Posts Tagged 'socio-economy'

Management strategies for coral reefs and people under global environmental change: 25 years of scientific research


• We develop a typology of management strategies for coral reefs and people under GEC.
• Using this typology we review research efforts on management strategies over 25 years.
• Half of all case studies focus on corals reefs in Australia and the United States.
• Most research focuses on marine protection; repair & adapt strategies need attention.
• Developing countries in the Indo-Pacific and the Caribbean are poorly studied.


Coral reef ecosystems and the people who depend on them are increasingly exposed to the adverse effects of global environmental change (GEC), including increases in sea-surface temperature and ocean acidification. Managers and decision-makers need a better understanding of the options available for action in the face of these changes. We refine a typology of actions developed by Gattuso et al. (2015) that could serve in prioritizing strategies to deal with the impacts of GEC on reefs and people. Using the typology we refined, we investigate the scientific effort devoted to four types of management strategies: mitigate, protect, repair, adapt that we tie to the components of the chain of impact they affect: ecological vulnerability or social vulnerability. A systematic literature review is used to investigate quantitatively how scientific effort over the past 25 years is responding to the challenge posed by GEC on coral reefs and to identify gaps in research. A growing literature has focused on these impacts and on management strategies to sustain coral reef social-ecological systems. We identify 767 peer reviewed articles published between 1990 and 2016 that address coral reef management in the context of GEC. The rate of publication of such studies has increased over the years, following the general trend in climate research. The literature focuses on protect strategies the most, followed by mitigate and adapt strategies, and finally repair strategies. Developed countries, particularly Australia and the United States, are over-represented as authors and locations of case studies across all types of management strategies. Authors affiliated in developed countries play a major role in investigating case studies across the globe. The majority of articles focus on only one of the four categories of actions. A gap analysis reveals three directions for future research: (1) more research is needed in South-East Asia and other developing countries where the impacts of GEC on coral reefs will be the greatest, (2) more scholarly effort should be devoted to understanding how adapt and repair strategies can deal with the impacts of GEC, and (3) the simultaneous assessment of multiple strategies is needed to understand trade-offs and synergies between actions.

Continue reading ‘Management strategies for coral reefs and people under global environmental change: 25 years of scientific research’

Evaluating the promise and pitfalls of a potential climate change–tolerant sea urchin fishery in southern California

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate changetolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200–300-m depth range. Here we outline potential criteria for a climate changetolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012–2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485–510 m) subject to low oxygen (11.7–16.9 µmol kg−1) and pHTotal (<7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e.g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e.g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.

Continue reading ‘Evaluating the promise and pitfalls of a potential climate change–tolerant sea urchin fishery in southern California’

Socioeconomic risk from ocean acidification and climate change impacts on Atlantic Canadian fisheries

Ocean acidification (OA) is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not well understood. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be among the first and most severely affected. Despite the limited understanding of impacts there is a need to identify potential pathways for human societies to be affected by OA. Research on these social implications is a small but developing field of literature. This thesis contributes to this field by using a risk assessment framework, informed by a biophysical model of future species distributions, to investigate Atlantic Canadian risk from changes in shellfish fisheries. New Brunswick and Nova Scotia are expected to see declines in resource accessibility. While Newfoundland and Labrador and PEI are more socially vulnerable to losses in fisheries, they are expected to experience relatively minor changes in access.

Continue reading ‘Socioeconomic risk from ocean acidification and climate change impacts on Atlantic Canadian fisheries’

Ocean acidification and Pacific oyster larval failures in the Pacific Northwest United States

The Pacific Northwest coast of the United States (Figure 2.1) is home to a lucrative shellfish aquaculture industry that grows mainly (>80 percent) (Barton, et al. 2012) Pacific oysters (Crassostrea gigas). Washington States is the center of this industry. Its hatcheries produce oyster larvae, or spat, that are shipped all over the West Coast to be grown to market size in coastal water by aquaculturists. Washington’s hatcheries – along with its 125 farms, located throughout 12 coastal counties (Northern Economics, Inc.. 2013) – produce more shellfish than any other U.S. state, contributing around $270 million to the state economy and supporting about 3,200 jobs (Washington State Blue Ribbon Panel on Ocean Acidification 2012). The next greatest producer of shellfish in the United States is Connecticut, which has just 23 farms (United States Department of Agriculture 2014). Washington’s entire seafood industry generates more than 42,000 jobs in the state and contributes $1.7 billion to the gross state product via profits and jobs at restaurants, distributors and retailers (Washington State Blue Ribbon Panel on Ocean Acidification 2012). By comparison, the entire state hosts approximately 3 million jobs (Employment Security Department, Washington State) contributing to an approximately $446 billion gross state profit (U.S. Bureau of Economic Analysis). In other words, 1.4 percent of the state’s jobs are located in the shellfish industry, which creates 0.4 percent of the gross state profit. Shellfish generate more than two-thirds of the harvest value of the state’s wild commercial fisheries. Recreational shellfish harvesting in the Pacific Northwest also creates jobs and income for coastal counties. Recreational shellfish harvesting licenses generate $3 million annually in state revenue, and recreational oyster and clam harvesters contribute more than $27 million annually to coastal economies (Washington State Blue Ribbon Panel on Ocean Acidification 2012). Besides the economic impacts of shellfish harvesting, harvesting and eating seafood is an integral part of the culture and everyday life of many Washingtonians.

Continue reading ‘Ocean acidification and Pacific oyster larval failures in the Pacific Northwest United States’

Ocean acidification in New Zealand waters: trends and impacts

The threat posed by ocean acidification (OA) to the diversity and productivity of New Zealand marine ecosystems is assessed in a synthesis of published trends and impacts. A 20-year time series in Subantarctic water, and a national coastal monitoring programme, provide insight into pH variability, and context for experimental design, modelling and projections. A review of the potential impact of changes in the carbonate system on the major phyla in New Zealand waters confirms international observations that calcifying organisms, and particularly their early life-history stages, are vulnerable. The synthesis considers ecosystem and socio-economic impacts, and identifies current knowledge gaps and future research directions, including mechanistic studies of OA sensitivity. Advanced ecosystem models of OA, that incorporate the indirect effects of OA and interactions with other climate stressors, are required for robust projection of the future status of New Zealand marine ecosystems.

Continue reading ‘Ocean acidification in New Zealand waters: trends and impacts’

Climate change–contaminant interactions in marine food webs: toward a conceptual framework

Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change–contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change–contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change–contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.

Continue reading ‘Climate change–contaminant interactions in marine food webs: toward a conceptual framework’

Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change


  • Under the RCP 8.5 scenario, tropical Pacific temperature will rise by ≥ 3 °C by 2100.
  • This is accompanied by declines in dissolved oxygen, pH, and net primary production.
  • This will lead to local extinctions of up to 80% of marine species in some regions.
  • 9 of 17 Pacific Island entities experience ≥ 50% declines in maximum catch potential.
  • Impacts can be greatly reduced by mitigation measures under the RCP 2.6 scenario.


The increase in anthropogenic CO2 emissions over the last century has modified oceanic conditions, affecting marine ecosystems and the goods and services that they provide to society. Pacific Island countries and territories are highly vulnerable to these changes because of their strong dependence on ocean resources, high level of exposure to climate effects, and low adaptive capacity. Projections of mid-to-late 21st century changes in sea surface temperature (SST), dissolved oxygen, pH, and net primary productivity (NPP) were synthesized across the tropical Western Pacific under strong climate mitigation and business-as-usual scenarios. These projections were used to model impacts on marine biodiversity and potential fisheries catches. Results were consistent across three climate models, indicating that SST will rise by ≥ 3 °C, surface dissolved oxygen will decline by ≥ 0.01 ml L−1, pH will drop by ≥ 0.3, and NPP will decrease by 0.5 g m−2 d−1 across much of the region by 2100 under the business-as-usual scenario. These changes were associated with rates of local species extinction of > 50% in many regions as fishes and invertebrates decreased in abundance or migrated to regions with conditions more suitable to their bio-climate envelope. Maximum potential catch (MCP) was projected to decrease by > 50% across many areas, with the largest impacts in the western Pacific warm pool. Climate change scenarios that included strong mitigation resulted in substantial reductions of MCP losses, with the area where MCP losses exceeded 50% reduced from 74.4% of the region under business-as-usual to 36.0% of the region under the strong mitigation scenario.

Continue reading ‘Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,051,961 hits


Ocean acidification in the IPCC AR5 WG II

OUP book