Posts Tagged 'chemistry'

Temporal variability of the carbonate system and air-sea CO2 exchanges in a Mediterranean human-impacted coastal site

Highlights

• First study of the variability of the carbonate system in the Bay of Marseille.

• The Bay of Marseille acts as a sink of atmospheric CO2 at the annual scale.

• Temperature is the main contributor to the air-sea CO2 exchange variability.

Abstract

The temporal evolution of the carbonate system and air-sea CO2 fluxes are investigated for the first time in the Bay of Marseille (BoM – North Western Mediterranean Sea), a coastal system affected by anthropogenic forcing from the Marseille metropolis. This study presents a two-year time-series (between 2016 and 2018) of fortnightly measurements of AT, CT, pH and derived seawater carbonate parameters at the SOLEMIO station. On this land-ocean boundary area, no linear relationship between AT and salinity in surface water is observed due to sporadic intrusions of freshwater coming from the Rhone River. On an annual scale, the BoM acts as a sink of atmospheric CO2. This result is consistent with previous studies in the Mediterranean Sea. Mean daily air-sea CO2 fluxes range between −0.8 mmol C.m−2.d−1 and -2.2 mmol C.m−2.d−1 during the study period, depending on the atmospheric CO2 sampling site used for the estimates. This study shows that the pCO2 in the surface water is predominantly driven by temperature changes, even if partially counterbalanced by biological activity. Therefore, temperature is the main contributor to the air-sea CO2 exchange variability. Mean daily Net Ecosystem Production (NEP) estimates from CT budget shows an ecosystem in which autotrophic processes are associated with a sink of CO2. Despite some negative NEP values, the observed air-sea CO2 fluxes in the BoM are negative, suggesting that thermodynamic processes are the predominant drivers for these fluxes.

Continue reading ‘Temporal variability of the carbonate system and air-sea CO2 exchanges in a Mediterranean human-impacted coastal site’

Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)

Rising concentrations of atmospheric carbon dioxide are causing ocean acidification and will influence marine processes and trace metal biogeochemistry. In June 2012, in the Raunefjord (Bergen, Norway), we performed a mesocosm experiment, comprised of a fully factorial design of ambient and elevated pCO2 and/or an addition of the siderophore desferrioxamine B (DFB). In addition, the macronutrient concentrations were manipulated to enhance a bloom of the coccolithophore Emiliania huxleyi. We report the changes in particulate trace metal concentrations during this experiment. Our results show that particulate Ti and Fe were dominated by lithogenic material, while particulate Cu, Co, Mn, Zn, Mo and Cd had a strong biogenic component. Furthermore, significant correlations were found between particulate concentrations of Cu, Co, Zn, Cd, Mn, Mo and P in seawater and phytoplankton biomass (µgC L−1), supporting a significant influence of the bloom in the distribution of these particulate elements. The concentrations of these biogenic metals in the E. huxleyi bloom were ranked as follows: Zn < Cu ≈ Mn < Mo < Co < Cd. Changes in CO2 affected total particulate concentrations and biogenic metal ratios (Me : P) for some metals, while the addition of DFB only significantly affected the concentrations of some particulate metals (mol L−1). Variations in CO2 had the most clear and significant effect on particulate Fe concentrations, decreasing its concentration under high CO2. Indeed, high CO2 and/or DFB promoted the dissolution of particulate Fe, and the presence of this siderophore helped in maintaining high dissolved Fe. This shift between particulate and dissolved Fe concentrations in the presence of DFB, promoted a massive bloom of E. huxleyi in the treatments with ambient CO2. Furthermore, high CO2 decreased the Me : P ratios of Co, Zn and Mn while increasing the Cu : P ratios. These findings support theoretical predictions that the molar ratios of metal to phosphorous (Me : P ratios) of metals whose seawater dissolved speciation is dominated by free ions (e.g., Co, Zn and Mn) will likely decrease or stay constant under ocean acidification. In contrast, high CO2 is predicted to shift the speciation of dissolved metals associated with carbonates such as Cu, increasing their bioavailability and resulting in higher Me : P ratios.

Continue reading ‘Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)’

Autonomous, ISFET-based total alkalinity and pH measurements on a barrier reef of Kāneʻohe Bay

Here we present first of its kind high frequency Total Alkalinity (AT) and pH data from a single solid-state autonomous sensor collected during a 6-day deployment at a barrier reef in Kāneʻohe Bay on the CRIMP-2 buoy. This dual parameter sensor is capable of rapid (<60 s), near simultaneous measurement of the preferred seawater carbonate system parameters, pH and AT without requiring any external reagents or moving parts inherent to the sensor. Its solid state construction, low power consumption, and low titrated volume (nanoliters) requirement make this sensor ideal for in situ monitoring of the aqueous carbon dioxide system. Through signal averaging, we estimate the pH-AT sensor is capable of achieving 2-10 μmol kg-1 precision in AT and 0.005 for pH. The CRIMP-2 site in Hawaiʻi provided an excellent means of validation of the prototype pH-AT sensor due to the extensive observations routinely collected at this site and large daily fluctuations in AT (~116 μmol kg-1) driven primarily by high calcification during the day and occasional CaCO3 mineral dissolution at night. High frequency sampling by the pH-AT sensor reveals details in the diurnal cycle that are nearly impossible to observe by discrete sampling. Greater temporal resolution of the aqueous carbon dioxide system is essential for differentiating various drivers of coral reef health and the response to external influences such as ocean warming and acidification.

Continue reading ‘Autonomous, ISFET-based total alkalinity and pH measurements on a barrier reef of Kāneʻohe Bay’

Origin and accumulation of an anthropogenic CO2 and 13C Suess effect in the Arctic Ocean

We determined the impact of anthropogenic CO2 (Cant) accumulation on the δ13C of dissolved inorganic carbon (DIC) in the Arctic Ocean (i.e., the 13C Suess effect) based on δ13C measurements during a GEOTRACES cruise in 2015. The δ13C decrease was estimated from the amount of Cant change derived by the transit time distribution (TTD) approach and the ratio of the anthropogenic δ13C/DIC change (RC). A significant Cant increase (up to 45 μmol kg−1) and δ13C decrease (up to −0.9‰) extends to ~2000 m in the Canada and Makarov Basin. We find distinctly different RC values for the intermediate water (300–2000 m) and upper halocline water (<200 m) of −0.020 and −0.012‰ (μmol kg−1)−1, respectively, which identifies two sources of Cant accumulation from North Atlantic and North Pacific. Furthermore, estimated RC for intermediate waters is the same as the RC observed in the Greenland Sea and the rate of anthropogenic DIC increase estimated for intermediate waters at 0.9 μmol kg−1 yr−1 is identical to the estimated rate in the Iceland Sea. These observations indicate that the high rate of Cant accumulation and δ13C decrease in the Arctic Ocean is primarily a result of the input of Cant, via ventilation of intermediate waters, from the Nordic Sea rather than local anthropogenic CO2 uptake within the Arctic Basin. We determine the preindustrial δ13C (δ13CPI) distributions and find distinct δ13CPI signatures of the intermediate and upper halocline waters that reflect the difference in δ13CPI–PO4 relationship of Atlantic and Pacific source water.

Continue reading ‘Origin and accumulation of an anthropogenic CO2 and 13C Suess effect in the Arctic Ocean’

The ebb and flow of protons: a novel approach for the assessment of estuarine and coastal acidification

Highlights

• Proton production and transport are responsible for estuarine acidification.

• Proton fluxes (mmol/h) were quantified between an estuary and bay.

• Fluxes calculated using high frequency [H+] and tidal discharge measurements.

• Non-tidal proton fluxes are directed upstream with seasonal changes in magnitude.

• Delaware Bay contributes to the acidification of the Murderkill Estuary.

Abstract

The acidification of coastal waters is a consequence of both natural (e.g., aerobic respiration) and anthropogenic (e.g., combustion of fossil fuels, eutrophication) processes and can negatively impact the surrounding ecosystems. Until recently it was difficult to accurately measure estuarine pH, and thus total proton concentrations (), when salinities vary significantly and rapidly as a consequence of tidal mixing. Proton production and transport are ultimately responsible for acidification in coastal environments, and the uncertainty surrounding proton concentrations measured at high frequency has hindered our understanding of the net impact of global and local processes on estuarine acidification. Here, we quantify the rate of proton exchange between an estuary and bay to assess the extent of acidification by using the novel combination of high frequency pHT (total hydrogen ion concentration scale) data from an autonomous SeapHOx™ sensor and continuous tidal discharge measurements made between the eutrophic Murderkill Estuary and Delaware Bay. Proton fluxes reverse with each tide. However, the net non-tidal proton fluxes are directed upstream and display seasonal changes in magnitude. Our results indicate that Delaware Bay contributes to the acidification of the Murderkill Estuary, yet the degree of acidification is reduced in the summer. Using proton concentrations measured at high temporal resolution to calculate proton fluxes provides a new and relatively simple approach for quantifying the acidification of dynamic nearshore environments.

Continue reading ‘The ebb and flow of protons: a novel approach for the assessment of estuarine and coastal acidification’

Processes driving global interior ocean pH distribution

Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have analyzed these processes and their impacts on ocean carbonate chemistry, none have attempted to quantify their impacts on interior ocean pH globally. Here we evaluate how anthropogenic changes and natural processes collectively act on ocean pH, and how these processes set the vulnerability of regions to future changes in ocean acidification. We use the mapped data product from the Global Ocean Data Analysis Project version 2, a novel method to estimate preformed total alkalinity based on a combination of a total matrix intercomparison and locally interpolated regressions, and a comprehensive uncertainty analysis. We find that the largest contribution to the interior ocean pH gradient comes from organic matter remineralization, with CaCO3 cycling being the second most important process. The estimates of the impact of anthropogenic CO2 changes on pH reaffirm the large and well‐understood anthropogenic impact on pH in the surface ocean, and put it in the context of the natural pH gradient in the interior ocean. We also show that in the depth layer 500–1,500 m natural processes enhance ocean acidification by on average 28 ± 15%, but with large regional gradients.

Continue reading ‘Processes driving global interior ocean pH distribution’

A unique temperate rocky coastal hydrothermal vent system (Whakaari–White Island, Bay of Plenty, New Zealand): constraints for ocean acidification studies

In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a preliminary investigation into the water chemistry and biology of cool temperate CO2 vents near Whakaari–White Island, New Zealand. Water samples were collected inside three vent shafts, within vents at a distance of 2 m from the shaft and at control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination of methods and approaches to attribute observations to specific drivers. The Whakaari vents represent a unique ecosystem with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a model of ‘future oceans’.

Continue reading ‘A unique temperate rocky coastal hydrothermal vent system (Whakaari–White Island, Bay of Plenty, New Zealand): constraints for ocean acidification studies’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,325,808 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book