Posts Tagged 'biogeochemistry'

Effect of ocean outfall discharge volume and dissolved inorganic nitrogen load on urban eutrophication outcomes in the Southern California Bight

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment. In cases where nitrogen mass loading is not altered or altered minimally, this practice has the potential to influence spatial patterns in coastal eutrophication. We apply a physical-biogeochemical numerical ocean model to understand the influence of nitrogen management and potable wastewater recycling on net primary productivity (NPP), pH, and oxygen. We model several theoretical management scenarios by combining dissolved inorganic nitrogen (DIN) reductions from 50 to 85% and recycling from 0 to 90%, applied to 19 generalized wastewater outfalls in the Southern California Bight. Under no recycling, NPP, acidification, and oxygen loss decline with DIN reductions, which simulated habitat volume expansion for pelagic calcifiers and aerobic taxa. Recycling scenarios under intermediate DIN reduction show patchier areas of pH and oxygen loss with steeper vertical declines relative to a “no recycling” scenario. These patches are diminished under 85% DIN reduction across all recycling levels, suggesting nitrogen management lowers eutrophication risk even with concentrated discharges. These findings represent a novel application of ocean numerical models to investigate the regional effects of idealized outfall management on eutrophication. Additional work is needed to investigate more realistic outfall-specific water recycling and nutrient management scenarios and to contextualize the benefit of these management actions, given accelerating acidification and hypoxia from climate change.

Continue reading ‘Effect of ocean outfall discharge volume and dissolved inorganic nitrogen load on urban eutrophication outcomes in the Southern California Bight’

Ocean acidification offsets the effect of warming on sediment denitrification and associated nitrous oxide production

Rates of denitrification and associated nitrous oxide (N2O) production are expected to increase with global warming, leading to positive climate feedback. However, previous studies have not considered the combined effect of ocean acidification (OA, pCO2 ~ 900 µatm) and warming on denitrification rates and N2O production. Here we used a series of whole core incubation studies to assess the combined impact of warming and OA on estuarine sediment denitrification rates and N2O production. Strong warming (+5 °C over mean in situ conditions) increased N2O production by ~4.2 µmol-N m−2 d−1 and denitrification by ~43 µmol-N m−2 d−1, fuelled by water column nitrate (Dw), but decreased rates of nitrification-coupled denitrification in the sediment (Dn) by ~82 µmol-N m−2 d−1. While Dn was not affected by OA, Dw decreased significantly by 51 µmol-N m−2 d−1 when OA was coupled with warmer temperatures. We estimate that OA may offset the increase in estuarine sediment denitrification and N2O production expected from warming alone by up to 64% and reduce a potential positive climate feedback loop by inhibiting denitrification pathways.

Continue reading ‘Ocean acidification offsets the effect of warming on sediment denitrification and associated nitrous oxide production’

Effects of CO2 on the nitrogen isotopic composition of Trichodesmium and Crocosphaera

Biological nitrogen (N2) fixation is the main input of fixed nitrogen to ecosystems on Earth. Nitrogen isotope fractionation during this process is a key parameter for understanding the nitrogen cycle, however, relatively little is known about its regulatory mechanisms. Here we examine the effects of varying CO2 concentrations on biomass δ15N signatures of the cyanobacterial diazotrophs Trichodesmium erythraeum and Crocosphaera watsonii. We show that these organisms produce biomass up to ~3 ‰ lower in δ15N under either decreased (~180 µatm) or elevated (~1400 µatm) COconcentrations in comparison to modern levels (~380 µatm). Our results pointed towards changes in nitrogenase enzyme efficiency in response to CO2 perturbations impacting isotopic fractionation during N2 fixation and thus the biomass δ15N. This study contributes to an improved interpretation of the observed fluctuations in the δ15N records, and thus the past nitrogen cycle on Earth.

Continue reading ‘Effects of CO2 on the nitrogen isotopic composition of Trichodesmium and Crocosphaera’

Seasonally varying biogeochemical regime around the coral habitats off central west coast of India

Highlights

  • Waters around the Grande Island (harboring patchy coral growth) along the central west coast of India experience low- O2, pH, and temperature during seasonal upwelling, while episodes of low- O2 and pH are observed during plankton blooms in the summer season.
  • Changes in benthic communities and a steady decline in coral cover associated with a sharp increase in the macro-algae and rubble were observed at the Grande Island.
  • Angria Bank, the offshore coral site, does not show extreme seasonal change in the environmental conditions, rather it shows open ocean biogeochemical characyteristics.

Abstract

The Western Indian Continental Shelf (WICS) experiences upwelling during the Southwest Monsoon (SWM), leading to deoxygenation and acidification of subsurface waters. The region has patchy growth of corals, e.g. in the Grande Island and Angria Bank. Measurements made during the late SWM of 2022 reveal that the shelf waters around the Grande Island were subject to varying environmental conditions, viz. lower temperature (21.3–26.1°C), oxygen (0–4.9 mL L−1) and pHT (7.506–7.927). Complete anoxia was associated with sulphide build-up to a maximum of 5.9 μmol L−1 at 17 m depth. An additional episodic condition (high temperature, low oxygen and pH) also occurred associated presumably with a plankton bloom in April 2017. Hence, unlike the offshore coral site Angria Bank, waters around the Grande Island experiences extreme changes in physico-chemical conditions (e.g. Ωarg ∼1.2–1.8 during October 2022) seasonally as reported here. The biogeochemical conditions are however not as intense (Ωarg = 0.6) as observed along the eastern boundary upwelling system of the Pacific Ocean.

Continue reading ‘Seasonally varying biogeochemical regime around the coral habitats off central west coast of India’

Countering the effect of ocean acidification in coastal sediments through carbonate mineral additions

Along with its impact on calcifying plankton, ocean acidification also affects benthic biogeochemistry and organisms. Compared to the overlying water, fluid composition in sediments is altered through the effect of the mineralization of organic matter, which can further lower both pH and the carbonate saturation state. This can potentially be counteracted by the addition of carbonate minerals to the sediment surface. To explore the biogeochemical effects of mineral additions to coastal sediments, we experimentally quantified carbonate mineral dissolution kinetics, and then integrated this data into a reactive transport model that represents early diagenetic cycling of C, O, N, S and Fe, and traces total alkalinity, pH and saturation state of CaCO3. Model simulations were carried out to delineate the impact of mineral type and amount added, porewater mixing and organic matter mineralization rates on sediment alkalinity and its flux to the overlying water. Model results showed that the added minerals undergo initial rapid dissolution and generate saturated conditions. Aragonite dissolution led to higher alkalinity concentrations than calcite. Simulations of carbonate mineral additions to sediment environments with low rates of organic matter mineralization exhibited a significant increase in mineral saturation state compared to sediments with high CO2 production rates, highlighting the environment-specific extent of the buffering effect. Our work indicates that carbonate additions have the potential to effectively buffer surficial sediments over multiple years, yielding biogeochemical conditions that counteract the detrimental effect of OA conditions on larval recruitment, and potentially increase benthic alkalinity fluxes to support marine carbon dioxide removal (mCDR) in the overlying water.

Continue reading ‘Countering the effect of ocean acidification in coastal sediments through carbonate mineral additions’

Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents

Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant’s N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.

Continue reading ‘Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents’

Quantifying the impacts of multiple stressors on the production of marine benthic resources

Coastal ecosystems are among the most heavily affected by climate change and anthropogenic activities, which impacts their diversity, productivity and functioning and puts many of the key ecosystem services that they provide at risk. Although empirical studies have moved beyond single-stressor-single-species experiments with limited extrapolation potential and have increasingly investigated the cumulative effects of simultaneously occurring multiple stressors, consistent generalities have not yet been identified. Upscaling from controlled experiments to natural ecosystems, therefore, remains an unsolved challenge. Disentangling the independent and cumulative effects of multiple stressors across different levels of biological complexity, revealing the underlying mechanisms and understanding how coastal ecosystems may respond to predicted scenarios of global change is critical to manage and protect our natural capital.

In this thesis, I advance multiple stressor research by applying complementary approaches to quantify the impact of multiple stressors on marine benthic resources and thereby help predict the consequences of expected climate change for coastal habitats. First, I present the newly developed experimental platform QIMS (Quantifying the Impacts of Multiple Stressors) that overcomes some of the shortfalls of previous multiple stressor research (Chapter 2). Second, in a novel empirical study, I investigate the independent and combined effects of moderate ocean warming and acidification on the functioning and production of mussels and algae, considering the effects of interspecific interactions in the presence or absence of the respective other species (Chapter 3). Third, I synthesise monitoring data from Dublin Bay (representative of a typical metropolitan estuary) using conditional interference and a Bayesian Network model and provide alternative system trajectories according to different climate change scenarios. From this new model, I deepen the understanding of the complex linkages between environmental conditions and the diversity and functioning of Dublin Bay to support local decision making and management (Chapter 4).

Continue reading ‘Quantifying the impacts of multiple stressors on the production of marine benthic resources’

Multi-Decadal Coastal Acidification in the Northern Gulf of Mexico Driven by Climate Change and Eutrophication

Coastal waters often experience enhanced ocean acidification due to the combined effects of climate change and regional biological and anthropogenic activities. Through reconstructing summertime bottom pH in the northern Gulf of Mexico from 1986 to 2019, we demonstrated that eutrophication-fueled respiration dominated bottom pH changes on intra-seasonal and interannual timescales, resulting in recurring acidification coinciding with hypoxia. However, the multi-decadal acidification trend was principally driven by rising atmospheric CO2 and ocean warming, with more acidified and less buffered hypoxic waters exhibiting a higher rate of pH decline (−0.0023 yr−1) compared to non-hypoxic waters (−0.014 yr−1). The cumulative effect of climate-driven decrease in pH baseline is projected to become more significant over time, while the potential eutrophication-induced seasonal exacerbation of acidification may lessen with decreasing oxygen availability resulting from ocean warming. Mitigating coastal acidification requires both global reduction in CO2 emissions and regional management of riverine nutrient loads.

Continue reading ‘Multi-Decadal Coastal Acidification in the Northern Gulf of Mexico Driven by Climate Change and Eutrophication’

A review of the Indian Ocean carbon dynamics, acidity, and productivity in a changing environment

Highlights

  • Current understanding of Indian Ocean carbon fluxes, acidity, and productivity from observations and model simulations.
  • Recapitulation of the functioning of air-sea exchange of CO2 in the Indian Ocean and its potential impact on climate change.
  • Recent developments in understanding the Indian Ocean acidification and Aerosol optical depth variability.
  • Highlighting grey areas of the Indian Ocean biogeochemical dynamics that need to be understood.

Abstract

The Indian Ocean dynamics is governed by the seasonal reversal of monsoon winds and the associated ocean currents. The relatively deep thermocline along the equator due to a lack of steady easterlies, low-latitude connection to the neighbouring Pacific, and a lack of northward heat export due to the position of the Asian continent are important factors in regulating the ocean state. These features make it a unique ecosystem among the world’s tropical oceans and determine key features of potential air-sea interaction at different time scales. The pCO2 shows a large seasonal variation linked with monsoon circulation. The Indian Ocean’s northwestern part acts as an atmospheric CO2 source, whereas the northeastern part acts as a net atmospheric CO2 sink. The region between the latitudes of 15°S-50°S in the Indian Ocean is a major subduction zone because of positive wind stress curl. The subducted water masses are transported to the northern Indian Ocean by the cross-equatorial cell (a shallow meridional overturning circulation). Based on the regional studies carried out on the carbonate system in the Indian Ocean, the area north of 15°S is a source of atmospheric CO2, while the area between 15°S and 50°S is a sink. A recent synthesis of models (observational climatology) over different spatial scales provides an estimate of the mean value of CO2 in the north of 37.5°S of the Indian Ocean as − 0.19 ± 0.1 PgC/yr (−0.07 ± 0.14 PgC/yr) during 1985–2018. The estimated decrease in pH (acidification) using model outputs in the Indian Ocean basin is 0.0675 units during 1961–2010, in which the contribution of dissolved inorganic carbon and surface temperature is 69.3 % and 13.8 %, respectively. The range of the Indian Ocean’s annual primary production based on satellite estimates over the last two decades (1998–2018) is 7.72–8.70 Gt C/yr, whereas the climatological mean is 8.24 ± 0.30 Gt C/yr. This paper consolidates the current state of understanding of the Indian Ocean carbon fluxes, acidification, and productivity using available field and satellite-based measurements, model simulations, and re-constructed datasets. It provides an overview of the functioning of the Indian Ocean’s air-to-sea CO2 exchange and highlights its influence on global climate. Finally, it aims to highlight the grey areas of the Indian Ocean carbon cycle that need to be understood.

Continue reading ‘A review of the Indian Ocean carbon dynamics, acidity, and productivity in a changing environment’

Turf algae drives coral bioerosion under high CO2

Turf algal prevalence will increase in coral ecosystems under ocean acidification yet their contribution towards the ongoing and projected degradation of reefs is often overlooked. Turf algal settlement was induced on exposed coral skeleton adjacent to live coral tissue to investigate coral-turf algal interactions through a combination of laboratory and field transplantation (shallow volcanic CO2 seep) experiments across two temperature regimes. Here, we show that turf algae are competitively favored over corals under high pCO2 conditions. Turf algae-associated biological activity locally acidified the microenvironment overlying the exposed coral skeleton, leading to its bioerosion. Increases in coral-turf algal interactions could shift coral ecosystems towards net dissolution and should be integrated into global accretion models when considering future carbonate budgets under climate change.

Continue reading ‘Turf algae drives coral bioerosion under high CO2’

Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification

Abstract

Flow of dense shelf water provide an efficient mechanism for pumping CO2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon (Cant) and its consequences remain unclear. Here, we show prominent transport of Cant (25.0 ± 4.7 Tg C yr−1) into the deep ocean (>2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower Cant in the upper waters than that of other open oceans to sustain a stronger CO2 uptake capacity (16.9 ± 3.8 Tg C yr−1). Nevertheless, the accumulation of Cant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1. Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt.

Key Points

  • We show evidence for the accumulation of Cant along the Antarctic shelf-slope into the deep ocean
  • The process of AABW formation drives Cant downward transport at 25.0 ± 4.7 Tg C yr−1, sustaining the CO2 uptake in the surface ocean
  • This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1, which is faster than in other deep oceans
Continue reading ‘Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification’

Atmospheric CO2 emissions and ocean acidification from bottom-trawling

Trawling the seafloor can disturb carbon that took millennia to accumulate, but the fate of that carbon and its impact on climate and ecosystems remains unknown. Using satellite-inferred fishing events and carbon cycle models, we find that 55-60% of trawling-induced aqueous CO2 is released to the atmosphere over 7-9 years. Using recent estimates of bottom trawling’s impact on sedimentary carbon, we found that between 1996-2020 trawling could have released, at the global scale, up to 0.34-0.37 Pg CO2 yr-1 to the atmosphere, and locally altered water pH in some semi-enclosed and heavy trawled seas. Our results suggest that the management of bottom-trawling efforts could be an important climate solution.

Continue reading ‘Atmospheric CO2 emissions and ocean acidification from bottom-trawling’

The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean

Gelatinous zooplankton are increasingly recognized to play a key role in the ocean’s biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Continue reading ‘The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean’

Editorial: the changing carbonate systems in coastal, estuarine, shelf areas and marginal seas

Editorial on the Research Topic
The changing carbonate systems in coastal, estuarine, shelf areas and marginal seas

Global atmospheric CO2 concentrations have increased from 320 ppm in the 1960s to the present-day value of 420 ppm, primarily due to anthropogenic activities. This increase influences the seawater carbonate system, impacting the marine ecosystem. There are still gaps that need to be resolved for predicting how these marine systems respond to current and future CO2 levels. Any actions to mitigate the change in pH will require adaptive management of multiple stressors across several spatial scales. Combined, these perspectives yield a more comprehensive picture of events during ocean acidification (OA).

This Research Topic brings together articles from different regions, including coastal, estuarine, and shelf areas and marginal seas, all susceptible to changing atmospheric conditions, riverine inputs, air-sea CO2 exchanges, and multiple acid-base reactions that can alter carbonate chemistry. Articles on the long-term trends of CO2 system descriptors and the interactions with calcifying organisms were also sought. The present Research Topic is primarily based on original articles devoted to carbonate systems in the marginal seas, but it is a pity that some interesting papers dealing with freshwater inflows, estuaries, and related coastal areas were not accepted.

Fransson et al. examined the effects of glacial and sea-ice meltwater on ocean acidification in the waters near the 79 North Glacier (79 NG) and the northeast Greenland shelf. The researchers investigated various ocean acidification factors and the influence of freshening, primary production, and air-sea CO2 exchange. One of the key findings was that the biological removal of CO2 through primary production played a crucial role in offsetting the negative impact of freshwater dilution on the aragonite saturation state (ΩAr), which is a measure of ocean acidification. This compensation effect was most pronounced in 2012, especially in the vicinity of the 79 NG front, where there was a significant presence of glacial meltwater and surface stratification. In 2016, a different scenario was observed, with a more homogenized water column due to sea-ice meltwater. In this case, the compensation effect of biological CO2 removal on ΩAr was weaker compared to 2012. The study also suggests that in the future, with ongoing climate and ocean chemistry changes, the increasing influence of meltwater may surpass the mitigating effects of biological CO2 removal. This could lead to unfavorable conditions for organisms that rely on calcium carbonate for their shells and skeletons. Thus, all the proposed factors need to be closely monitored as they could have significant implications for marine ecosystems and calcifying organisms in the face of ongoing environmental changes.

Continue reading ‘Editorial: the changing carbonate systems in coastal, estuarine, shelf areas and marginal seas’

The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean

Gelatinous zooplankton are increasingly recognized to play a key role in the ocean’s biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Continue reading ‘The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean’

Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification

Seagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we tested whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we showed that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural carbon dioxide vents and show that the presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6–17.4 with the greatest effect at CO2 vent sites. However, microbial ammonification was reduced at lower pH, suggesting that future ocean climate change will compromise this microbial process. Thus, the seagrass holobiont enhances water column productivity, even in the context of ocean acidification.

Continue reading ‘Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification’

Anthropogenic CO2, air-sea CO2 fluxes and acidification in the Southern Ocean: results from a time-series analysis at station OISO-KERFIX (51°S-68°E)

The temporal variation of the carbonate system, air-sea CO2 fluxes and pH is analyzed in the Southern Indian Ocean, south of the Polar Front, based on in-situ data obtained from 1985 to 2021 at a fixed station (50°40’S–68°25’E) and results from a neural network model that reconstructs the fugacity of CO2 (fCO2) and fluxes at monthly scale. Anthropogenic CO2 (Cant) was estimated in the water column and detected down to the bottom (1600 m) in 1985 resulting in an aragonite saturation horizon at 600 m that migrated up to 400 m in 2021 due to the accumulation of Cant. In subsurface, the trend of Cant is estimated at +0.53 (±0.01) µmol.kg-1.yr-1 with a detectable increase in recent years. At the surface during austral winter the oceanic fCO2 increased at a rate close or slightly lower than in the atmosphere. To the contrary, in summer, we observed contrasting fCOand dissolved inorganic carbon (CT) trends depending on the decade and emphasizing the role of biological drivers on air-sea CO2 fluxes and pH inter-annual variability. The region moved from an annual source of 0.8 molC.m-2.yr-1 in 1985 to a sink of -0.5 molC.m-2.yr-1 in 2020. In 1985–2020, the annual pH trend in surface of -0.0165 (± 0.0040).decade-1 was mainly controlled by anthropogenic CO2 but the trend was modulated by natural processes. Using historical data from November 1962 we estimated the long-term trend for fCO2, CT and pH confirming that the progressive acidification was driven by atmospheric CO2 increase. In 59 years this leads to a diminution of 11 % for both aragonite and calcite saturation state. As atmospheric CO2 will desperately continue rising in the future, the pH and carbonate saturation state will decrease at a faster rate than observed in recent years. A projection of future CT concentrations for a high emission scenario (SSP5-8.5) indicates that the surface pH in 2100 would decrease to 7.32 in winter. This is up to -0.86 lower than pre-industrial pH and -0.71 lower than pH observed in 2020. The aragonite under-saturation in surface waters would be reached as soon as 2050 (scenario SSP5-8.5) and 20 years later for a stabilization scenario (SSP2-4.5) with potential impacts on phytoplankton species and higher trophic levels in the rich ecosystems of the Kerguelen Island area.

Continue reading ‘Anthropogenic CO2, air-sea CO2 fluxes and acidification in the Southern Ocean: results from a time-series analysis at station OISO-KERFIX (51°S-68°E)’

Atlantic-origin water extension into the Pacific Arctic induced an anomalous biogeochemical event

The Arctic Ocean is facing dramatic environmental and ecosystem changes. In this context, an international multiship survey project was undertaken in 2020 to obtain current baseline data. During the survey, unusually low dissolved oxygen and acidified water were found in a high-seas fishable area of the western (Pacific-side) Arctic Ocean. Herein, we show that the Beaufort Gyre shrinks to the east of an ocean ridge and forms a front between the water within the gyre and the water from the eastern (Atlantic-side) Arctic. That phenomenon triggers a frontal northward flow along the ocean ridge. This flow likely transports the low oxygen and acidified water toward the high-seas fishable area; similar biogeochemical properties had previously been observed only on the shelf-slope north of the East Siberian Sea.

Fig. 1: Schematic of the Arctic Ocean circulation and the study area with hydrographic stations.

ab Maps of the Arctic Ocean and the study area. In a, yellow, blue, and red arrows represent flows from the shelf-slope at the north of the East Siberian Sea (ESS), and from the Pacific and Atlantic oceans in 2017–2020. Ocean circulation and water masses are abbreviated as follows: Beaufort Gyre (BG), Transpolar Drift (TPD), Pacific Water (PW), Lower Halocline Water (LHW), and Atlantic Water (AW). Geographical locations are abbreviated as follows: Canada Basin (CB), Chukchi Plateau (CP), Mendeleyev Ridge (MR), Makarov Basin (MB), and Lomonosov Ridge (LR). In b red, green, and blue dots denote the hydrographic stations conducted by the Research Vessel (R/V) Araon (Korea), R/V Mirai (Japan), and Canadian Coast Guard Ship Louis S. St-Laurent (Canada), under the 2020 Synoptic Arctic Survey project. Black dots indicate other hydrographic stations between 2002 and 2019 listed in Supplementary Table 1.

Continue reading ‘Atlantic-origin water extension into the Pacific Arctic induced an anomalous biogeochemical event’

The estuarine environment and pH variation: natural limits and experimental observation of the acidification effect on phosphorus bioavailability (in Portuguese)

This study shows the variation of pH in the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC). Data from 3 years (2019, 2021, 2022) were obtained in 17 points presenting the following ranges: temperature (14.88-27.05 ºC), pH (7.16-8.40) and DIP (0.20-11.28 µmol L-1) along a saline gradient (0.05-32.09) under different hydrodynamics, biogeochemical processes and anthropogenic influence. The pH buffering capacity due to the presence of weak acid salts in saline water (S ≥ 30) was associated to the lowest DIP, decreasing with low salinity values, confirming the direct correlation among salinity and pH. The highest temperatures in the winter of 2021, corroborated with the abnormal climate event in that year. An in vitro experiment showed results of the interaction of PID and sediments with different textures, with and without the presence of the benthic microbiota under a considerable decreasing of the pH (acidification) in relation to the natural condition of this environment. The P sediment flux characterized Iguape sector as a P sink with or without biota, Ararapira sector as a P source with biota and Cananéia, as P source without biota. The salt water buffered the pH and sediment buffered DIP both associated to the biogeochemical and hydrodynamic processes contribute to the homeostasis in the system.

Continue reading ‘The estuarine environment and pH variation: natural limits and experimental observation of the acidification effect on phosphorus bioavailability (in Portuguese)’

Estuarine acidification under a changing climate

The increase of anthropogenic carbon dioxide (CO2) has decreased seawater pH and carbonate mineral saturation state, a process known as ocean acidification (OA), which threatens the health of organisms and ecosystems. In estuaries and coastal hypoxic waters, anthropogenic CO2-induced acidification is enhanced by intense respiration and weak acid–base buffer capacity. Here I provide a succinct review of our state of knowledge of drivers for and biogeochemical impacts on estuarine acidification. I will review how river–ocean mixing, air–water gas exchange, biological production–respiration, anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs influence aquatic acid–base properties in estuarine waters. I will emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states (Ω), with examples from the Chesapeake Bay, the Mississippi River plume and hypoxic zone, and other estuaries to illustrate how natural and anthropogenic processes may lead to estuarine and coastal acidification.

Continue reading ‘Estuarine acidification under a changing climate’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources