Posts Tagged 'socio-economy'

A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification

Human‐induced climate change and ocean acidification (CC‐OA) is changing the physical and biological processes occurring within the marine environment, with poorly understood implications for marine life. Within the aquaculture sector, molluskan culture is a relatively benign method of producing a high‐quality, healthy, and sustainable protein source for the expanding human population. We modeled the vulnerability of global bivalve mariculture to impacts of CC‐OA over the period 2020–2100, under RCP8.5. Vulnerability, assessed at the national level, was dependent on CC‐OA‐related exposure, taxon‐specific sensitivity and adaptive capacity in the sector. Exposure risk increased over time from 2020 to 2100, with ten nations predicted to experience very high exposure to CC‐OA in at least one decade during the period 2020–2100. Predicted high sensitivity in developing countries resulted, primarily, from the cultivation of species that have a narrow habitat tolerance, while in some European nations (France, Ireland, Italy, Portugal, and Spain) high sensitivity was attributable to the relatively high economic value of the shellfish production sector. Predicted adaptive capacity was low in developing countries primarily due to governance issues, while in some developed countries (Denmark, Germany, Iceland, Netherlands, Sweden, and the United Kingdom) it was linked to limited species diversity in the sector. Developing and least developed nations (n = 15) were predicted to have the highest overall vulnerability. Across all nations, 2060 was identified as a tipping point where predicted CC‐OA will be associated with the greatest challenge to shellfish production. However, rapid declines in mollusk production are predicted to occur in the next decade for some nations, notably North Korea. Shellfish culture offers human society a low‐impact source of sustainable protein. This research highlights, on a global scale, the likely extent and nature of the CC‐OA‐related threat to shellfish culture and this sector enabling early‐stage adaption and mitigation.

Continue reading ‘A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification’

Bridging from monitoring to solutions-based thinking: lessons from CalCOFI for understanding and adapting to marine climate change impacts

Multidisciplinary, integrated ocean observing programs provide critical data for monitoring the effects of climate change on marine ecosystems. California Cooperative Oceanic Fisheries Investigations (CalCOFI) samples along the US West Coast and is one of the world’s longest-running and most comprehensive time series, with hydrographic and biological data collected since 1949. The pairing of ecological and physical measurements across this long time series informs our understanding of how the California Current marine ecosystem responds to climate variability. By providing a baseline to monitor change, the CalCOFI time series serves as a Keeling Curve for the California Current. However, challenges remain in connecting the data collected from long-term monitoring programs with the needs of stakeholders concerned with climate change adaptation (i.e., resource managers, policy makers, and the public), including for the fisheries and aquaculture sectors. We use the CalCOFI program as a case study to ask: how can long-term ocean observing programs inform ecosystem based management efforts and create data flows that meet the needs of stakeholders working on climate change adaptation? Addressing this question and identifying solutions requires working across sectors and recognizing stakeholder needs. Lessons learned from CalCOFI can inform other regional monitoring programs around the world, including those done at a smaller scale in developing countries.

Continue reading ‘Bridging from monitoring to solutions-based thinking: lessons from CalCOFI for understanding and adapting to marine climate change impacts’

Impact of climate change and ocean acidification on ocean-based industries and society in Norway

This report presents a review of the scientific literature on how key ecosystems, ecosystem services and ocean-based industries in Norway are affected by climate change and ocean acidification today and under future scenarios. The project has also compiled knowledge on how ocean-based actions can help mitigate and reduce the magnitude of climate change, ocean acidification and environmental problems. Further possible trade-off related to ocean-based action were identified as well as how climate change and ocean acidification may potentially affect these ocean-based opportunities. Finally, the report presents published findings on possible future impacts on society and implications for policy and management.

Continue reading ‘Impact of climate change and ocean acidification on ocean-based industries and society in Norway’

Climate change and aquaculture: considering adaptation potential

Increases in global population and seafood demand are occurring simultaneously with fisheries decline in an era of rapid climate change. Aquaculture is well positioned to help meet the world’s future seafood needs, but heavy reliance of most global aquaculture on the ambient environment and ecosystem services suggests inherent vulnerability to climate change effects. There are, however, opportunities for adaptation. Engineering and management solutions can reduce exposure to stressors or mitigate stressors through environmental control. Epigenetic adaptation may have the potential to improve stressor tolerance through parental or early life stage exposure. Stressor-resistant traits can be genetically selected for, and maintaining adequate population variability can improve resilience and overall fitness. Information at appropriate time scales is crucial for adaptive response, such as real-time data on stressor levels and/or species’ responses, early warning of deleterious events, or prediction of longer-term change. Diet quality and quantity have the potential to meet increasing energetic and nutritional demands associated with mitigating the effects of abiotic and biotic climate change stressors. Research advancements in understanding how climate change affects aquaculture will benefit most from a combination of empirical studies, modelling approaches, and observations at the farm level. Research to support aquaculture adaptation requires an increasing amount of environmental data to guide biological response studies for regional applications. Increased experimental complexity, resources, and duration will be necessary to better understand the effects of multiple stressors. Ultimately, in order for aquaculture sectors to move beyond short-term coping responses, governance initiatives incorporating the changing needs of stakeholders, users, and culture ecosystems as a whole are required to facilitate planned climate change adaptation and mitigation.

Continue reading ‘Climate change and aquaculture: considering adaptation potential’

Impacts of climate change on aquaculture

Aquaculture is a key UK food production sector, and it is particularly economically important to rural coastal communities, and in the deprived urban areas where processing takes place (Alexander et al., 2014; UK MNMP, 2015). UK production value exceeds £590 million (Black and Hughes 2017), with £1.8bn turnover and 8800 jobs supported (Alexander et al., 2014), of this £1.4bn turnover and 8000 jobs are in Scotland, making aquaculture particularly relevant there. There is significant potential for aquaculture to develop further throughout the UK (Black and Hughes, 2017).

UK marine finfish aquaculture is dominated by the production off the west coast and islands of Scotland of Atlantic salmon, Salmo salar (156,025 tonnes in 2018; Munro, 2019), and a very small production from Northern Ireland. Freshwater salmon smolt production, for marine on-growing, is more widely distributed. Scottish marine production also includes rainbow trout (Onchorhyncus mykiss), sea (brown) trout (Salmo trutta) and halibut (Hippoglossus hippoglossus). In the past, cod (Gadus morhua) in Scotland, and sea bass (Dicentrarchus labrax) in Wales, were farmed. Recently, a major growth in production of lumpfish (Cyclopterus lumpus) and wrasse (various Labridae species) has occurred in Scotland (Munro, 2019), Wales (Anon, 2018) and England, for use as ‘cleaner fish’ to control sea lice on farmed salmon. The majority of marine salmonid aquaculture takes place in open-sea cages; 86% of freshwater salmonid smolts for marine on-growing are also produced in cages and so can be vulnerable to environmental conditions (Munro, 2019). Other smolts are produced in Recirculating Aquaculture Systems (RAS) that are protected against the environment, RAS are also used for production of other species such as lumpfish.

Bivalve-shellfish farming produces mussels (Mytilus edulis), oysters (Crassostrea gigas (Pacific) and Ostrea edulis (native), scallops (Pecten maximus, Chlamys opercularis) and clams (Ruditapes sp.). Mussels are the main farmed seafood product of Wales, Northern Ireland and England, and, for shellfish, Scotland. Pacific oyster is the second most-farmed shellfish, with minor production of the other bivalves. On-growing or ranching of prawn, lobster and crab and macroalgal farming remain small-scale (Capuzzo and McKie, 2016).

Continue reading ‘Impacts of climate change on aquaculture’

Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.

Continue reading ‘Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries’

Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks

A multi-species size-structured population dynamics model that can account for spatial structure and technical interactions between commercial fisheries was developed and applied to the snow and southern Tanner crab fisheries in the eastern Bering Sea. The model was then used as the basis for forecasts to calculate reference points related to yield and profit under the effects of ocean acidification on snow and southern Tanner crab. Stochastic projections that account for variation about the stock-recruitment relationship were undertaken for a constant F35% harvest strategy, a strategy that sets effort to maximize profit ignoring the effects of environmental variability such as ocean acidification, and the Acceptable Biological Catch control rule, which includes a reduction in fishing mortality rate when stocks are below target levels. Single- and four-area models led to similar fits to abundance and catch data, and provide similar estimates of time-trajectories of mature male biomass. The model is used to compute Maximum Sustainable Yield (MSY) and an upper bound on Maximum Economic Yield (uMEY). The effort levels that achieve MSY and uMEY were sensitive to whether a spatial or non-spatial model was used to calculate reference points and hence how technical interactions among species were accounted for. Dynamic projections based on various management strategies indicated that adopting a uMEY target level of effort leads to some robustness to the effects of ocean acidification, although similar results can be obtained using the Acceptable Biological Catch control rule, which reduces harvest rates as biomass levels decline.

Continue reading ‘Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,422 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book