Posts Tagged 'phanerogams'

Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature

As CO2 levels in Earth’s atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and nitrogen assimilation metabolites while suppressing the abundance of stress-related metabolites. Overall metabolome differences between populations suggest that some eelgrass phenotypes may be better suited than others to cope with an increasingly hot and sour sea. Our results suggest that seagrass populations will respond variably, but overall positively, to increasing CO2 concentrations, generating negative feedbacks to climate change.

Continue reading ‘Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature’

The challenges of detecting and attributing ocean acidification impacts on marine ecosystems

A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.

Continue reading ‘The challenges of detecting and attributing ocean acidification impacts on marine ecosystems’

Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea Nodosa: evidence from volcanic seeps

We used population reconstruction techniques to assess for the first time the population dynamics of a seagrass, Cymodocea nodosa, exposed to long-term elevated CO2 near three volcanic seeps and compare them with reference sites away from the seeps. Under high CO2, the density of shoots and of individuals (apical shoots), and the vertical and horizontal elongation and production rates, were higher. Nitrogen effects on rhizome elongation and production rates and on biomass, were stronger than CO2 as these were highest at the location where the availability of nitrogen was highest. At the seep where the availability of CO2 was highest and nitrogen lowest, density of shoots and individuals were highest, probably due to CO2 effects on shoot differentiation and induced reproductive output, respectively. In all three seeps there was higher short- and long-term recruitment and growth rates around zero, indicating that elevated CO2 increases the turnover of C. nodosa shoots.

Continue reading ‘Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea Nodosa: evidence from volcanic seeps’

A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment

Humans are placing more strain on the world’s oceans than ever before. Furthermore, marine ecosystems are seldom subjected to single stressors, rather they are frequently exposed to multiple, concurrent stressors. When the combined effect of these stressors is calculated and mapped through cumulative impact assessments, it is often assumed that the effects are additive. However, there is increasing evidence that different combinations of stressors can have non-additive impacts, potentially leading to synergistic and unpredictable impacts on ecosystems. Accurately predicting how stressors interact is important in conservation, as removal of certain stressors could provide a greater benefit, or be more detrimental than would be predicted by an additive model. Here, we conduct a meta-analysis to assess the prevalence of additive, synergistic, and antagonistic stressor interaction effects using seagrasses as case study ecosystems. We found that additive interactions were the most commonly reported in seagrass studies. Synergistic and antagonistic interactions were also common, but there was no clear way of predicting where these non-additive interactions occurred. More studies which synthesise the results of stressor interactions are needed to be able to generalise interactions across ecosystem types, which can then be used to improve models for assessing cumulative impacts.

Continue reading ‘A meta-analysis of multiple stressors on seagrasses in the context of marine spatial cumulative impacts assessment’

Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system

Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.

Continue reading ‘Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system’

Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy)

Morphological features of the seagrass Posidonia oceanica (L.) Delile and its epiphyte community were studied in three acidified stations located in two CO2 vents systems and one control station under normal pH conditions off the island of Ischia (Italy) to highlight the possible effects of ocean acidification. Plant phenology was analyzed every two months for a year cycle (June 2016–April 2017), while epiphytes were studied in the period of highest development of both the leaf canopy and the epiphytic community (June, August, and October 2016). The shoot density of Posidonia beds in the acidified stations of the studied sites was significantly higher than that in the control area. Significant differences in the mean leaf length according to the pH condition, month, and the interaction of these two factors were observed (PERMANOVA); the mean leaf width differed also among pH conditions and months. We recorded lower leaf lengths and widths in the acidified stations in all the considered months, compared to those in the control station. These differences are consistent with the higher impact of grazing by the herbivorous fish Sarpa salpa observed on the leaves in the acidified stations. However, the overall leaf surface available for epiphytes was similar among stations because of the higher shoot density under ocean acidification conditions. Overall, the composition and structure of the epiphytic community on the Posidonia leaves showed significant differences in relation to acidification: in both acidified sites, all the calcareous forms, both encrusting red algae (Corallinales) and animals (bryozoans, foraminiferans, and spirorbids), disappeared or were strongly reduced, in favor of encrusting or erect fleshy algae, and non-calcifying invertebrates (hydrozoans, tunicates) which dominated the assemblage. Coralline algae are early species in the epiphytic colonization of P. oceanica and therefore their absence can further modify the pattern of leaf colonization by other species. Therefore, the changes found in the epiphyte community in low pH areas could have potential cascading effects on the seagrass trophic network and the functioning of the system.

Continue reading ‘Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy)’

Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain

Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans.

Continue reading ‘Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain’

Does ocean acidification benefit seagrasses in a mesohaline environment? a mesocosm experiment in the northern Gulf of Mexico

Ocean acidification is thought to benefit seagrasses because of increased carbon dioxide (CO2) availability for photosynthesis. However, in order to truly assess ecological responses, effects of ocean acidification need to be investigated in a variety of coastal environments. We tested the hypothesis that ocean acidification would benefit seagrasses in the northern Gulf of Mexico, where the seagrasses Halodule wrightii and Ruppia maritima coexist in a fluctuating environment. To evaluate if benefits of ocean acidification could alter seagrass bed composition, cores of H. wrightii and R. maritima were placed alone or in combination into aquaria and maintained in an outdoor mesocosm. Half of the aquaria were exposed to either ambient (mean pH of 8.1 ± 0.04 SD on total scale) or high CO2 (mean pH 7.7 ± 0.05 SD on total scale) conditions. After 54 days of experimental exposure, the δ13C values were significantly lower in seagrass tissue in the high CO2 condition. This integration of a different carbon source (either: preferential use of CO2, gas from cylinder, or both) indicates that plants were not solely relying on stored energy reserves for growth. Yet, after 41 to 54 days, seagrass morphology, biomass, photo-physiology, metabolism, and carbon and nitrogen content in the high CO2 condition did not differ from those at ambient. There was also no indication of differences in traits between the homospecific or heterospecific beds. Findings support two plausible conclusions: (1) these seagrasses rely heavily on bicarbonate use and growth will not be stimulated by near future acidification conditions or (2) the mesohaline environment limited the beneficial impacts of increased CO2 availability.

Continue reading ‘Does ocean acidification benefit seagrasses in a mesohaline environment? a mesocosm experiment in the northern Gulf of Mexico’

Global environmental changes negatively impact temperate seagrass ecosystems

The oceans are increasingly affected by multiple aspects of global change, with substantial impacts on ecosystem functioning and food-web dynamics. While the effects of single factors have been extensively studied, it has become increasingly evident that there is a need to unravel the complexities related to a multiple stressor environment. In a mesocosm experimental study, we exposed a simplified, multi-trophic seagrass ecosystem (composed of seagrass, two shrimp species, and two intermediate predatory fish species) to three global change factors consisting of simulated storm events (Storms), heat shocks (Heat), and ocean acidification (OA), and the combination of all three factors (All). The most striking result indicated that when all factors were combined, there was a negative influence at all trophic levels, while the treatments with individual factors revealed species-specific response patterns. It appeared, however, that single factors may drive the multi-stressor response. All single factors (i.e., Storms, Heat, and OA) had either negative, neutral, or positive effects on fish and shrimp, whereas no effect was recorded for any single stressor on seagrass plants. The findings demonstrate that when several global change factors appear simultaneously, they can have deleterious impacts on seagrass ecosystems, and that the nature of factors and food-web composition may determine the sensitivity level of the system. In a global change scenario, this may have serious and applicable implications for the future of temperate seagrass ecosystems.

Continue reading ‘Global environmental changes negatively impact temperate seagrass ecosystems’

Carbon budgets in coastal estuaries of the northwestern Gulf of Mexico under hydrologic control

Globally, estuaries are considered as important CO2 sources to the atmosphere. However, previous studies on estuarine carbon fluxes have mostly focused on temperate and high latitude regions, leaving a significant knowledge gap in subtropical and tropical estuaries. In addition, the drivers that cause large spatiotemporal variability in estuarine inorganic and organic carbon fluxes remain insufficiently explored. In this dissertation, carbon budgets in four northwestern Gulf of Mexico (nwGOM) estuaries along a climatic gradient, Lavaca-Colorado Estuary (LCE), Guadalupe Estuary (GE), Mission-Aransas Estuary (MAE), and Nueces Estuary (NE), were evaluated. All these estuaries, with annual CO2 emission ranging 2.7—35.9 mol·C·m-2·y-1, are moderate to strong CO2 sources. However, there was large spatiotemporal variability that corresponded to changes in hydrologic conditions. The two northern estuaries (LCE and GE), due to larger riverine discharges, had an order of magnitude higher CO2 emissions than the
southern estuaries (MAE and NE). In addition, episodic flooding made the entire regional CO2 fluxes differ significantly under dry (-0.7—20.9 mmol·C·m-2·d-1) and wet (11.6—170.0 mmol·C·m-2·d-1) conditions. A mass balance model for carbon budget predicted lateral transport of total organic matter (TOC) and dissolved inorganic carbon (DIC) from tidal wetlands, which accounted for ~95% and 70% of total TOC and DIC inputs to the open estuarine water, respectively. However, the loss of coastal saltmarsh-mangrove habitats due to sea level rise could result in ~1% per year decline in estuarine CO2 fluxes at the expense of decreasing lateral carbon transport. Finally, this dissertation suggested that the average estuarine CO2 flux from nwGOM was about 8 times higher than previously estimated North America estuarine CO2 flux. Additionally, flooding condition was estimated to elevate CO2 emission and lateral fluxes by 10 times in this region.

Continue reading ‘Carbon budgets in coastal estuaries of the northwestern Gulf of Mexico under hydrologic control’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,015 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book