Posts Tagged 'Policy'

Overlooked ocean strategies to address climate change

Highlights

• Paris Agreement Parties have largely overlooked the ocean-climate relationship.

• Ocean impacts, mitigation, adaptation must be included in climate mitigation.

• Four ocean-climate linkages suggest specific responses by Parties.

• These linkages inform a systematic approach to ocean issues under the Agreement.

Abstract

The U.N. Framework Convention on Climate Change’s (UNFCCC’s) Paris Agreement—which aims to limit climate change and increase global resilience to its effects—was a breakthrough in climate diplomacy, committing its Parties to develop and update national climate plans. Yet the Parties to the Agreement have largely overlooked the effect of climate change on ocean-based communities, economies, and ecosystems—as well as the role that the ocean can play in mitigating and adapting to climate change. Because the ocean is an integral part of the climate system, stronger inclusion of ocean issues is critical to achieving the Agreement’s goals. Here we discuss four ocean-climate linkages that suggest specific responses by Parties to the Agreement connected to 1) accelerating climate ambition, including via sustainable ocean-based mitigation strategies; 2) focusing on CO2 emissions to address ocean acidification; 3) better understanding ocean-based mitigation; and 4) pursuing ocean-based adaptation. These linkages offer a more complete perspective on the reasons strong climate action is necessary and inform a systematic approach for addressing ocean issues under the Agreement to strengthen climate mitigation and adaptation.

Continue reading ‘Overlooked ocean strategies to address climate change’

Connecting science to policymakers, managers, and citizens

Twenty years ago, the creation of a new scientific program, the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), funded by the Packard Foundation, provided the opportunity to integrate—from the outset—research, monitoring, and outreach to the public, policymakers, and managers. PISCO’s outreach efforts were initially focused primarily on sharing scientific findings with lay audiences, but over time they evolved to a more interactive, multi-directional mode of engagement. Over the next two decades, PISCO science and scientists significantly influenced local, state, federal, and international decisions about many topics, but especially marine protected areas, hypoxia, ocean acidification, fishery management, and marine diseases. PISCO scientists’ long-term data and understanding of key ecosystem processes also enabled them to detect anomalies, investigate rapidly, and inform others about novel developments such as hypoxia, acidification, warming, and disease. Especially during a time of dynamic changes in ecosystems, long-term data like PISCO’s have proven invaluable. Moreover, PISCO’s dual focus on understanding fundamental processes and finding solutions (not just identifying problems) has resulted in rich opportunities to co-create knowledge with citizens and translate that knowledge into action by citizens, managers, and policymakers. PISCO has delivered on its goal to serve society through science.

Continue reading ‘Connecting science to policymakers, managers, and citizens’

The dynamics and impact of ocean acidification and hypoxia: insights from sustained investigations in the Northern California Current Large Marine Ecosystem

Coastal upwelling ecosystems around the world are defined by wind-generated currents that bring deep, nutrient-rich waters to the surface ocean where they fuel exceptionally productive food webs. These ecosystems are also now understood to share a common vulnerability to ocean acidification and hypoxia (OAH). In the California Current Large Marine Ecosystem (CCLME), reports of marine life die-offs by fishers and resource managers triggered research that led to an understanding of the risks posed by hypoxia. Similarly, unprecedented losses from shellfish hatcheries led to novel insights into the coastal expression of ocean acidification. Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) scientists and other researchers in the CCLME responded to the rise of OAH with new ocean observations and experiments. This work revealed insights into the expression of OAH as coupled environmental stressors, their temporal and spatial variability, and impacts on species, ecological communities, and fisheries. Sustained investigations also deepened the understanding of connections between climate change and the intensification of hypoxia, and are beginning to inform the ecological and eco-evolutionary processes that can structure responses to the progression of ocean acidification and other pathways of global change. Moreover, because the severity of the die-offs and hatchery failures and the subsequent scientific understanding combined to galvanize public attention, these scientific advances have fostered policy advances. Across the CCLME, policymakers are now translating the evolving scientific understanding of OAH into new management actions.

Continue reading ‘The dynamics and impact of ocean acidification and hypoxia: insights from sustained investigations in the Northern California Current Large Marine Ecosystem’

(Re)framing ocean acidification in the context of the United Nations Framework Convention on climate change (UNFCCC) and Paris Agreement

Ocean acidification is most frequently framed by the scientific community as a concurrent threat to climate change, rather than an effect of it. This separation of the two phenomena has long been deemed as a way of garnering heightened policy attention for ocean acidification rather than having it bound up in the often contested politics of climate change. This effort, however, appears to have resulted in the inadvertent placing of ocean acidification outside of the mandate of the United Nations Framework Convention on Climate Change (UNFCCC). This has created a significant gap in the global governance of this issue with no multilateral agreement understood as having jurisdiction over the mitigation of rising ocean acidity. For these reasons this paper argues that an alternative framing of ocean acidification as an effect of climate change is warranted. This would include ocean acidification in the core obligations of the Convention, thereby filling the mitigation governance gap and avoiding perverse implementation outcomes. It is contended that interpreting the UNFCCC in this way is more consistent with its objective and purpose than the existing interpretations that place ocean acidification beyond the remit of the Convention.

Continue reading ‘(Re)framing ocean acidification in the context of the United Nations Framework Convention on climate change (UNFCCC) and Paris Agreement’

Ocean acidification refugia in variable environments

Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.

Continue reading ‘Ocean acidification refugia in variable environments’

Professional development training in ocean acidification: a case study of marine resource managers

Ocean acidification (OA) is the result of increasing concentrations of anthropogenic carbon dioxide (CO2) emissions, leading to a suite of alterations to specific parameters of ocean chemistry, which can negatively impact many marine organisms and ecosystems. Understanding how to measure and monitor the chemistry of OA will require specialized education and training, which may be important for the marine resource managers called upon to devise management strategies in response to the impacts of OA. We can best serve these OA ‘first responders’ by making this information more accessible via appropriate educational products that enhance their learning and empower effective management decision-making. For this study, we designed, developed, and piloted a professional training program on measuring and monitoring OA chemistry for marine resource managers in the Pacific Northwest. A companion survey was also developed in conjunction to assess outcomes in learning and professional behavior. Our participants demonstrated learning gains in key OA chemistry concepts, as well as changes in factors that indicated behavioral change. We present a training framework and its associated resources that science educators can use to deliver comparable training programs or build educational products to aid informal adult audiences in understanding and interpreting OA chemistry.

Continue reading ‘Professional development training in ocean acidification: a case study of marine resource managers’

The Great Barrier Reef: vulnerabilities and solutions in the face of ocean acidification

As living carbonate-based structures, coral reefs are highly vulnerable to ocean acidification. The Great Barrier Reef (GBR) is the largest continuous coral reef system in the world. Its economic, social, and icon assets are valued at AU$56 billion (Deloitte Access Economics, 2017), owing to its vast biodiversity and services related to commercial and recreational fisheries, shoreline protection, and reef-related tourism and recreation. Ocean acidification poses a significant risk to these ecological and socioeconomic services, threatening not only the structural foundation of the GBR but the livelihoods of reef-dependent sectors of society. To assess the vulnerabilities of the GBR to ocean acidification, we review the characteristics of the GBR and the current valuation and factors affecting potential losses across three major areas of socioeconomic concern: fisheries, shoreline protection, and reef-related tourism and recreation. We then discuss potential solutions, both conventional and unconventional, for mitigating ocean acidification impacts on the GBR and propose a suite of actions that would help assess and increase the region’s preparedness for the effects of ocean acidification.

Continue reading ‘The Great Barrier Reef: vulnerabilities and solutions in the face of ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,298,066 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book