling of nutrients is important in the BoB. Organic nutrients support primary production in the absence of inorganic nutrients in the BoB. It was noticed that about 45% of particulate organic carbon (POC) production is exudated as dissolved organic carbon (DOC). Therefore, the total organic carbon production is revised to twice that of the earlier estimate and it is sufficient to support heterotrophic carbon demand. Balance among the ventilation of oxygen by anticyclonic eddies, strengthening due to cyclonic eddies and salinity stratification controls the oxygen levels in the OMZ than hitherto hypothesized as ballasting of organic matter. The stable isotopic composition of nitrogen in nitrate and particulate organic nitrogen (PON) does not evidence a significant contribution of anthropogenic nitrogen in the BoB. This negates the hypothesis that anthropogenic inputs modify the biogeochemistry of BoB. The deposition of anthropogenic aerosols decreases the pH of surface waters in the western BoB, whereas a decrease in salinity due to an increase in freshwater flux due to warming of the Himalayan glacier may increase pH and decrease pCO2 levels. As a result, BoB is turning into more sink for atmospheric CO2, which is contrasting to that of elsewhere in the global ocean.

Continue reading ‘Biogeochemistry of carbon, nitrogen and oxygen in the Bay of Bengal: new insights through re-analysis of data’

Quality control of potentiometric pH measurements with a combination of NBS and Tris buffers at salinities from 20 to 40 and pH from 7.2 to 8.6

Seawater pH is a valuable parameter to describe ocean acidification. However, pH measurements are often subject to large uncertainty and the results of the pH comparison from different laboratories are not convincing. We assessed the potentiometric method for pH measurement on seawater samples with salinities from 20 to 40 and pH ranging from 7.2 to 8.6. pH glass electrodes were calibrated using both commercially available NBS buffers and the equimolal Tris (2‐amino‐2‐hydroxymethyl‐1,3‐propanediol) buffer (prepared in synthetic seawater at a salinity of 35). The results demonstrated that the uncertainty in pH measurements was within ± 0.01 in the entire salinity range and was better than ± 0.003, when the sample salinity was close to that of equimolal Tris buffer (salinity difference within ± 2.5), regardless of the sample pH. This study suggests that if the electrode calibration is performed properly, the potentiometric method can fulfill the “weather” goal (± 0.02) of the Global Ocean Acidification Observing Network in pH measurements; it might even meet the “climate” goal (± 0.003) if the difference between the salinity of the samples and the Tris buffer is small.

Continue reading ‘Quality control of potentiometric pH measurements with a combination of NBS and Tris buffers at salinities from 20 to 40 and pH from 7.2 to 8.6’

Anthropogenic carbon increase has caused critical shifts in aragonite saturation across a sensitive coastal system

Abstract

Estuarine systems host a rich diversity of marine life that is vulnerable to changes in ocean chemistry due to addition of anthropogenic carbon. However, the detection and impact of secular carbon trends in these systems is complicated by heightened natural variability as compared to open-ocean regimes. We investigate biogeochemical changes between the pre-industrial (PI) and modern periods using a high-resolution, three-dimensional, biophysical model of the Salish Sea, a representative Northeast Pacific coastal system. While the seasonal amplitude of the air-sea difference in pCO2 has increased on average since pre-industrial times, the net CO2 source has changed little. Our simulations show that inorganic carbon has increased throughout the model domain by 29–39 mmol m−3 (28–38 µmol kg−1) from the pre-industrial to present. While this increase is modest in a global context, the region’s naturally high inorganic carbon content and the low buffering capacity of the local carbonate system amplify the resultant effects. Notably, this increased carbon drives the estuary toward system-wide undersaturation of aragonite, negatively impacting shell-forming organisms. Undersaturation events were rare during the pre-industrial experiment, with 10%–25% of the domain undersaturated by volume throughout the year, while under present-day conditions, the majority (55%–75%) of the system experiences corrosive, undersaturated conditions year-round. These results are extended using recent global coastal observations to show that estuaries throughout the Pacific Rim have already undergone a similar saturation state regime shift.

Key Points

  • On average, dissolved inorganic carbon has increased by 29–39 mmol m−3 in the Salish Sea, causing a shift to majority aragonite undersaturation by volume
  • Modern aragonite saturation conditions, though variable, are typically outside of the range of pre-industrial values throughout the domain
  • Much of the coastal Pacific Rim has similar carbonate chemistry conditions, and comparable shifts in aragonite saturation may have occurred
Continue reading ‘Anthropogenic carbon increase has caused critical shifts in aragonite saturation across a sensitive coastal system’

Understanding the implications of hydrographic processes on the dynamics of the carbonate system in a sub-Antarctic marine-terminating glacier-fjord (53°S)

The biogeochemical dynamics of fjords in the southeastern Pacific Ocean are strongly influenced by hydrological and oceanographic processes occurring at a seasonal scale. In this study, we describe the role of hydrographic forcing on the seasonal variability of the carbonate system of the Sub-Antarctic glacial fjord, Seno Ballena, in the Strait of Magellan (53°S). Biogeochemical variables were measured in 2018 during three seasonal hydrographic cruises (fall, winter and spring) and from a high-frequency pCO2-pH mooring for 10 months at 10 ± 1 m depth in the fjord. The hydrographic data showed that freshwater input from the glacier influenced the adjacent surface layer of the fjord and forced the development of undersaturated CO2 (< 400 μatm) and low aragonite saturation state (ΩAr < 1) water. During spring, the surface water had relatively low pCO2 (mean = 365, range: 167 – 471 μatm), high pH (mean = 8.1 on the total proton concentration scale, range: 8.0 – 8.3), and high ΩAr (mean = 1.6, range: 1.3 – 4.0). Concurrent measurements of phytoplankton biomass and nutrient conditions during spring indicated that the periods of lower pCO2 values corresponded to higher phytoplankton photosynthesis rates, resulting from autochthonous nutrient input and vertical mixing. In contrast, higher values of pCO2 (range: 365 – 433 μatm) and relatively lower values of pHT (range: 8.0 – 8.1) and ΩAr (range: 0.9 – 2.0) were recorded in cold surface waters during winter and fall. The naturally low freshwater carbonate ion concentrations diluted the carbonate ion concentrations in seawater and decreased the calcium carbonate saturation of the fjord. In spring, at 10 m depth, higher primary productivity caused a relative increase in ΩAr and pHT. Assuming global climate change will bring further glacier retreat and ocean acidification, this study represents important advances in our understanding of glacier meltwater processes on CO2 dynamics in glacier–fjord systems.

Continue reading ‘Understanding the implications of hydrographic processes on the dynamics of the carbonate system in a sub-Antarctic marine-terminating glacier-fjord (53°S)’

Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage

Metabolic activities in estuaries, especially these of large rivers, exert profound impact on downstream coastal biogeochemistry. Here, we unravel the contribution of large industrial port facilities to these impacts and show that metabolic activity in the Hamburg port (Germany) increases total alkalinity (TA) and dissolved inorganic carbon (DIC) runoff to the North Sea. We explained this activity to be fueled by the imports of particulate inorganic and organic carbon (PIC, POC) and particulate organic nitrogen (PON) from the upstream Elbe River, resulting in maximum 90 % TA generation due to CaCO3 dissolution in the entire estuary. The remaining 10 % can be attributed to a TA generation by anaerobic metabolic processes such as denitrification of remineralized PON, or other pathways. The Elbe Estuary as a whole adds approximately 15 % to the overall DIC and TA runoff. Both the magnitude and partitioning among these processes appear to be sensitive to climate and anthropogenic changes, and affects coastal CO2 storage capacity.

Continue reading ‘Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage’

Carbonate parameter estimation and its application in revealing temporal and spatial variation in the South and Mid-Atlantic Bight, USA

Abstract

To overcome the limitations due to sporadic carbonate parameter data, this study developed and evaluated empirical multiple linear regression (MLR) models for dissolved inorganic carbon (DIC), pHT (in total scale), and aragonite carbonate saturation state (ΩAr) using hydrographic data (temperature, salinity, and oxygen) measured during 2007 – 2018 in the South Atlantic Bight (SAB) and Mid-Atlantic Bight (MAB) along the U.S. East Coast. We first reviewed the assumptions and routines of MLR models and then generated MLR models for each cruise for all three carbonate parameters in each region and assessed model performance. Models derived from measured spectrophotometric pH have smaller uncertainties than pHT models based on pH calculated from total alkalinity (TA) and DIC. The regional differences of carbonate parameters between MAB and SAB are reflected in the coefficients of the empirical models. The MLR model temporal consistency indicates the effect of the atmospheric CO2 increase on the carbonate parameters cannot be unequivocally resolved for the period of this study in the regions. Therefore, we combined different cruises to build concise and composite models for each region. The composite models can capture the key features in the SAB and MAB. To further assess the model applicability, we applied our models to Biogeochemical-Argo data to reconstruct carbonate parameters. The algorithm in this study helps to reconstruct seawater carbonate chemistry using proxy data of high spatial and temporal resolution, which will enhance our understanding of physical and biological processes on carbon cycle and the long-term anthropogenic carbon inputs in coastal oceans.

Key Points

  • pH estimation models based on measured pH have smaller uncertainties than those based on pH calculated from other carbonate parameters
  • Models differ between the Mid and South Atlantic Bights, and their temporal changes due to atmospheric CO2 are limited over 10 years
  • Multiple linear regression models provide a promising tool for reconstructing carbonate parameters using data from autonomous platforms
Continue reading ‘Carbonate parameter estimation and its application in revealing temporal and spatial variation in the South and Mid-Atlantic Bight, USA’

Environmental change and carbon-cycle dynamics during the onset of Cretaceous oceanic anoxic event 1a from a carbonate-ramp depositional system, Abu Dhabi, U.A.E.

Highlights

  • Negative δ13C excursion at onset of OAE1a recorded in carbonate-ramp deposits.
  • Time-series analysis shows relative complete record of C3 segment of OAE1a.
  • Evidence for short-lived carbonate dissolution event at the negative δ13C peak of C3.
  • Discussion of effects of seawater temperature, pH, and diagenesis on δ18O record.

Abstract

We report the first high-resolution sedimentological and geochemical record of the negative carbon-isotope excursion (CIE) at the onset of the early Aptian oceanic anoxic event (OAE) 1a from a carbonate-ramp depositional environment, analysed from a well core from c. 2500 m depth, 100 km offshore Abu Dhabi, United Arab Emirates. Time-series analysis of stable oxygen isotope values and concentrations of Si, Al, and Ti resulted in durations of the C3 and C4 segments of the CIE that support relative completeness of the C3 segment and high sediment preservation rates of c. 13 cm/kyr of the studied sedimentary sequence. Stable oxygen-isotope ratios of bulk carbonates are interpreted to indicate two episodes of cooling, separated by rapid warming during the peak of the negative CIE. The contributions of diagenesis and seawater pH on the bulk oxygen-isotope record will have affected the palaeoclimatic signal and are critically discussed. A major shift in oxygen isotope values at the peak of the negative CIE in the C3 segment coincides with relatively carbonate-poor, marly deposits, time-equivalent with other, global evidence for a reduction of carbonate saturation of sea-surface water. According to our chemo- and cyclostratigraphic calibration, this episode of low carbonate saturation of seawater reflects a pulse of major volcanic CO2 release from the Ontong-Java large igneous province that was sufficiently short to have escaped internal buffering by the dynamics of the ocean lysocline.

Continue reading ‘Environmental change and carbon-cycle dynamics during the onset of Cretaceous oceanic anoxic event 1a from a carbonate-ramp depositional system, Abu Dhabi, U.A.E.’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: