Posts Tagged 'socio-economy'

Impacts of climate change on aquaculture

Aquaculture is a key UK food production sector, and it is particularly economically important to rural coastal communities, and in the deprived urban areas where processing takes place (Alexander et al., 2014; UK MNMP, 2015). UK production value exceeds £590 million (Black and Hughes 2017), with £1.8bn turnover and 8800 jobs supported (Alexander et al., 2014), of this £1.4bn turnover and 8000 jobs are in Scotland, making aquaculture particularly relevant there. There is significant potential for aquaculture to develop further throughout the UK (Black and Hughes, 2017).

UK marine finfish aquaculture is dominated by the production off the west coast and islands of Scotland of Atlantic salmon, Salmo salar (156,025 tonnes in 2018; Munro, 2019), and a very small production from Northern Ireland. Freshwater salmon smolt production, for marine on-growing, is more widely distributed. Scottish marine production also includes rainbow trout (Onchorhyncus mykiss), sea (brown) trout (Salmo trutta) and halibut (Hippoglossus hippoglossus). In the past, cod (Gadus morhua) in Scotland, and sea bass (Dicentrarchus labrax) in Wales, were farmed. Recently, a major growth in production of lumpfish (Cyclopterus lumpus) and wrasse (various Labridae species) has occurred in Scotland (Munro, 2019), Wales (Anon, 2018) and England, for use as ‘cleaner fish’ to control sea lice on farmed salmon. The majority of marine salmonid aquaculture takes place in open-sea cages; 86% of freshwater salmonid smolts for marine on-growing are also produced in cages and so can be vulnerable to environmental conditions (Munro, 2019). Other smolts are produced in Recirculating Aquaculture Systems (RAS) that are protected against the environment, RAS are also used for production of other species such as lumpfish.

Bivalve-shellfish farming produces mussels (Mytilus edulis), oysters (Crassostrea gigas (Pacific) and Ostrea edulis (native), scallops (Pecten maximus, Chlamys opercularis) and clams (Ruditapes sp.). Mussels are the main farmed seafood product of Wales, Northern Ireland and England, and, for shellfish, Scotland. Pacific oyster is the second most-farmed shellfish, with minor production of the other bivalves. On-growing or ranching of prawn, lobster and crab and macroalgal farming remain small-scale (Capuzzo and McKie, 2016).

Continue reading ‘Impacts of climate change on aquaculture’

Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.

Continue reading ‘Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries’

Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks

A multi-species size-structured population dynamics model that can account for spatial structure and technical interactions between commercial fisheries was developed and applied to the snow and southern Tanner crab fisheries in the eastern Bering Sea. The model was then used as the basis for forecasts to calculate reference points related to yield and profit under the effects of ocean acidification on snow and southern Tanner crab. Stochastic projections that account for variation about the stock-recruitment relationship were undertaken for a constant F35% harvest strategy, a strategy that sets effort to maximize profit ignoring the effects of environmental variability such as ocean acidification, and the Acceptable Biological Catch control rule, which includes a reduction in fishing mortality rate when stocks are below target levels. Single- and four-area models led to similar fits to abundance and catch data, and provide similar estimates of time-trajectories of mature male biomass. The model is used to compute Maximum Sustainable Yield (MSY) and an upper bound on Maximum Economic Yield (uMEY). The effort levels that achieve MSY and uMEY were sensitive to whether a spatial or non-spatial model was used to calculate reference points and hence how technical interactions among species were accounted for. Dynamic projections based on various management strategies indicated that adopting a uMEY target level of effort leads to some robustness to the effects of ocean acidification, although similar results can be obtained using the Acceptable Biological Catch control rule, which reduces harvest rates as biomass levels decline.

Continue reading ‘Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks’

From science to solutions: ocean acidification impacts on select coral reefs

Ocean acidification (OA), often called “the other CO2 problem” (Doney et al., 2009), is a consequence of an increased release of anthropogenic carbon dioxide. Man-made CO2 does not only accumulate in the atmosphere, it also dissolves readily in seawater to form bicarbonate ions, thereby releasing protons () and increasing seawater acidity. The acidity of the oceans has increased by about 30% since the beginning of the industrial period, and may increase by more than 150% by the end of the century. This increase in acidity impacts the lives and well-being of many marine organisms and can also disrupt coastal and marine ecosystems and the services they provide.

In October 2008, the Monaco Declaration, drafted at the request of His Serene Highness Prince Albert II, had a global impact far beyond the scientific community. Since this Declaration, the Principality of Monaco and its various institutions (IAEA, CSM, FPA2, IOM1 ) have developed even more intensive work in this field, bringing the Principality of Monaco to the forefront in defending the oceans against this problem. This collaboration took shape in 2015 with the creation of a Monegasque Association for Ocean Acidification (AMAO), bringing together the FPA2, the Monegasque Government, the Oceanographic Institute, the CSM and the IAEA. In September 2019, the Intergovernmental Panel on Climate Change (IPCC) held its 51 session in the Principality of Monaco to launch the Special Report on the Ocean and Cryosphere in a Changing Climate Context (SROCC), which assessed the physical processes and impacts of climate change on ocean, coastal, polar and mountain ecosystems.

Continue reading ‘From science to solutions: ocean acidification impacts on select coral reefs’

Human impacts on planetary boundaries amplified by Earth system interactions

The planetary boundary framework presents a ‘planetary dashboard’ of humanity’s globally aggregated performance on a set of environmental issues that endanger the Earth system’s capacity to support humanity. While this framework has been highly influential, a critical shortcoming for its application in sustainability governance is that it currently fails to represent how impacts related to one of the planetary boundaries affect the status of other planetary boundaries. Here, we surveyed and provisionally quantified interactions between the Earth system processes represented by the planetary boundaries and investigated their consequences for sustainability governance. We identified a dense network of interactions between the planetary boundaries. The resulting cascades and feedbacks predominantly amplify human impacts on the Earth system and thereby shrink the safe operating space for future human impacts on the Earth system. Our results show that an integrated understanding of Earth system dynamics is critical to navigating towards a sustainable future.

Continue reading ‘Human impacts on planetary boundaries amplified by Earth system interactions’

Attributing ocean acidification to major carbon producers

Recent research has quantified the contributions of CO2 and CH4 emissions traced to the products of major fossil fuel companies and cement manufacturers to global atmospheric CO2, surface temperature, and sea level rise. This work has informed societal considerations of the climate responsibilities of these major industrial carbon producers. Here, we extend this work to historical (1880–2015) and recent (1965–2015) acidification of the world’s ocean. Using an energy balance carbon-cycle model, we find that emissions traced to the 88 largest industrial carbon producers from 1880–2015 and 1965–2015 have contributed ~55% and ~51%, respectively, of the historical 1880–2015 decline in surface ocean pH. As ocean acidification is not spatially uniform, we employ a three-dimensional ocean model and identify five marine regions with large declines in surface water pH and aragonite saturation state over similar historical (average 1850–1859 to average 2000–2009) and recent (average 1960–1969 to average of 2000–2009) time periods. We characterize the biological and socioeconomic systems in these regions facing loss and damage from ocean acidification in the context of climate change and other stressors. Such analysis can inform societal consideration of carbon producer responsibility for current and near-term risks of further loss and damage to human communities dependent on marine ecosystems and fisheries vulnerable to ocean acidification.

Continue reading ‘Attributing ocean acidification to major carbon producers’

Estimating relative immediacy of water-related challenges in Small Island Developing States (SIDS) of the Pacific Ocean using AHP modeling

We outline nine water-related challenges faced by the Small Island Developing States (SIDS) of the Pacific Ocean and map them with relevant sustainable development goals (SDGs). The challenges thus identified have been modeled using analytical hierarchy process (AHP) to find out their priority weights. Based on this weightage, the relative immediacy of each of these water-related challenges have been calculated, and classified as high, medium, and low. The findings reveal that the most immediate challenge in terms of their relative immediacy weightage is the ‘rising sea level’. This is followed by ‘low water quality and its availability’, and ‘spread of water-borne and vector-borne diseases’. Other challenges analyzed in this study pertains to overfishing and exploitation of exclusive economic zones; soil erosion and coastal inundation; increase in incidences of natural disasters; coral reef damage and increased ocean acidification; climate refugee; and changing precipitation pattern. This study would be instrumental for policy makers and inter-governmental organizations in directing the resource allocation for adaptation and mitigation efforts in the small islands.

Continue reading ‘Estimating relative immediacy of water-related challenges in Small Island Developing States (SIDS) of the Pacific Ocean using AHP modeling’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,318,642 hits


Ocean acidification in the IPCC AR5 WG II

OUP book