Posts Tagged 'chemistry'

Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996‐2015

The extended multiple linear regression (eMLR) technique is used to determine changes in anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four cruises between 1996 and 2015. The results show a significant increase in basin‐wide anthropogenic carbon storage in the Nansen Basin (0.44‐0.73 ± 0.14 mol C m−2 yr−1) and the Amundsen Basin (0.63‐1.04 ± 0.09 mol C m−2 yr−1). Over the last two decades, inferred changes in ocean acidification (0.020‐0.055 pH units) and calcium carbonate desaturation (0.05‐0.18 units) are pronounced and rapid. These results, together with results from carbonate‐dynamic box model simulations and 129I tracer distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current along the topographic boundaries in the Eurasian Basin.

Continue reading ‘Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996‐2015’

The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks

The geological calcium cycle is linked to the geological carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium (Ca) isotope ratios (44Ca/40Ca, expressed as δ44/40Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. However, the δ44/40Ca of carbonate rocks is influenced not only by the δ44/40Ca of seawater but also by diagenetic processes and fractionation associated with carbonate precipitation. In this study, we investigate the dominant controls on carbonate δ44/40Ca in Upper Permian to Middle Triassic limestones (ca. 253 to 244 Ma) from south China and Turkey. This time interval is ideal for assessing controls on Ca isotope ratios in carbonate rocks because fluctuations in seawater δ44/40Ca may be expected based on several large carbon isotope (δ13C) excursions ranging from − 2 to + 8‰. Parallel negative δ13C and δ44/40Ca excursions were previously identified across the end-Permian extinction horizon. Here, we find a second negative excursion in δ44/40Ca of ~ 0.2‰ within Lower Triassic strata in both south China and Turkey; however, this excursion is not synchronous between regions and thus cannot be interpreted to reflect secular change in the δ44/40Ca of global seawater. Additionally, δ44/40Ca values from Turkey are consistently 0.3‰ lower than contemporaneous samples from south China, providing further support for local or regional influences. By measuring δ44/40Ca and Sr concentrations ([Sr]) in two stratigraphic sections located at opposite margins of the Paleo-Tethys Ocean, we can determine whether the data represent global conditions (e.g., secular variations in the δ44/40Ca of seawater) versus local controls (e.g., original mineralogy or diagenetic alteration). The [Sr] and δ44/40Ca data from this study are best described statistically by a log-linear correlation that also exists in many previously published datasets of various geological ages. Using a model of early marine diagenetic water-rock interaction, we illustrate that this general correlation can be explained by the chemical evolution of bulk carbonate sediment samples with different initial mineralogical compositions that subsequently underwent recrystallization. Although early diagenetic resetting and carbonate mineralogy strongly influence the carbonate δ44/40Ca values, the relationship between [Sr] and δ44/40Ca holds potential for reconstructing first-order secular changes in seawater δ44/40Ca composition.

Continue reading ‘The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks’

Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans

Human-induced changes to carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ~64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ13CDIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net community production, calcium carbonate precipitation and CO2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

Continue reading ‘Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans’

Carbonate system parameters of an algal-dominated reef along West Maui (update)

Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.

Continue reading ‘Carbonate system parameters of an algal-dominated reef along West Maui (update)’

Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development

Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May–June 2013), with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2). These results were compared with published data from the 2009 upwelling season. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive intra- and interseasonal changes. Lowest pH (7.8) and highest pCO2 (658.3 µatm) values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH  =  7.8, pCO2  =  643.5 µatm), unveiling that natural acidification also occurs sporadically in the non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During the non-upwelling season, the aragonite saturation state (Ωa) rises to values of  >  3.3 and during the upwelling season falls below 2.5. The Ωa threshold values for coral growth were derived from the correlation between measured Ωa and coral linear extension rates which were obtained from the literature and suggest that future ocean acidification will threaten the continued growth of reefs in Bahía Culebra. These data contribute to building a better understanding of the carbonate system dynamics and coral reefs’ key response (e.g., coral growth) to natural low-pH conditions, in upwelling areas in the eastern tropical Pacific and beyond. Continue reading ‘Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development’

The spatial and temporal variability of air-sea CO2 fluxes and the effect of net coral reef calcification in the Indonesian Seas: a numerical sensitivity study

A numerical model system was developed and applied to simulate air-sea fluxes of CO2 and coral reef calcification in the Indonesian Seas and adjacent ocean basin for the period 1960–2014 on a fine resolution grid (ca. 11 km) in order to study their response to rising sea water temperatures and CO2 concentrations in the atmosphere. Results were analyzed for different sub-regions on the Sunda Shelf (Gulf of Thailand, Malacca Strait, Java Sea) and show realistic and different levels, signs and pronounced temporal variability in air-sea CO2 flux. The Gulf of Thailand changes from an atmospheric CO2 sink during the boreal winter to a CO2 source in summer due to higher water temperatures, while other sub-regions as well as the entire averaged Sunda Shelf act as a continuous source of CO2 for the atmosphere. However, increasing atmospheric CO2 concentrations weakened this source function during the simulation period. In 2007, the model simulations showed even a first flux inversion, in course of which the Java Sea took up CO2. The simulated trends suggest that the entire Sunda Shelf will turn into a permanent sink for atmospheric CO2 within the next 30–35 years if current trends remain constant. Considering the period between 2010 and 2014, coral reef calcification enhanced the average CO2 emission of the Sunda Shelf by more than 10% from 15 to 17 Tg C yr−1 due to lowering the pH and increasing the partial pressure of CO2 in surface water. During the entire period of simulation, net reef calcification decreased although increasing seawater temperature mitigated effects of reduced CO2 emission and the resulting decrease of the pH values on reef calcification. Our realistic simulation results already without consideration of any biological processes suggest that biological processes taking up and releasing CO2 are currently well balanced in these tropical regions. However, the counteracting effects of climate change on the reef calcification, on other biological processes and the carbonate system need to be investigated in more detail. SST increased by about 0.6°C during the last 55 years, while SSS decreased by about 0.7 psu.

Continue reading ‘The spatial and temporal variability of air-sea CO2 fluxes and the effect of net coral reef calcification in the Indonesian Seas: a numerical sensitivity study’

An assessment of direct dissolved inorganic carbon injection to the coastal region: a model result

The amount of carbon dioxide (CO2) in the atmosphere has increased in the past 60 years and the technology of carbon capture and storage (CCS) has recently been extensively studied. One of the strategies of CCS is to directly inject a high dissolved inorganic carbon (DIC) concentration (or high partial pressure of carbon dioxide, pCO2) solution into the ocean. However, the carbonate dynamics and air-sea gas exchange are usually neglected in a CCS strategy. This study assesses the effect of a DIC-solution injection by using a simple two end-member model to simulate the variation of pH, DIC, total alkalinity (TA) and pCO2 between the river and sea mixing process for the Danshuei River estuary and Hoping River in Taiwan. We observed that the DIC-solution injection can contribute to ocean acidification and can also lead the pCO2 value to change from being undersaturated to oversaturated (with respect to the atmospheric CO2 level). Our model result also showed that the maximum Revelle factors (Δ[CO2]/[CO2])/(Δ[DIC]/[DIC]) among varied pH values (6–9) and DIC concentrations (0.5–3.5 mmol kg−1) were between pH 8.3 and 8.5 in fresh water and were between 7.3 and 7.5 in waters with a salinity of 35, reflecting the changing efficiency of dissolving CO2 gas into the DIC solution and the varying stability of this desired DIC solution. Finally, we suggest this uncoupled Revelle factor between fresh and salty water should be considered in the (anthropogenic) carbonate chemical weathering on a decade to century scale.

Continue reading ‘An assessment of direct dissolved inorganic carbon injection to the coastal region: a model result’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,076,531 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book