Posts Tagged 'phanerogams'

Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth

Highlights

• Field experiment testing two substrate treatments as OA adaptation strategies
• Clam growth increased in absence of macrophytes, regardless of shell hash treatment.
• Neither treatment improved clam recruitment or survival.
• pH in water column was higher during the day and outside eelgrass beds.
• Added shell hash improved carbonate chemistry in sediment pore-water.

Abstract

Adverse habitat conditions associated with reduced seawater pH often, but not always, negatively affect bivalves in early life history phases. Improving our understanding of how habitat-specific parameters affect clam recruitment, survival, and growth could assist natural resource managers and researchers in developing appropriate adaptation strategies for increasingly acidified nearshore ecosystems. Two proposed adaptation strategies, the presence of macrophytes and addition of shell hash, have the potential to raise local seawater pH and aragonite saturation state and, therefore, to improve conditions for shell-forming organisms. This field study examined the effects of these two substrate treatments on biological and geochemical response variables. Specifically, we measured (1) recruitment, survival, and growth of juvenile clams (Ruditapes philippinarum) and (2) local water chemistry at Fidalgo Bay and Skokomish Delta, Washington, USA, in response to experimental manipulations. Results showed no effect of macrophyte or shell hash treatment on recruitment or survival of R. philippinarum. Contrary to expectations, clam growth was significantly greater in the absence of macrophytes, regardless of the presence or absence of shell hash. Water column pH was higher outside the macrophyte bed than inside at Skokomish Delta and higher during the day than at night at Fidalgo Bay. Additionally, pore-water pH and aragonite saturation state were higher in the absence of macrophytes and the presence of shell. Based on these results, we propose that with increasingly corrosive conditions shell hash may help provide chemical refugia under future ocean conditions. Thus, we suggest adaptation strategies target the use of shell hash and avoidance of macrophytes to improve carbonate chemistry conditions and promote clam recruitment, survival, and growth.

Continue reading ‘Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth’

Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow

Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global‐scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to better understand the potential for a temperate seagrass meadow to locally mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales Bay, an inlet on the coast of California, USA which supports a major oyster farming industry. We conducted a series of month‐long model simulations to characterize processes that occur during summer and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the pH of the primary source waters into the meadow, although we did find occasional periods (hours) when seagrass metabolism may modify the pH by up to ±0.2 units. Tidal phasing relative to the diel cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering occurs during periods of the year with midday low tides. Our model results suggest that seagrass metabolism in Tomales Bay would not provide long‐term ocean acidification mitigation. However, we emphasize that our model results may not hold in meadows where assumptions about depth‐averaged net production and seawater residence time within the seagrass meadow differ from our model assumptions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and services that will be increasingly important as humans increasingly affect coastal ecosystems.

Continue reading ‘Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow’

Global warming and ocean acidification: effects on Australian seagrass ecosystems

As concentrations of atmospheric CO2 increase, mean temperatures across the globe rise, the carbon system equilibrium in the ocean shifts, and pH is reduced in a process termed Ocean Acidification (OA). These changes can dramatically alter seagrass meadows as both temperature and pH fundamentally influence biochemistry and physiology of plants. Seagrass responses to climate change are species-specific and dependent on interactions with other factors such as light intensity, nutrient availability and competition. The majority of seagrasses appear limited by the availability of dissolved inorganic carbon at current ocean pH, suggesting that rates of photosynthesis and growth are likely to increase with OA. Short- and intermediate term laboratory experiments have shown an increase in photosynthetic rates to increased pCO2. Longer-term studies (>1 year) indicate enhanced shoot proliferation resulting in meadows with high shoot density. Studies utilizing natural gradients in pCO2 that exist near shallow volcanic CO2 vents have shown that, overall, seagrasses appear to benefit from OA. Seagrasses photosynthesize across a range in temperatures, but rapidly decline above thermal optima. Respiration rates increase with warming at a faster rate than photosynthesis and reduces the overall photosynthesis-to-respiration ratio, and thus growth. While seagrasses can recover from moderate temperature stress, extreme temperatures result in mortality. Future changes in seagrass species distributions are predicted as sensitive species shift poleward. Foundation species, like seagrasses, have a large influence on their environment and their loss can significantly impact the functioning of the whole ecosystem. Despite a recent increase in climate-change research, we lack an understanding of how seagrass meadows are going to respond to the combined pressures of warming and OA. It is particularly difficult to predict longer-term responses and possible adaptation, and efforts should be focused in this area to determine how we can manage seagrasses to maximize resilience to climate change.

Continue reading ‘Global warming and ocean acidification: effects on Australian seagrass ecosystems’

The ability of Phyllospadix spp., a pair of intertidal foundation species, to maintain biodiversity and ameliorate CO2 stress in rocky shore tidepools

Ocean acidification (OA) is often demonstrated to have negative effects on marine organisms, but less is known about whether marine organisms can mediate OA effects. I examined relationships between surfgrass (Phyllospadix spp.), a foundation species and tidepool biodiversity, and its ability to mediate fluctuations in pH and dissolved oxygen (OA; DO) which are stressors in tidepools. I surveyed tidepools in northern California, where I quantified biodiversity, pH, and DO, and related those variables to surfgrass abundance. Laboratory and field experiments manipulating CO2 and surfgrass presence were done to examine surfgrass effects on day/night pH and DO fluctuations in simulated and natural tidepools. Intermediate surfgrass abundance was associated with the greatest tidepool biodiversity in the field, suggesting amelioration of abiotic conditions up to intermediate abundances, but exacerbated OA and DO stress at higher abundances. In the lab, diel pH and DO fluctuations were highest in simulated tidepools that contained surfgrass compared to pools without surfgrass, indicating the role of surfgrass photosynthesis and respiration in modulating seawater chemistry. In the field, tidepool pH and DO were higher in the day and lower at night, consistent with results from the laboratory experiment. Interestingly, day/night fluctuations in pH were highest in tidepools with intermediate rather than high surfgrass abundance, suggesting the intriguing possibility that surfgrass modulates tidepool pH both directly via metabolic activity but also indirectly by facilitating macrophyte diversity at intermediate abundances. Taken together, these results suggest that surfgrass may act as a foundation species in tidepools, by mediating tidepool pH and influencing species diversity, which has important implications for the fate of these communities in the face of rapidly-changing global climates.

Continue reading ‘The ability of Phyllospadix spp., a pair of intertidal foundation species, to maintain biodiversity and ameliorate CO2 stress in rocky shore tidepools’

The bloom-forming macroalgae, Ulva, outcompetes the seagrass, Zostera marina, under high CO2 conditions

This study reports on experiments performed with a Northwest Atlantic species of the macroalgae, Ulva, and the seagrass, Zostera marina, grown under ambient and elevated levels of pCO2, and subjected to competition with each other. When grown individually, elevated pCO2 significantly increased growth rates and productivity of Ulva and Zostera, respectively, beyond control treatments (by threefold and 27%, respectively). For both primary producers, significant declines in tissue δ13C signatures suggested that increased growth and productivity were associated with a shift from use of HCO3 toward CO2 use. When grown under higher pCO2, Zostera experienced significant increases in leaf and rhizome carbon content as well as significant increases in leaf carbon-to-nitrogen ratios, while sediments within which high CO2 Zostera were grown had a significantly higher organic carbon content. When grown in the presence of Ulva; however, above- and below-ground productivity and tissue nitrogen content of Zostera were significantly lower, revealing an antagonistic interaction between elevated CO2 and the presence of Ulva. The presence of Zostera had no significant effect on the growth of Ulva. Collectively, this study demonstrates that while Ulva and Zostera can each individually benefit from elevated pCO2 levels, the ability of Ulva to grow more rapidly and inhibit seagrass productivity under elevated pCO2, coupled with accumulation of organic C in sediments, may offset the potential benefits for Zostera within high CO2 environments.

Continue reading ‘The bloom-forming macroalgae, Ulva, outcompetes the seagrass, Zostera marina, under high CO2 conditions’

Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis

Highlights

• Higher pCO2 reduces growth of Pyropia yezoensis.
• Higher pCO2 induces synthesis of phycobiliprotein and flavor amino acids.
• Higher nitrate alleviates the negative effect of ocean acidification on growth.
• Higher nitrate and pCO2 synergistically stimulate phycobiliprotein synthesis.
• Higher nitrate and higher pCO2 synergistically stimulate amino acid synthesis.

Abstract

Pyropia yezoensis is an important marine crop in the world. We cultured it under two levels of partial pressure of carbon dioxide (pCO2) (408 (LC), 998 (HC) μatm) and nitrate (30 (LN) and 500 (HN) μmol L-1) to investigate the effect of ocean acidification on its growth and food quality under changing nitrogen supply. HC decreased growth rate of P. yezoensis under LN but did not affect it under HN. Phycoerythrin and phycocyanin were enhanced by HC, particularly at HN, which contributed to the darker color. HC stimulated the synthesis of sweat amino acids regardless of nitrate condition and umami amino acid only under LN. HN increased the content of umami amino acids regardless of pCO2 condition and sweet amino acids only under LC. Our findings indicate that future ocean acidification may reduce biomass yield of P. yezoensis but increase its color and flavor, which was regulated by nitrate availability.

Continue reading ‘Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis’

Does nutrient availability regulate seagrass response to elevated CO2?

Future increases in oceanic carbon dioxide concentrations (CO2(aq)) may provide a benefit to submerged plants by alleviating photosynthetic carbon limitation. However, other environmental factors (for example, nutrient availability) may alter how seagrasses respond to CO2(aq) by regulating the supply of additional resources required to support growth. Thus, questions remain in regard to how other factors influence CO2(aq) effects on submerged vegetation. This study factorially manipulated CO2(aq) and nutrient availability, in situ, within a subtropical seagrass bed for 350 days, and examined treatment effects on leaf productivity, shoot density, above- and belowground biomass, nutrient content, carbohydrate storage, and sediment organic carbon (Corg). Clear, open-top chambers were used to replicate CO2(aq) forecasts for the year 2100, whereas nutrient availability was manipulated via sediment amendments of nitrogen (N) and phosphorus (P) fertilizer. We provide modest evidence of a CO2 effect, which increased seagrass aboveground biomass. CO2(aq) enrichment had no effect on nutrient content, carbohydrate storage, or sediment Corg content. Nutrient addition increased leaf productivity and leaf N content, however did not alter above- or belowground biomass, shoot density, carbohydrate storage, or Corg content. Treatment interactions were not significant, and thus NP availability did not influence seagrass responses to elevated CO2(aq). This study demonstrates that long-term carbon enrichment may alter the structure of shallow seagrass meadows, even in relatively nutrient-poor, oligotrophic systems.

Continue reading ‘Does nutrient availability regulate seagrass response to elevated CO2?’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,905 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book