Posts Tagged 'biogeochemistry'

Spatial and temporal controls on the inorganic carbon system of the Western Arctic Ocean

The Arctic Ocean plays a critical role in the global carbon cycle. It is believed to be particularly sensitive to the effects of climate change, is already undergoing dramatic changes, and is therefore important to study in that context. Most studies of the inorganic carbon system in the Western Arctic focus on hydrographic datasets from summer and/or fall (July-October), and do not consider the full response of the system to the timing of ice retreat, organic matter production and remineralization, and ice advance. Here we present the first dataset to investigate the spatial and temporal controls on the inorganic carbon system from early spring (pre-phytoplankton), late spring (initial phytoplankton bloom), summer (post-bloom), and fall in 2014. Our results suggest that the timing of ice retreat has important implications for the length of the phytoplankton growing season, and thus influences the magnitude of biological carbon cycling. We extend our analysis to include high-resolution temporal estimates of air-sea CO2 flux, and estimate a total annual CO2 uptake in the Chukchi Sea of ~7.7 Tg C. This is the first dataset to evaluate the importance of different seasonal observations within one year on the annual uptake of CO2 in the western Arctic Ocean. Our results show that extrapolations from one observational dataset result in large over- or underestimations of annual CO2 flux.

Continue reading ‘Spatial and temporal controls on the inorganic carbon system of the Western Arctic Ocean’

Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions

The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two ‘no bloom’ periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6–7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

Continue reading ‘Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions’

Special edition of Estuarine, Coastal and Shelf Science – “Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments”

The topic of ocean acidification has received extensive attention in a recently published special edition of the journal Estuarine, Coastal and Shelf Science. Volume 186, Part A presents a series of 12 research papers focusing on pelagic mesocosm experiments conducted in the Mediterranean Sea in 2012 and 2013. Plankton plays a key role in the global carbon cycle. It is therefore important to project the evolution of plankton community structure and function in a future high-CO2 world. Several results from experiments conducted at the community level have shown increased rates of community primary production and shifts in community composition as a function of increasing pCO2. However, the great majority of these – experiments have been performed under high natural or nutrient-enriched conditions and very few data are available in areas with naturally low levels of nutrient and chlorophyll i.e. oligotrophic areas such as the Mediterranean Sea, although they represent a large and expanding part of the ocean surface. In the frame of the European Mediterranean Sea Acidification in a changing climate project (MedSeA; http://medsea-project.eu), large-scale in situ mesocosms (9 x 50 m3, 12 m deep) have been used to quantify the potential effects of CO2 enrichment in two coastal areas of the Mediterranean Sea: the bay of Calvi (Corsica, France) in June/July 2012 and the bay of Villefranche (France) in February/March 2013. These two experiments gathered the expertise of more than 25 scientists from 7 institutes and 6 countries (France, Greece, Spain, UK, Italy, Belgium, US).

Continue reading ‘Special edition of Estuarine, Coastal and Shelf Science – “Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments”’

Amplification of global warming through pH-dependence of DMS-production simulated with a fully coupled Earth system model

We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean-acidification under the high emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS-production to the additional changes in temperature and sea-ice cover. Our results are broadly consistent with the findings of a previous study that employed an off-line model set-up. Assuming a medium (strong) sensitivity of DMS-production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS-emission are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in short-wave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS-emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS-emissions considered here. For example, global average Ts changes by −0.041 K per 1 Tg S yr−1 change in sea-air DMS-fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS-fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

Continue reading ‘Amplification of global warming through pH-dependence of DMS-production simulated with a fully coupled Earth system model’

The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study

Electro-active sediments distinguish themselves from other sedimentary environments by the presence of microbially induced electrical currents in the surface layer of the sediment. The electron transport is generated by metabolic activity of long filamentous cable bacteria, in a process referred to as electrogenic sulfur oxidation (e-SOx). Laboratory experiments have shown that e-SOx exerts a large impact on the sediment geochemistry, but its influence on the in situ geochemistry of marine sediments has not been previously investigated. Here, we document the biogeochemical cycling associated with e-SOx in a cohesive coastal sediment in the North Sea (Station 130, Belgian Coastal Zone) during three campaigns (January, March and May 2014). Fluorescence in situ hybridization showed that cable bacteria were present in high densities throughout the sampling period, and that filaments penetrated up to 7 cm deep in the sediment, which is substantially deeper than previously recorded. High resolution microsensor profiling (pH, H2S and O2) revealed the typical geochemical fingerprint of e-SOx, with a wide separation (up to 4.8 cm) between the depth of oxygen penetration and the depth of sulfide appearance. The metabolic activity of cable bacteria induced a current density of 25–32 mA m−2 and created an electrical field of 12–17 mV m−1 in the upper centimeters of the sediment. This electrical field created an ionic drift, which strongly affected the depth profiles and fluxes of major cations (Ca2+, Fe2+) and anions (SO42−) in the pore water. The strong acidification of the pore water at depth resulted in the dissolution of calcium carbonates and iron sulfides, thus leading to a strong accumulation of iron, calcium and manganese in the pore water. While sulfate accumulated in the upper centimeters, no significant effect of e-SOx was found on ammonium, phosphate and silicate depth profiles. Overall, our results demonstrate that cable bacteria can strongly modulate the sedimentary biogeochemical cycling under in situ conditions.

Continue reading ‘The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study’

Variation in carbonate system and air-water CO2 flux during summer in the Mahanadi Estuary, India

The carbonate system of water of the inner estuary and near shore in the Mahanadi estuary, Bay of Bengal, India was studied in summer season of 2014. Physicochemical parameters like temperature, pH, salinity, total alkalinity (TA), dissolved inorganic carbon (DIC), total organic carbon (TOC) and chlorophyll a (chl a) were measured in order to study their role in controlling the CO2 flux. The estuary acted as a sink for atmospheric CO2 triggered by the allochthonous organic carbon input. The average CO2 flux was recorded as -0.36±13.29 μmol/m2h in inner estuary and -10.36±2.00 μmol/m2h in near shore region. The temperature and salinity were found to be significantly and positively correlated with fCO2 (water) indicating their deterministic role in influencing air-water CO2 flux.

Continue reading ‘Variation in carbonate system and air-water CO2 flux during summer in the Mahanadi Estuary, India’

Carbonate system biogeochemistry in a subterranean estuary – Waquoit Bay, USA

Quantifying carbon fluxes associated with submarine groundwater discharge (SGD) remains challenging due to the complex biogeochemistry of the carbonate system in the subterranean estuary (STE). Here we conducted time series measurements of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) in a well-studied coastal aquifer (Waquoit Bay, Massachusetts, USA). Groundwater samples were collected monthly from May 2009 to June 2010 across the freshwater-saltwater mixing zone of the Waquoit Bay (WB) STE. The concentrations of both TAlk and DIC in zero-salinity groundwater were variable, but were lower than those in the bay water (S ∼28). DIC underwent slightly non-conservative mixing between low and intermediate salinities while there was an apparent additional DIC source at high salinity (> 20) in all seasons. TAlk concentrations exhibited even stronger variations, with evidence of both production and consumption in high salinity zones, and consistent TAlk consumption at intermediate salinity in summer and fall (June-December, 2009). The increases in DIC and TAlk at high salinity were attributed to aerobic respiration and denitrification in WB sediments during bay water recharge of the STE. We infer that the loss of TAlk at intermediate salinity reflects H± production as reduced compounds (e.g. Fe2+) are oxidized within the STE. In terms of impacts on surface water inorganic carbon budgets, the SGD-derived DIC flux was mainly controlled by seasonal changes in SGD while a combination of TAlk concentration variability and SGD drove the TAlk flux. SGD-derived DIC, aqueous CO2, and H± fluxes to the bay were ∼40-50% higher in summer vs. in winter, a result of enhanced marine groundwater flux and significant TAlk removal (proton addition) during periods of high seawater intrusion. Furthermore, the SGD-derived DIC flux was consistently greater than TAlk flux regardless of season, indicating that SGD serves to reduce the CO2 buffering capacity of surface water. Our results highlight the importance of seasonality and subsurface biogeochemical processes on the subterranean estuary carbonate system and the resulting impact on SGD-derived TAlk, DIC, aqueous CO2, and H± fluxes to the coastal ocean.

Continue reading ‘Carbonate system biogeochemistry in a subterranean estuary – Waquoit Bay, USA’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,475 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book