Posts Tagged 'biogeochemistry'

CO2 capture by pumping surface acidity to the deep ocean

The majority of IPCC scenarios call for active CO2 removal (CDR) to remain below 2oC of warm- ing. On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake: dissolution of deep ocean calcite deposits and terrestrial weathering of silicate rocks, acting on 1ka to 100ka timescales, respectively. Many current ocean-based CDR proposals effectively act to accelerate the latter. Here we present a method which relies purely on the redistribution and dilution of acidity from a thin layer of the surface ocean to a thicker layer of deep ocean, with the aim of reducing surface acidification and accelerating the former carbonate homeostasis. This downward transport could be seen analogous to the action of the natural biological carbon pump. The method offers advantages over other ocean CDR methods and direct air capture approaches (DAC): the conveyance of mass is minimized (acidity is pumped in situ to depth), and expensive mining, grinding and distribution of alkaline material is eliminated. No dilute substance needs to be concentrated, avoiding the Sherwood’s Rule costs typically encountered in DAC. Finally, no terrestrial material is added to the ocean, avoiding significant alteration of seawater ion concentrations or issues with heavy metal toxicity encountered in mineral-based alkalinity schemes. The artificial transport of acidity accelerates the natural deep ocean compensation by calcium carbonate. It has been estimated that the total compensation capacity of the ocean is on the order of 1500GtC. We show through simulation that pumping of ocean acidity could remove up to 150GtC from the atmosphere by 2100 with- out excessive increase of local ocean pH. For an acidity release below 2000m, the relaxation half-life of CO2 return to the atmosphere was found to be ∼2500 years (∼1000yr without account- ing for carbonate dissolution), with ∼85% retained for at least 300 years. The uptake efficiency and residence time were found to vary with the location of acidity pumping, and optimal areas were determined. Requiring only local resources (ocean water and energy), this method could be uniquely suited to utilize otherwise-unusable open ocean energy sources at scale. We examine technological pathways that could be used to implement it and present a brief techno-economic estimate of 130-250$/tCO2 at current prices and as low as 93$/tCO2 under modest learning-curve assumptions.

Continue reading ‘CO2 capture by pumping surface acidity to the deep ocean’

Large-scale interventions may delay decline of the Great Barrier Reef

On the iconic Great Barrier Reef (GBR), the cumulative impacts of tropical cyclones, marine heatwaves and regular outbreaks of coral-eating crown-of-thorns starfish (CoTS) have severely depleted coral cover. Climate change will further exacerbate this situation over the coming decades unless effective interventions are implemented. Evaluating the efficacy of alternative interventions in a complex system experiencing major cumulative impacts can only be achieved through a systems modelling approach. We have evaluated combinations of interventions using a coral reef meta-community model. The model consisted of a dynamic network of 3753 reefs supporting communities of corals and CoTS connected through ocean larval dispersal, and exposed to changing regimes of tropical cyclones, flood plumes, marine heatwaves and ocean acidification. Interventions included reducing flood plume impacts, expanding control of CoTS populations, stabilizing coral rubble, managing solar radiation and introducing heat-tolerant coral strains. Without intervention, all climate scenarios resulted in precipitous declines in GBR coral cover over the next 50 years. The most effective strategies in delaying decline were combinations that protected coral from both predation (CoTS control) and thermal stress (solar radiation management) deployed at large scale. Successful implementation could expand opportunities for climate action, natural adaptation and socioeconomic adjustment by at least one to two decades.

Continue reading ‘Large-scale interventions may delay decline of the Great Barrier Reef’

The Bouraké semi-enclosed lagoon (New Caledonia). A natural laboratory to study the life-long adaptation of a coral reef ecosystem to climate change-like conditions

According to current experimental evidence, coral reefs could disappear within the century if CO2 emissions remain unabated. However, recent discoveries of diverse and high cover reefs that already thrive under extreme conditions seem to contradict these projections. Volcanic CO2 vents, semi-enclosed lagoons and mangrove estuaries are unique study sites where one or more ecologically relevant parameters for life in the oceans are close or even worse than currently projected for the year 2100. These natural analogues of future conditions hold new hope for the future of coral reefs and provide unique natural laboratories to explore how reef species could keep pace with climate change. To achieve this, it is essential to characterize their environment as a whole, and accurately consider all possible environmental factors that may differ from what is expected in the future and that may possibly alter the ecosystem response.

In this study, we focus on the semi-enclosed lagoon of Bouraké (New Caledonia, SW Pacific Ocean) where a healthy reef ecosystem thrives in warm, acidified and deoxygenated water. We used a multi-scale approach to characterize the main physical-chemical parameters and mapped the benthic community composition (i.e., corals, sponges, and macroalgae). The data revealed that most physical and chemical parameters are regulated by the tide, strongly fluctuate 3 to 4 times a day, and are entirely predictable. The seawater pH and dissolved oxygen decrease during falling tide and reach extreme low values at low tide (7.2 pHT and 1.9 mg O2 L−1 at Bouraké, vs 7.9 pHT and 5.5 mg O2 L−1 at reference reefs). Dissolved oxygen, temperature, and pH fluctuates according to the tide of up to 4.91 mg O2 L−1, 6.50 °C, and 0.69 pHT units on a single day. Furthermore, the concentration of most of the chemical parameters was one- to 5-times higher at the Bouraké lagoon, particularly for organic and inorganic carbon and nitrogen, but also for some nutrients, notably silicates. Surprisingly, despite extreme environmental conditions and altered seawater chemical composition, our results reveal a diverse and high cover community of macroalgae, sponges and corals accounting for 28, 11 and 66 species, respectively. Both environmental variability and nutrient imbalance might contribute to their survival under such extreme environmental conditions. We describe the natural dynamics of the Bouraké ecosystem and its relevance as a natural laboratory to investigate the benthic organism’s adaptive responses to multiple stressors like future climate change conditions.

Continue reading ‘The Bouraké semi-enclosed lagoon (New Caledonia). A natural laboratory to study the life-long adaptation of a coral reef ecosystem to climate change-like conditions’

Tidal action and macroalgal photosynthetic activity prevent coastal acidification in an eutrophic system within a semi-desert region

Highlights

  • Macroalgal photosynthesis (MP) controls daily pH variability during low tide.
  • Environmental factors control pH variability at seasonal scale.
  • Ulva lactuca photosynthetic activity increased the pH of seawater.
  • Macrotidal action and MP prevent coastal acidification in an eutrophic system.

Abstract

Nutrient input drive macroalgal blooms and increases in photosynthetic activity in coastal ecosystems. An intense macroalgal photosynthetic activity can increase the surrounding pH and it could prevent the acidification that often follows an eutrophication process. We tested this hypothesis with field sampling and experiments in a macrotidal (up to 9 m in amplitude) coastal system within a semi-desert region with contrasting eutrophic conditions and Ulva lactuca blooms in the northern Argentinean Patagonia (San Antonio Bay). Our results indicate that daily pH variability during low tide could be controlled by the photosynthetic activity of Ulva lactuca under eutrophic conditions. At seasonal scale, the pH variations were related to environmental features, particularly seawater temperature. Both environmental (i.e. high solar radiation, negligible freshwater inputs and, large tidal action) and anthropogenic nutrient inputs into the studied area promote the Ulva lactuca blooms, which in turn increases the surrounding pH in well oxygenated seawater through the intense photosynthetic activity. Our study shows that eutrophication instead of being a driver of acidification, could contribute to its prevention in well oxygenated marine coastal systems located within semi-desert regions.

Continue reading ‘Tidal action and macroalgal photosynthetic activity prevent coastal acidification in an eutrophic system within a semi-desert region’

Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security

Highlights

  • Climate change would enhance the mobilization of pollutants.
  • Toxicity of pollutants to aquatic biota can increase with increasing climate change stressors.
  • Combined effects of climate change and pollutants can enhance bioaccumulation of pollutants in seafood organisms.

Abstract

This article provides an overview of the impacts of climate change stressors (temperature, ocean acidification, sea-level rise, and hypoxia) on estuarine and marine biota (algae, crustaceans, molluscs, corals, and fish). It also assessed possible/likely interactive impacts (combined impacts of climate change stressors and pollutants) on pollutants mobilization, pollutants toxicity (effects on growth, reproduction, mortality) and pollutants bioaccumulation in estuarine and marine biota. An increase in temperature and extreme events may enhance the release, degradation, transportation, and mobilization of both hydrophobic and hydrophilic pollutants in the estuarine and marine environments. Based on the available pollutants’ toxicity trend data and information it reveals that the toxicity of several high-risk pollutants may increase with increasing levels of climate change stressors. It is likely that the interactive effects of climate change and pollutants may enhance the bioaccumulation of pollutants in seafood organisms. There is a paucity of literature relating to realistic interactive effects of climate change and pollutants. Therefore, future research should be directed towards the combined effects of climate change stressors and pollutants on estuarine and marine bota. A sustainable solution for pollution control caused by both greenhouse gas emissions (that cause climate change) and chemical pollutants would be required to safeguard the estuarine and marine biota.

Continue reading ‘Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security’

Multiple ecological parameters affect living benthic foraminifera in the river-influenced west-central Bay of Bengal

The huge riverine influx and associated processes decrease the ambient salinity, stratify the water column, modulate the oxygen-deficient zone, and are also responsible for the recent acidification in the Bay of Bengal. Here, we have studied the effect of these riverine influx-dominated ecological parameters on living benthic foraminifera in the west-central Bay of Bengal. We report that the pH below 7.6 in front of the Krishna river, reduces the diversity and the richness of living benthic foraminifera on the adjacent shelf and the slope. A similar decreased diversity and richness is also observed in front of the Godavari River. We delineate three prominent assemblages, representing different depth zones with associated distinct physico-chemical conditions. The shallow water assemblage (∼27–100 m) is represented by Nonionella labradoricaHanzawaia nipponicaBrizalina dilatataAmmonia tepida, and Nonionella limbato-striata. These species are adapted to relatively warmer temperatures and more oxygenated waters. The deepwater assemblage (∼1,940–2,494 m) includes Bulimina cf. delreyensis, Bulimina marginataHormosinella guttiferaCassidulina laevigata, and Gyroidinoides subzelandica and can tolerate a relatively colder temperature. The intermediate-depth assemblage (∼145–1,500 m) dominated by Eubuliminella exilis, Bolivinellina earlandiFursenkoina spinosaBolivinellina lucidopunctataGlobobulimina globosa, Fursenkoina spinosa, Eubuliminella cassandrae, Uvigerina peregrina, Rotaliatinopsis semiinvoluta, and Cassidulina laevigata, represents oxygen-deficient and organic carbon-rich environment. Besides the pH, temperature, dissolved oxygen and organic matter, we also report a strong influence of bathymetry, coarse fraction (CF) and the type of organic matter on a few living benthic foraminifera. The ecological preferences of 40 such dominant living benthic foraminifera, each representing a specific environment, have also been reported for site-specific proxy. We conclude that although the huge riverine influx affects living benthic foraminifera on the shelf, the dissolved oxygen and organic carbon mostly control benthic foraminiferal distribution in the deeper west-central Bay of Bengal.

Continue reading ‘Multiple ecological parameters affect living benthic foraminifera in the river-influenced west-central Bay of Bengal’

Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach

Lithogenic elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (232Th and 230Th, given as Th) and protactinium (Pa) are often assumed to be insoluble. In this study, their dissolution from Saharan dust reaching Mediterranean seawater was studied through tank experiments over 3 to 4 d under controlled conditions including controls without dust addition as well as dust seeding under present and future climate conditions (+3 C and −0.3 pH). Unfiltered surface seawater from three oligotrophic regions (Tyrrhenian Sea, Ionian Sea and Algerian Basin) were used. The maximum dissolution was low for all seeding experiments: less than 0.3 % for Fe, 1 % for 232Th and Al, about 2 %–5 % for REEs and less than 6 % for Pa. Different behaviors were observed: dissolved Al increased until the end of the experiments, Fe did not dissolve significantly, and Th and light REEs were scavenged back on particles after a fast initial release. The constant 230Th/232Th ratio during the scavenging phase suggests that there is little or no further dissolution after the initial Th release. Quite unexpectedly, comparison of present and future conditions indicates that changes in temperature and/or pH influence the release of Th and REEs in seawater, leading to lower Th release and a higher light REE release under increased greenhouse conditions.

Continue reading ‘Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach’

Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment

Ecosystem feedbacks in response to ocean acidification can amplify or diminish the diel pH oscillations that characterize productive coastal waters. We report that benthic microalgae generate such oscillations in the porewater of cohesive sediment and ask how carbonation (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. To do so, we placed a 1-mm layer of ground oyster shells (Treatment) or sand (Control) onto intact sediment cores free of large dwelling fauna, and then gradually increased the pCO2 in the seawater above half of the Treatment and Control cores from 472 to 1216 μatm (pH 8.0 to 7.6, CO2:HCO3 from 4.8 to 9.6 x 10-4). Vertical porewater [O2] and [H+] microprofiles measured 16 d later showed that this carbonation had decreased O2 penetration in all cores, indicating a metabolic response. In carbonated seawater: (1) sediment biogeochemical processes added and removed more H+ to and from the porewater in darkness and light, respectively, than in ambient seawater increasing the amplitude of the dark–light porewater [H+] oscillations, and (2) the dissolution of calcite decreased the porewater [H+] below that in overlying seawater, reversing the dark sediment–seawater H+ flux and decreasing the amplitude of diel [H+] oscillations. This dissolution did not, however, counter the negative effect of carbonation on sediment O2 penetration. We hypothesise that the latter effect and the observed enhanced acidification of the sediment porewater were caused by an ecosystem feedback: a CO2-induced increase in the microbial reoxidation of reduced solutes with O2.

Continue reading ‘Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment’

The climate sensitivity of northern Greenland fjords is amplified through sea-ice damming

Record-high air temperatures were observed over Greenland in the summer of 2019 and melting of the northern Greenland Ice Sheet was particularly extensive. Here we show, through direct measurements, that near surface ocean temperatures in Sherard Osborn Fjord, northern Greenland, reached 4 °C in August 2019, while in the neighboring Petermann Fjord, they never exceeded 0 °C. We show that this disparity in temperature between the two fjords occurred because thick multi-year sea ice at the entrance of Sherard Osborn Fjord trapped the surface waters inside the fjord, which led to the formation of a warm and fresh surface layer. These results suggest that the presence of multi-year sea ice increases the sensitivity of Greenland fjords abutting the Arctic Ocean to climate warming, with potential consequences for the long-term stability of the northern sector of the Greenland Ice Sheet.

Continue reading ‘The climate sensitivity of northern Greenland fjords is amplified through sea-ice damming’

Evaluation of the effect of local water chemistry on trace metal accumulation in Puget Sound shellfish shows that concentration varies with species, size, and location

Global climate change is causing ocean acidification (OA), warming, and decreased dissolved oxygen (DO) in coastal areas, which can cause physiological stress and compromise the health of marine organisms. While there is increased focus on how these stressors will affect marine species, there is little known regarding how changes in water chemistry will impact the bioaccumulation of trace metals. This study compared trace metal concentrations in tissue of Mediterranean mussels (Mytilus galloprovincialis) and Olympia oysters (Ostrea lurida) in Puget Sound, Washington, a region that experiences naturally low pH, seasonal hypoxia, and is surrounded by urbanized and industrialized areas. Shellfish were held at three sites (Carr Inlet, Point Wells, and Dabob Bay) where oceanographic data was continuously collected using mooring buoys. Using inductively coupled plasma mass-spectrometry (ICP-MS) to measure trace metals in the tissue, we found differences in accumulation of trace metals based on species, location, and shellfish size. Our study found differences between sites in both the mean metal concentrations and variability around the mean of those concentrations in bivalves. However, high metal concentrations in bivalves were not associated with high concentrations of metals in seawater. Metal concentrations in shellfish were associated with size: smaller shellfish had higher concentrations of metals. Carr Inlet at 20 m depth had the smallest shellfish and the highest metal concentrations. While we could not eliminate possible confounding factors, we also found higher metal concentrations in shellfish associated with lower pH, lower temperature, and lower dissolved oxygen (conditions seen at Carr Inlet at 20 m and to a lesser extent at Point Wells at 5 m depth). There were also significant differences in accumulation of metals between oysters and mussels, most notably copper and zinc, which were found in higher concentrations in oysters. These findings increase our understanding of spatial differences in trace metal bioaccumulation in shellfish from Puget Sound. Our results can help inform the Puget Sound aquaculture industry how shellfish may be impacted at different sites as climate change progresses and coastal pollution increases.

Continue reading ‘Evaluation of the effect of local water chemistry on trace metal accumulation in Puget Sound shellfish shows that concentration varies with species, size, and location’

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,450,968 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book