Posts Tagged 'chemistry'

The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2

An alternative measure of the ocean’s carbonate buffer system efficiency to absorb CO2 from the atmosphere is proposed. Instead of the Revelle factor R = (∆CO2/CO2)/(∆DIC/DIC) = (DIC/CO2)/ (∆DIC/∆CO2) the sensitivity S = (∆DIC/∆CO2) is preferable because it gives directly the change ∆DIC of the concentration of DIC in the seawater caused by the change ∆CO2 of carbon dioxide in the atmosphere. To this end the DIC concentration of seawater at temperature T in equilibrium with a defined CO2 level in the surrounding atmosphere is calculated by use of the geochemical program PHREEQC. From the function DIC(CO2,T) one obtains by differentiation the sensitivity S = dDIC/dCO2 = ∆DIC/∆CO2 and also the Revelle factor R. Using S as the change of the ocean’s buffer capacity reveals a better insight of its future evolution than using the Revelle factor R.

One finds that the buffer capacity S has declined by about 30 % from 1945 to present and that its future decline from 400 to 600 ppm will be a further 30 %. By calculating the uptake of CO2 of his equilibrium pump an upper value of 1.3 Gigatons/year is obtained, small in comparison to the 10 Gigatons/year absorbed by the ocean at present. The Revelle factor R at present is calculated R = 13 and rises to 18 at a CO2 level of 800 ppm. This increase of R has been interpreted as indication of the collapse of the solubility pump. S and R, however, are defined from equilibrium chemistry and are a measure of the CO2 absorbed by the ocean’s upper mixed layer by increase of the CO2 level in the atmosphere without regarding its sinking into the deep-ocean by the thermohaline circulation. The difference ∆DIC between the actual value and the value at 280 ppm is transported into the deep-ocean by the global meridional conveyor belt. ∆DIC increases with increasing CO2 level. At 280 ppm the system ocean-atmosphere is in equilibrium and the sink is zero. At 400 ppm a value of about 1.9 Gtons/year is estimated that increases to 3.9 Gtons/year at 600 ppm and to 5 Gtons/year at 800 ppm. At present CO2 level increase of 2 ppm/year 10 Gtons/year are absorbed by the ocean. The solubility pump contributes 3.2 Gtons/year: 1.3 Gtons/year by equilibrium absorption into the mixed layer and 1.9 Gtons/yeat by thermohaline circulation. At 600 ppm the total sink is 4.6 Gtons/year and at 800 ppm 5.5 Gtons/year. To conclude, the solubility pump is not endangered by ocean acidification. In contrast, it increases with increasing CO2 level of the atmosphere to yield significant contribution.

Continue reading ‘The impact of rising atmospheric CO2 levels and resulting ocean acidification on the physical (solubility) ocean pump of CO2’

Ocean afforestation’s effect on deep-sea biogeochemistry

If climate change is left unchecked it will lead to unprecedented deterioration of human health, economy and ecology. According to the IPCC, in order to avoid severe consequences, global warming will need to be limited to 1.5°C. However, the 1.5°C warming will be exceeded if current trends continue, which is why the need for Carbon Dioxide Removal (CDR) has become increasingly apparent. Ocean afforestation is currently one of the most promising CDR approaches, with the least competition for space, high carbon sequestration potential and high technical feasibility. Ocean afforestation approaches attempt to sequester carbon by sinking seaweed to deep-sea areas. This research looks at the consequences of the seaweed input to deep-seafloor. An early diagenetic model called RADI is used to predict the fate of the carbon and the effect on biogeochemistry. The model was adapted to include new sources of sedimentary organic matter, such as seaweed (Sargassum, Saccharina, Macrocystis) and Sugarcane bagasse, which are currently considered potential candidates for ocean afforestation purposes. Sargassum, an invasive free-floating species, has a large sequestration potential and is readily available. Sinking Sargassum in pulse, large amounts over short times, leads to high carbon retention in the sediment (up to 25% after two years) but leads to hypoxic conditions in the sediment for at least two years after addition. Continuous Sargassum sinking also leads to carbon sequestration but with a much less invasive impact on the seafloor. The carbon from continuous sinking does not remain in the sediment but is remineralized and flows out to the bottom water as inorganic carbon. Saccharina, an edible coastal species, could be used to grow on free floating organic buoy. Having the additional sequestration benefit from the carbon fixed in the organics. Carbon retention is highest for the pulse addition of this seaweed (33% after two years), compared to a continuous approach (30%) in which the seaweed is added over longer timescales in small amounts. Since this pulse input also leads to hypoxic conditions in the sediment, the continuous approach is more favourable for this approach. Macrocystis, the giant kelp known for forming ecosystems, is a fast-growing coastal species. This species requires harvesting and baling for use in carbon sequestration. Carbon retention is much higher for pulse addition (30%). Sugar cane bagasse is an agricultural residue with high carbon content. Sinking this residue to anoxic basins, has been proven to retain more carbon than in oxygenated bottom waters. This can be confirmed with the results which showed a carbon retention of up to 50% after two years. The effect on the benthic biome is also less intense since the low oxygen conditions already necessitate a specialized microbiome. Sugarcane bagasse is furthermore the only addition capable of increasing bottom water pH. Whereas all seaweed approaches had higher dissolved inorganic carbon than alkalinity flow to the bottom water, resulting in net acidification. This research provides a first look into the effects of ocean afforestation on deep sea biogeochemistry, and illustrates the importance of the composition, quantity and input duration of the seaweed used.

Continue reading ‘Ocean afforestation’s effect on deep-sea biogeochemistry’

A high-resolution synthesis dataset for multistressor analyses along the U.S. West Coast

The global trends of ocean warming, deoxygenation, and acidification are not easily extrapolated to coastal environments. Local factors, including intricate hydrodynamics, high primary productivity, freshwater inputs, and pollution, can exacerbate or attenuate global trends and produce complex mosaics of physiologically stressful conditions for organisms. In the California Current System (CCS), oceanographic monitoring programs document some of this complexity; however, data fragmentation and limited data availability constrain our understanding of when and where stressful coastal conditions manifest. Here, we undertake a large data synthesis to compile, format, and quality-control publicly available oceanographic data to create an accessible database for coastal CCS climate risk mapping, available at the National Centers for Environmental Information (Accession 0277984) under the DOI 10.25921/2vve-fh39 (Kennedy et al., 2023). With this synthesis, we combine publicly available observations and data contributed by the author team from synoptic oceanographic cruises, autonomous sensors, and shore samples with relevance to coastal ocean acidification and hypoxia (OAH) risk. This large-scale compilation includes 13.7 million observations from 67 sources. Here, we discuss the quality and composition of the synthesized dataset, the spatial and temporal distribution of available data, and examples of potential analyses. This dataset will provide a valuable tool for assessing regional and local climate risk, evaluating the efficacy and completeness of CCS monitoring efforts, and investigating spatiotemporal scales of coastal oceanographic variability.

Continue reading ‘A high-resolution synthesis dataset for multistressor analyses along the U.S. West Coast’

The influence of upwelling on key bivalves from the Humboldt and Iberian current systems

Eastern Boundary Upwelling Systems (EBUS) deliver cold, nutrient-rich waters, influencing coastal biota from the molecular to the ecosystem level. Although local upwelling (U) and downwelling (DU) conditions are often known, their influence on body attributes of relevant species has not been systematically compared within and between EBUS (i.e., below and above regional scales). Hence, we compared the physical-chemical characteristics of U and DU sites in the Humboldt Current system (Chile) and the Iberian Current system (Portugal). We then assessed the influence of U and DU upon eight body attributes in purple mussels (Perumytilus purpuratus) and Mediterranean mussels (Mytilus galloprovincialis), from the Humboldt and Iberian systems, respectively. We hypothesized that bivalves from U sites display better fitness, as measured by body attributes, regardless of their origin (EBUS). As expected, waters from U sites in both systems showed lower temperatures and pH, and higher nitrite concentrations. We also found that mussels from U sites showed better fitness than those in DU sites in 12 out of 16 direct U vs DU comparisons. Shell length, shell volume, organic content of soft-tissues, and mechanical properties of the shell averaged consistently higher in mussels from U sites in both Current systems. In addition, total weight, soft-tissue weight, shell weight and shell thickness were all higher in the U site at the Humboldt system but had less consistent differences at the Iberian system. Altogether, most results supported our working hypothesis and indicate that U conditions support better fitted mussels. The few attributes that did not exhibit the expected U vs DU differences in the Iberian system suggest that local and species-specific differences also play a role on the attributes of these species. These results may also serve as a reference point for further studies addressing the influence of upwelling in these productive, critically important systems.

Continue reading ‘The influence of upwelling on key bivalves from the Humboldt and Iberian current systems’

Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: evidence from a river-connected coastal water ecosystem in northern China

Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats.

Continue reading ‘Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: evidence from a river-connected coastal water ecosystem in northern China’

Marine macroinvertebrate ecosystem services under changing conditions of seagrasses and mangroves

Highlights

  • Overfishing and climate change show potential effects on MMI ES.
  • MMI regulating ES can be quantified using species richness and functional traits.
  • Digital platforms are valuable tools to retrieve data but have limitations.
  • Baseline data and information on environmental changes and MMI ES is provided.

Abstract

This study aimed to investigate the impact of changing environmental conditions on MMI ES in seagrasses and mangroves. We used data from satellite and biodiversity platforms combined with field data to explore the links between ecosystem pressures (habitat conversion, overexploitation, climate change), conditions (environmental quality, ecosystem attributes), and MMI ES (provisioning, regulation, cultural). Both seagrass and mangrove extents increased significantly since 2016. While sea surface temperature showed no significant annual variation, sea surface partial pressure CO2, height above sea level and pH presented significant changes. Among the environmental quality variables only silicate, PO4 and phytoplankton showed significant annual varying trends. The MMI food provisioning increased significantly, indicating overexploitation that needs urgent attention. MMI regulation and cultural ES did not show significant trends overtime. Our results show that MMI ES are affected by multiple factors and their interactions can be complex and non-linear. We identified key research gaps and suggested future directions for research. We also provided relevant data that can support future ES assessments.

Continue reading ‘Marine macroinvertebrate ecosystem services under changing conditions of seagrasses and mangroves’

The Open Acidification Tank Controller: an open-source device for the control of pH and temperature in ocean acidification experiments

Ocean acidification is the process by which the increase in atmospheric CO2 causes a corresponding increase in seawater CO2 and results in lowering the seawater pH. While this process is likely to have substantial impacts on marine ecosystems, research into the effect of ocean acidification has been limited by the high costs of quality tools to perform ocean acidification treatments in the lab. The Open Acidification Tank Controller is designed to reduce the cost of ocean acidification research by providing a device that can monitor and control pH and temperature of aquaria as well as or better than commercially available research-grade devices, but for less than $250 USD per aquarium. The device is centered around an Arduino Mega 2560 and is assembled into a 3D printed housing. It monitors pH using a BNC glass pH probe and temperature using a three-wire waterproof PT100 temperature sensor. The Open Acidification Tank Controller also features web-based parameter reporting, and data storage to a micro-SD card. This device can hold aquarium pH and temperature at given setpoints, ramp between two values over a user-defined time period, or produce a sine-wave fluctuation in values.

Continue reading ‘The Open Acidification Tank Controller: an open-source device for the control of pH and temperature in ocean acidification experiments’

Differential roles of anthropogenic CO2 in mediating seasonal amplitudes of ocean acidification metrics over a coastal coral habitat

Seasonal-scale local forcings sharply reduce the coastal pH and aragonite saturation state (Ωaragonite). However, habitat-specific seasonality and control change signatures under increasing atmospheric CO2 are still poorly characterized. Here, we investigated carbonate system parameter dynamics over a Dongshan coral habitat that is greatly influenced by seasonal current patterns on the western Taiwan Strait coast. Specifically, relatively low pH and Ωaragonite were observed in the trial zone throughout the seasons. Using a first-order Taylor decomposition considering biological carbon metabolism, we suggest that the higher net aerobic respiration related to intense local human activities produced worse ocean acidity in the trial zone. Seasonally, a decreasing Ωaragonite trend was observed from the transition to the northeast monsoon seasons, mainly controlled by dissolved inorganic carbon (DIC) divergence among seasons. The pH/hydrogen ion concentration ([H+]) seasonal cycle was determined by both DIC and temperature components, revealing the lowest/highest value in the southwest monsoon season. Based on ocean acidification scenario modeling forced with a business-as-usual emissions scenario, the Ωaragonite seasonal amplitude attenuation was projected to exceed 30% during the 21st century. However, [H+] seasonal amplitude was amplified over 170%. The attenuation in the Ωaragonite seasonal amplitude mainly resulted from an increase in anthropogenic CO2 seasonal divergence. The increase in [H+] seasonal amplitude mostly followed from an increase in the [H+] sensitivities to DIC and temperature changes.

Continue reading ‘Differential roles of anthropogenic CO2 in mediating seasonal amplitudes of ocean acidification metrics over a coastal coral habitat’

Ocean alkalinity enhancement through restoration of blue carbon ecosystems

Blue carbon ecosystems provide a wide range of ecosystem services, are critical for maintaining marine biodiversity and may potentially serve as sites of economically viable carbon dioxide removal through enhanced organic carbon storage. Here we use biogeochemical simulations to show that restoration of these marine ecosystems can also lead to permanent carbon dioxide removal by driving ocean alkalinity enhancement and atmosphere-to-ocean CO2 fluxes. Most notably, our findings suggest that restoring mangroves, which are common in tropical shallow marine settings, will lead to notable local ocean alkalinity enhancement across a wide range of scenarios. Enhanced alkalinity production is linked to increased rates of anaerobic respiration and to increased dissolution of calcium carbonate within sediments. This work provides further motivation to pursue feasible blue carbon restoration projects and a basis for incorporating inorganic carbon removal in regulatory and economic incentivization of blue carbon ecosystem restoration.

Continue reading ‘Ocean alkalinity enhancement through restoration of blue carbon ecosystems’

Direct H2S, HS− and pH measurements of high-temperature hydrothermal vent fluids with in situ Raman spectroscopy

Abstract

Hydrothermal H2S is an important energy source for hydrothermal ecosystems. However, it is difficult to obtain accurate hydrogen sulfide concentrations in high-temperature hydrothermal fluids because they are highly susceptible to oxidation and compositional variability with mixing. In this study, a new in situ approach for measuring H2S, HS and pH in hydrothermal fluids was developed and applied to the detections of Okinawa Trough hydrothermal activities. The in situ total H2S concentrations in the Jade and Biwako fluids were determined to be 31.4 and 76.7 mmol/kg, respectively. The in situ measured pH of the Jade fluids was determined to be 6.3, which has exceeded that of a neutral fluid at a specific temperature and pressure, indicating that the pH of Jade fluids is weakly alkaline. The pH transition of hydrothermal fluids from alkaline to acidic may be attributed to the thermal decomposition of organic matter and sulfide precipitation.

Key Points

  • The first in situ measured pH of high-temperature hydrothermal vent fluids at arc-back arc basins was reported
  • A new approach to obtain in situ H2S/HS concentration and in situ pH of high temperature hydrothermal vent fluids was established
  • The pH transition of hydrothermal fluids from alkaline to acidic should attributes to the precipitation of sulfide minerals
Continue reading ‘Direct H2S, HS− and pH measurements of high-temperature hydrothermal vent fluids with in situ Raman spectroscopy’

Technical note: Enhancement of float-pH data quality control methods: a study case in the Subpolar Northwestern Atlantic region

Since a pH sensor has become available that is suitable for this demanding autonomous measurement platform, the marine CO2 system can be observed independently and continuously by BGC-Argo floats. This opens the possibility to detect variability and long-term changes in interior ocean inorganic carbon storage and quantify the ocean sink for atmospheric CO2. In combination with a second parameter of the marine CO2 system, pH can be a useful tool to derive the surface ocean CO2 partial pressure (pCO2).

The large spatiotemporal variability of the marine CO2 system requires sustained observations to decipher trends and punctual events (e.g., river discharge, phytoplankton bloom) but also puts a high emphasis on the quality control of float-based pH measurements. In consequence, as the interpretation of changes depends on accurate data, and because sensor offsets or drifts might appear, a consistent and rigorous correction procedure to process and quality-control the data has been established. By applying standardized routines of the Ago data management to pH measurements from a pH/O2 float pilot array in the subpolar North Atlantic Ocean, we investigate the uncertainties and lack of objective criteria associated with the standardized routines, notably the choice of the reference method for the pH correction (CANYON-B or LIRPH) as well the reference depth for this correction. For the studied float array, significant differences of ca. 0.02 pH units are observed between the two reference methods which can be used to correct float-pH data from water samples. Through comparison against discrete pH data from water samples, an assessment of the adjusted float-pH data quality is presented. The results point out noticeable discrepancies near the surface of > 0.01 pH units. In the context of converting surface ocean pH measurements into pCO2 data for the purpose to derive air-sea CO2 fluxes, we conclude that the minimum accuracy requirement of 0.01 pH units (equivalent to the minimum pCO2 accuracy of 10 µatm for potential future inclusion into the SOCAT database) is not systematically achieved in the upper ocean.

While the limited dataset and regional focus of our study provides only one showcase, it still calls for an additional independent pH reference in the surface ocean. We therefore propose a way forward to enhance the float-pH quality control procedure. In our analysis, the current philosophy of pH data correction against climatological reference data at one single depth in the deep ocean appears insufficient to assure adequate data quality in the surface ocean. Ideally, an additional reference point should be taken at or near the surface where the resulting pCO2 data are of the highest importance to monitor the air-sea exchange of CO2 and would have the potential to very significantly augment the impact of the current observation network.

Continue reading ‘Technical note: Enhancement of float-pH data quality control methods: a study case in the Subpolar Northwestern Atlantic region’

Exposure to extremes in multiple global change drivers: characterizing pH, dissolved oxygen, and temperature variability in a dynamic, upwelling dominated ecosystem

In upwelling systems, fluctuations in seawater pH, dissolved oxygen (DO), and temperature can expose species to extremes that differ greatly from the mean conditions. Understanding the nature of this exposure to extremes, including how exposure to low pH, low DO concentrations, and temperature varies spatiotemporally and in the context of other drivers, is critical for informing global change biology. Here, we use a 4-yr time series of coupled pH, DO, and temperature observations at six nearshore kelp forest sites spanning the coast of California to characterize the variability and covariance among these drivers. We further compare observed properties to those derived from a high-resolution coupled physical-biogeochemical simulation for the central California current system. We find the intensity, duration, and severity of exposure to extreme conditions beyond heuristic, biologically relevant pHT (< 7.7), and DO (< 4.6 mg L−1) values were greatest at sites with strong upwelling. In contrast, sites with relatively weaker upwelling had little exposure to pH or DO conditions below these heuristic values but had higher and more variable temperature. The covariance between pH, DO, and temperature was highest in sites with strong upwelling and weakest in sites with limited upwelling. These relationships among pH, DO, and temperature at the observation locations were mirrored in the model, and model output highlighted geographic differences in exposure regimes across the California marine protected area network. Together, these results provide important insight into the conditions marine ecosystems are exposed to relevant to studies of global change biology.

Continue reading ‘Exposure to extremes in multiple global change drivers: characterizing pH, dissolved oxygen, and temperature variability in a dynamic, upwelling dominated ecosystem’

Taphonomy and dissolution rates of the razor clam Ensis magnus shells: current status and projected acidification scenarios

Highlights

  • Natural variability of seawater (TaΩaragonite and pCO2) revealed an increase of acidification though such change did not suppose abrupt detrimental effects for taphonomic characteristics of shells (length, thickness, organic content or strength).
  • Temperature affected negatively shell strength and thickness, although the large correlation between the environmental variables would disturb the individual characterization of environmental parameters.
  • Dissolution rates of shells subjected to projected laboratory scenarios were significantly greater for cold-acidic environment (more corrosive) as compared to warm-acidic. Mean dissolution time (DT50) for cold-acidic scenario was reduced by half (15 years) as compared to current water chemistry conditions (30 years).
  • More recent shells are being secreted in a progressively less saturated carbonate environment (at an annual rate of change of −0.0127 for Ωaragonite) and accordingly, were more prone to suffer dissolution (and weakening) in projected laboratory scenarios.
  • Marine shells support ecosystem services including refuge for multiple species, substrate to attach and settle of fauna that may change in future environments or may bring changes in the ecological interactions of our coastal areas affecting biodiversity and optimal functioning of the ecosystem services.

Abstract

The analysis of the natural variability of seawater (TaΩaragonite and pCO2) at Rodas Beach (NW Iberian Peninsula, Spain) revealed an increase of acidification. However, such pH change was not linked to any detrimental effect of the shell taphonomic characteristics of live razor clams harvested during distinct temporal series (length, thickness, organic content or strength). Temperature affected negatively shell strength and thickness, although the large correlation between the environmental variables would limit the individual characterization. Modelled trends in pH (and Ωaragonite) showed a significant decrease in the last 20 years, despite Ω > 1. Therefore, more recent shells are being secreted in a progressively less saturated carbonate environment and, consequently, more prone to suffer dissolution (and weakening) in projected climatic scenarios. When shells of harvested razor clams were exposed to projected climatic scenarios in the laboratory, dissolution rates were significantly greater for cold-acidic scenarios (more corrosive) as compared to warm-acidic. The median dissolution time (DT50) for shells under the cold-acidic scenario was reduced by half (15 years) when compared to the values observed for shells under current water chemistry conditions (30 years).

Galician coastline, often characterised by pCO2-rich and cold waters due to upwelling system, would represent the most corrosive scenario for the shells according to the responses monitored in our survey which highlight future compromise for the ecosystem services supplied by these hard skeletons. Future climate scenarios might condition performance of bivalves but also more complex processes related to carbonate structures. Local biodiversity may be lowered which may reduce the possibility that many species find shelter and feeding grounds, diminishing the optimal substrate for other organisms as needed elements for optimal services in the ecosystems.

Continue reading ‘Taphonomy and dissolution rates of the razor clam Ensis magnus shells: current status and projected acidification scenarios’

Heavy metal mobility in contaminated sediments under seawater acidification

Highlights

  • Long-term effects of acidification on heavy metal mobility
  • Variations in heavy metal distribution patterns in sediment–seawater systems
  • CO2 enrichment acidified the pH of the system.
  • Changes in effective heavy metals were obtained by diffusion gradient technique.

Abstract

The behavior of heavy metals in contaminated sediment is of ecological significance considering the change of pH caused by ocean acidification. This study investigated the mobility of Cd, Cu, Ni, Pb, Fe, and Mn under experimental conditions for seawater acidification via enrichment of CO2 gas at different reaction set-ups. The results indicated that the concerned metals behaved differently in the water compared to the sediment. The heavy metals were considerably transferred from sediment to seawater, and the resultant intensity was controlled by the degree of acidification and the chemical state of specific metals. Moreover, labile fractions of heavy metals in sediments were more susceptible to acidification than other fractions. These findings were observed and confirmed using real-time monitoring conducted via the diffusion gradient technique (DGT). Overall, the results of this study provided new insights into exploring the coupling risk of heavy metals with ocean acidification.

Continue reading ‘Heavy metal mobility in contaminated sediments under seawater acidification’

A low-cost virtual sensor for underwater pH monitoring in coastal waters

In coastal water monitoring, abrupt pH changes might indicate different pollution sources. Existing sensors for pH monitoring in coastal waters at low cost are mainly based on a glass membrane and a reference electrode. Virtual sensors are elements capable of measuring certain parameters based on data from other parameters or variables. The aim of this paper is to propose the use of a virtual pH sensor based on measuring different physical effects of H+ on the electromagnetic field generated by an inductor. Double inductors based on two solenoids of 40 and 80 spires are used as sensing elements. Samples with pH from 4 to 11 are used, and the effect of temperature is evaluated using samples from 10 to 40 °C. The induced voltage and the delay of the signal are measured for powering frequencies from 100 to 500 kHz. These data of delay, induced voltage, frequency, and temperature are included in a probabilistic neural network to classify these data according to the pH. The results indicate low accuracy for samples with a pH of 11. A second analysis, excluding these data, offered correctly classified cases of 88.9%. The system can achieve considerable high accuracy (87.5%) using data gathered at a single frequency, from 246 to 248 kHz. The predicted versus observed data is correlated with a linear model characterized by an R2 of 0.69, which is similar to the ones observed in other virtual sensors.

Continue reading ‘A low-cost virtual sensor for underwater pH monitoring in coastal waters’

Carbon dioxide mineralization by electrode separation for quick carbon reduction and sequestration in acidified seawater

Aiming to sequestrate the excessive carbon dioxide and convert the acidified seawater, an improved method of carbon dioxide mineralization is developed based on electrode separation mechanism and extra oxygen-supplying technique. By electrode separation the neutralizations of the anodic acidity and the cathodic alkalinity, as well as the precipitation and the dissolution of calcium carbonate (CaCO3), are prevented. In addition, the extra-supplied oxygen prevents the evolution of hydrogen, which enhances the electric conductivity of the porous cathode and the deposition of CaCO3. A series of indoor physical experiments were conducted and the results show that the acidified seawater was successfully converted to alkaline in 72h. The speed of carbon mineralizing sequestration is significantly enhanced by supplying extra oxygen. The carbon dioxide mineralization speed increases with the immerse ratio of the aerator due to the more reacted oxygen and the less hydrogen evolution, which gives more porous space in the cathode for more conductive seawater and more deposition of CaCO3. The extra-supplied oxygen increases the CaCO3 -deposition by 100-214% under excessive atmospheric- CO2 conditions and 117-200% under normal atmospheric- CO2 conditions, respectively. This method has an application potential for quick conversion of locally acidified seawater in emergent circumstances.

Continue reading ‘Carbon dioxide mineralization by electrode separation for quick carbon reduction and sequestration in acidified seawater’

Re-evaluation of carbonic acid dissociation constants across conditions and the implications for ocean acidification

Highlights

  • pHt should be measured directly rather than calculated from TA and DIC.
  • Uncertainty in the constants contributes up to 680 m of uncertainty in the aragonite saturation horizon depth.
  • Calculated pHt at pCO2 between ~500–800 μatm are particularly poor, suggesting an underestimation of future ocean acidification in models.
  • Evaluation of an unidentified or organic component of TA was inconclusive.

Abstract

With the increasing threat of ocean acidification and the important role of the oceans in the global carbon cycle, highly precise, accurate, and intercomparable determination of inorganic carbon system parameters is required. Thermodynamic relationships enable the system to be fully constrained using a combination of direct measurements and calculations. However, calculations are complicated by many formulations for dissociation constants (over 120 possible combinations). To address these important issues of uncertainty and comparability, we evaluated the various combinations of constants and their (dis)agreement with direct measurements over a range of temperature (−1.9–40 °C), practical salinity (15–39) and pCO2 (150–1200 μatm). The results demonstrate that differences between the calculations and measurements are significantly larger than measurement uncertainties, meaning the oft-stated paradigm that one only needs to measure two parameters and the others can be calculated does not apply for climate quality ocean acidification research. The uncertainties in calculated pHt prevent climate quality pHt from being calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC) and should be directly measured instead. However, climate quality TA and DIC can often be calculated using measured pH and DIC or TA respectively. Calculations are notably biased at medium-to-high pCO2 values (~500–800 μatm) implying models underestimate future ocean acidification. Uncertainty in the dissociation constants leads to significant uncertainty in the depth of the aragonite saturation horizon (>500 m in the Southern Ocean) and must be considered when studying calcium carbonate cycling. Significant improvements in the precision of the thermodynamic constants are required to improve pHt calculations.

Continue reading ‘Re-evaluation of carbonic acid dissociation constants across conditions and the implications for ocean acidification’

Short-term variation of pH in seawaters around coastal areas of Japan: characteristics and forcings

The pH of coastal seawater varies based on several local forcings, such as water circulation, terrestrial inputs, and biological processes, and these forcings can change along with global climate change. Understanding the mechanism of pH variation in each coastal area is thus important for a realistic future projection that considers changes in these forcings. From 2020 to 2021, we performed parallel year-round observations of pH and related ocean parameters at five stations around the Japanese coast (Miyako Bay, Shizugawa Bay, Kashiwazaki Coast, Hinase Archipelago, and Ohno Strait) to understand the characteristics of short-term pH variations and their forcings. Annual variability (~1 standard deviation) of pH and aragonite saturation state (Ωara) were 0.05–0.09 and 0.25–0.29, respectively, for three areas with low anthropogenic loadings (Miyako Bay, Kashiwazaki Coast, and Shizugawa Bay), while it increased to 0.16–0.21 and 0.52–0.58, respectively, in two areas with medium anthropogenic loadings (Hinase Archipelago and Ohno Strait in Seto Inland Sea). Statistical assessment of temporal variability at various timescales revealed that most of the annual variabilities in both pH and Ωara were derived by short-term variation at a timescale of < 10 days, rather than seasonal-scale variation. Our analyses further illustrated that most of the short-term pH variation was caused by biological processes, while both thermodynamic and biological processes equally contributed to the temporal variation in Ωara. The observed results showed that short-term acidification with Ωara < 1.5 occurred occasionally in Miyako and Shizugawa Bays, while it occurred frequently in the Hinase Archipelago and Ohno Strait. Most of such short-term acidified events were related to short-term low-salinity events. Our analyses showed that the amplitude of short-term pH variation was linearly correlated with that of short-term salinity variation, and its regression coefficient at the time of high freshwater input was positively correlated with the nutrient concentration of the main river that flows into the coastal area.

Continue reading ‘Short-term variation of pH in seawaters around coastal areas of Japan: characteristics and forcings’

Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools

Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification, and likely already impacting marine ecosystems. In particular, there is concern that coastal, benthic calcifying organisms will be negatively affected by ocean acidification, a hypothesis largely supported by laboratory studies. The inter-relationships between carbonate chemistry and marine calcifying communities in situ are complex and natural mesocosms such as tidal pools can provide useful community-level insights. In this study, we manipulated the carbonate chemistry of intertidal pools to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC) at emersion. Adding CO2 at the start of the tidal emersion to simulate future acidification (+1500 μatm pCO2, target pH: 7.5) modified net production and calcification rates in the pools. By day, pools were fertilized by the increased CO2 (+20 % increase in NCP, from 10 to 12 mmol O2 m−2 hr−1), while there was no measurable impact on NCC. During the night, pools experienced net community dissolution (NCC < 0), even in present-day conditions, when waters were supersaturated with regards to aragonite. Adding CO2 in the pools increased nocturnal dissolution rates by 40 % (from −0.7 to −1.0 mmol CaCO3 m−2 hr−1) with no consistent impact on night community respiration. Our results suggest that ocean acidification is likely to alter temperate intertidal community metabolism on sub-daily timescales, enhancing both diurnal community production and nocturnal calcium carbonate dissolution.

Continue reading ‘Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools’

Atmospheric carbon dioxide and changing ocean chemistry

They call it life, we call it pollution” is an infamous quote which ignores many facts about why carbon dioxide (CO2) poses a significant problem for the ocean. But before we get to this, let’s start at the beginning. All organisms on Earth require a particular set of elements for growth. In the case of plants, these elements are needed to synthesise organic matter in a process called primary production via photosynthesis, and in the case of animals, these elements are directly assimilated by either consuming plant material or by preying on other animals. In this respect, one of the key elements is carbon. Being the molecular backbone for a number of vital organic compounds such as sugars, proteins and nucleic acids (containing genetic information), carbon can be considered as the building block of life.

Continue reading ‘Atmospheric carbon dioxide and changing ocean chemistry’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: