Posts Tagged 'biogeochemistry'

Increased appendicularian zooplankton alter carbon cycling under warmer more acidified ocean conditions

Anthropogenic atmospheric loading of CO2 raises concerns about combined effects of increasing ocean temperature and acidification, on biological processes. In particular, the response of appendicularian zooplankton to climate change may have significant ecosystem implications as they can alter biogeochemical cycling compared to classical copepod dominated food webs. However, the response of appendicularians to multiple climate drivers and effect on carbon cycling are still not well understood. Here, we investigated how gelatinous zooplankton (appendicularians) affect carbon cycling of marine food webs under conditions predicted by future climate scenarios. Appendicularians performed well in warmer conditions and benefited from low pH levels, which in turn altered the direction of carbon flow. Increased appendicularians removed particles from the water column that might otherwise nourish copepods by increasing carbon transport to depth from continuous discarding of filtration houses and fecal pellets. This helps to remove CO2 from the atmosphere, and may also have fisheries implications.

Continue reading ‘Increased appendicularian zooplankton alter carbon cycling under warmer more acidified ocean conditions’

Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: Insights from an in situ mesocosm study

Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes – summarized by the term ocean acidification (OA) – can significantly affect marine food webs and biogeochemical cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather eutrophic environments, while less attention has been paid to oligotrophic systems such as the subtropical ocean gyres.

Here we report from a recent in situ mesocosm experiment off the coast of Gran Canaria in the eastern subtropical North Atlantic, where we investigated the influence of OA on the ecology and biogeochemistry of plankton communities in oligotrophic waters under close-to-natural conditions. This paper is the first in this Research Topic of Frontiers in Marine Biogeochemistry and provides (1) a detailed overview of the experimental design and important events during our mesocosm campaign, and (2) first insights into the ecological responses of plankton communities to simulated OA over the course of the 62-day experiment.

One particular scientific objective of our mesocosm experiment was to investigate how OA impacts might differ between oligotrophic conditions and phases of high biological productivity, which regularly occur in response to upwelling of nutrient-rich deep water in the study region. Therefore, we specifically developed a deep water collection system that allowed us to obtain ~85 m3 of seawater from ~650 m depth. Thereby, we replaced ~20% of each mesocosm’s volume with deep water, and thus successfully simulated a deep water upwelling event that induced a pronounced plankton bloom.

Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom that developed in response to deep water addition. Such CO2-related shifts in plankton community composition could have consequences for ecosystem productivity, biomass transfer to higher trophic levels, and biogeochemical element cycling of oligotrophic ocean regions.

Continue reading ‘Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic: Insights from an in situ mesocosm study’

Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes

Anthropogenic emissions of carbon dioxide (CO2) and the ongoing accumulation in the surface ocean together with concomitantly decreasing pH and calcium carbonate saturation states have the potential to impact phytoplankton community composition and therefore biogeochemical element cycling on a global scale. Here we report on a recent mesocosm CO2 perturbation study (Raunefjorden, Norway), with a focus on organic matter and phytoplankton dynamics. Cell numbers of three phytoplankton groups were particularly affected by increasing levels of seawater CO2 throughout the entire experiment, with the cyanobacterium Synechococcus and picoeukaryotes (prasinophytes) profiting, and the coccolithophore Emiliania huxleyi (prymnesiophyte) being negatively impacted. Combining these results with other phytoplankton community CO2 experiments into a data-set of global coverage suggests that, whenever CO2 effects are found, prymnesiophyte (coccolithophore) abundances are negatively affected, while the opposite holds true for small picoeukaryotes belonging to the class of prasinophytes, or the division of chlorophytes in general. Future reductions in calcium carbonate-producing coccolithophores, providing ballast which accelerates the sinking of particulate organic matter, together with increases in picoeukaryotes, an important component of the microbial loop in the euphotic zone, have the potential to impact marine export production, with feedbacks to Earth’s climate system.

Continue reading ‘Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes’

Ocean acidification buffering effects of seagrass in Tampa Bay

The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980’s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate  mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.

Continue reading ‘Ocean acidification buffering effects of seagrass in Tampa Bay’

Elevated pCO2 enhances bacterioplankton removal of organic carbon

Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean.

Continue reading ‘Elevated pCO2 enhances bacterioplankton removal of organic carbon’

An in situ incubation method for measuring the productivity and responses of under-ice algae to ocean acidification and warming in polar marine habitats

During the Antarctic spring, algae grows under extensive areas of sea-ice and is a fundamental source of primary production. Understanding how under-ice (bottom-ice) algae will be affected by ocean warming and acidification is critically important in determining the probable future flow-on effects to the ecological communities this algae supports. To investigate this we designed and built a customised experimental system to assess the in situ responses of under-ice algae to changes in both seawater pH and temperature. We conducted two trials in 2013 followed by a successful 14-day incubation experiment in 2014 in the Ross Sea, Antarctica, using the system described here. Assessment of our main control parameters indicated we could reliably control and monitor both pH and temperature in transparent under-ice chambers. The “plug-and-play” nature of our novel system meant it was easy for divers to deploy and maintain in the very cold temperatures experienced under the sea-ice. Moreover, the system could be remotely sampled from a surface laboratory. This enabled robust monitoring and analyses of manipulated seawater conditions (e.g., pH and temperature), and of responses of the associated biological communities (e.g., fluxes in dissolved oxygen and nutrient levels).

Continue reading ‘An in situ incubation method for measuring the productivity and responses of under-ice algae to ocean acidification and warming in polar marine habitats’

Ocean acidification changes abiotic processes but not biotic processes in coral reef sediments

In coral reefs, sediments play a crucial role in element cycling by contributing to primary production and the remineralization of organic matter. We studied how future ocean acidification (OA) will affect biotic and abiotic processes in sediments from two coral reefs of the Great Barrier Reef, Australia. This was investigated in the laboratory under conditions where water-sediment exchange was dominated by molecular diffusion (Magnetic Island) or by porewater advection (Davies Reef). OA conditions (+ΔpCO2: 170–900 µatm, -ΔpH: 0.1–0.4) did not affect photosynthesis, aerobic and anaerobic organic matter remineralization and growth of microphytobenthos. However, microsensor measurements showed that OA conditions reduced the porewater pH. Under diffusive conditions these changes were limited to the upper sediment layers. In contrast, advective conditions caused a deeper penetration of low pH water into the sediment resulting in an earlier pH buffering by dissolution of calcium carbonate (CaCO3). This increased the dissolution of Davis Reef sediments turning them from net precipitating (-0.8 g CaCO3 m-2 d-1) under ambient to net dissolving (1 g CaCO3 m-2 d-1) under OA conditions. Comparisons with in-situ studies on other reef sediments show that our dissolution rates are reasonable estimates for field settings. We estimate that enhanced dissolution due to OA will only have a minor effect on net ecosystem calcification of the Davies Reef flat (< 4%). However, it could decrease recent sediment accumulation rates in the lagoon by up to 31% (by 0.2–0.4 mm year-1), reducing valuable reef space. Furthermore, our results indicate that high-magnesium calcite is predominantly dissolving in the studied sediments and a drastic reduction in this mineral can be expected on Davis Reef lagoon in the near future, leaving sediments of an altered mineral composition. This study demonstrates that biotic sediment processes will likely not directly be affected by OA. Ensuing indirect effects of OA-induced sediment dissolution on biotic processes are discussed.

Continue reading ‘Ocean acidification changes abiotic processes but not biotic processes in coral reef sediments’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 991,918 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book