Posts Tagged 'Policy'

Prioritizing coastal ecosystem stressors in the Northeast United States under increasing climate change

Highlights

• Survey and workshop ranked impacts of stressors on marine and coastal ecosystems.
• Includes ranking of current impacts and future impacts under climate change.
• Describes methodology that could be applied to other geographies or scales.
• Methods allow decision-makers to address environmental impacts under climate change.

Abstract

Coastal and marine ecosystems around the world are under threat from a growing number of anthropogenic impacts, including climate change. Resource managers, researchers, policy makers, and coastal community planners are tasked with identifying, developing, and monitoring strategies to reduce or reverse the ecological, economic and social impact of environmental stressors. These individuals must make decisions about how to prioritize and allocate finite resources to address these issues, all under conditions of significant uncertainty about which of these stressors to address. This paper presents the results of a survey and workshop designed to rank the impact of a series of stressors on four components of the marine and coastal ecosystems of the Northeast United States. The methodology described here – expert elicitation supplemented by workshop deliberations – proved to be relatively cost-effective, time-efficient, and informative for identifying priority stressors for the ecosystem components under consideration, both now and in the future.

Continue reading ‘Prioritizing coastal ecosystem stressors in the Northeast United States under increasing climate change’

Ocean commitments under the Paris Agreement

Under the Paris Agreement nations made pledges known as nationally determined contributions (NDCs), which indicate how national governments are evaluating climate risks and policy opportunities. We find that NDCs reveal important systematic patterns reflecting national interests and capabilities. Because the ocean plays critical roles in climate mitigation and adaptation, we created a quantitative marine focus factor (MFF) to evaluate how governments address marine issues. In contrast to the past, when oceans received minimal attention in climate negotiations, 70% of 161 NDCs we analysed include marine issues. The percentage of the population living in low-lying areas—vulnerable to rising seas—positively influences the MFF, but negotiating group (Annex 1 or small island developing states) is equally important, suggesting political motivations are crucial to NDC development. The analysis reveals gaps between scientific and government attention, including on ocean deoxygenation, which is barely mentioned. Governments display a keen interest in expanding marine research on climate priorities.

Continue reading ‘Ocean commitments under the Paris Agreement’

Climate change–contaminant interactions in marine food webs: toward a conceptual framework

Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change–contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change–contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change–contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.

Continue reading ‘Climate change–contaminant interactions in marine food webs: toward a conceptual framework’

Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change

Highlights

  • Under the RCP 8.5 scenario, tropical Pacific temperature will rise by ≥ 3 °C by 2100.
  • This is accompanied by declines in dissolved oxygen, pH, and net primary production.
  • This will lead to local extinctions of up to 80% of marine species in some regions.
  • 9 of 17 Pacific Island entities experience ≥ 50% declines in maximum catch potential.
  • Impacts can be greatly reduced by mitigation measures under the RCP 2.6 scenario.


Abstract

The increase in anthropogenic CO2 emissions over the last century has modified oceanic conditions, affecting marine ecosystems and the goods and services that they provide to society. Pacific Island countries and territories are highly vulnerable to these changes because of their strong dependence on ocean resources, high level of exposure to climate effects, and low adaptive capacity. Projections of mid-to-late 21st century changes in sea surface temperature (SST), dissolved oxygen, pH, and net primary productivity (NPP) were synthesized across the tropical Western Pacific under strong climate mitigation and business-as-usual scenarios. These projections were used to model impacts on marine biodiversity and potential fisheries catches. Results were consistent across three climate models, indicating that SST will rise by ≥ 3 °C, surface dissolved oxygen will decline by ≥ 0.01 ml L−1, pH will drop by ≥ 0.3, and NPP will decrease by 0.5 g m−2 d−1 across much of the region by 2100 under the business-as-usual scenario. These changes were associated with rates of local species extinction of > 50% in many regions as fishes and invertebrates decreased in abundance or migrated to regions with conditions more suitable to their bio-climate envelope. Maximum potential catch (MCP) was projected to decrease by > 50% across many areas, with the largest impacts in the western Pacific warm pool. Climate change scenarios that included strong mitigation resulted in substantial reductions of MCP losses, with the area where MCP losses exceeded 50% reduced from 74.4% of the region under business-as-usual to 36.0% of the region under the strong mitigation scenario.

Continue reading ‘Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change’

Assessment and management of cumulative impacts in California’s network of marine protected areas

In response to concerns about human impacts to coastal ecosystems, conservationists and practitioners are increasingly turning to networks of marine protected areas (MPAs). Although MPAs manage for fishing pressure, many species and habitats in MPAs remain exposed to a multitude of stressors, including stressors from global climate change and regional land- and ocean-based activities. To support the adaptive management of MPAs that are subject to multiple interacting stressors, coastal managers need to understand the potential impacts from other single and multiple stressors. To demonstrate how this can be done, we quantify and map cumulative impacts resulting from multiple stressors to California’s network of MPAs, using a widely available cumulative impacts mapping tool. Among individual stressors, those related to climate, including ocean acidification, UV radiation increases, and SST anomalies, were found to have the most intense impacts, especially on surface waters and in the rocky intertidal. Climate stressors are challenging to limit at the local MPA scale, but intense land- and ocean-based impacts that were found to affect a majority of MPAs, such as sediment increases, invasive species, organic pollutants and pollution from shipping and ports, may be more easily regulated at a regional or local scale. This is especially relevant for South and Central coast MPAs where these impacts are the greatest on beaches, tidal flats, and coastal marshes. Accounting for cumulative impacts from these and other stressors when developing monitoring and management plans in California and across the world, would help to improve the efficacy of MPAs.

Continue reading ‘Assessment and management of cumulative impacts in California’s network of marine protected areas’

A perspective for reducing environmental impacts of mussel culture in Algeria

Purpose

In Algeria, the Ministry of Fisheries and Halieutic Resources has designed a strategic plan for the development of marine aquaculture for the years 2015–2025, which aims at expanding the annual production of Mediterranean mussel from less than 150 metric tonnes year−1 in 2013 to 7600 metric tonnes year−1 in 2025. We used Life Cycle Assessment (LCA) for evaluating the environmental impact of suspended mussel culture in Algeria and suggest management practices which could reduce it.

Methods

In order to estimate the current and perspective impact of this industry, we (1) applied LCA to one of the few farms currently operating in Algeria and (2) investigated two management scenarios for the farms to be established in the future in the same coastal area. The first scenario (Comp_S) represents the continuity with the current situation, in which each farm is competing with the other ones and is therefore managing the production cycle independently. In the second scenario (Coop_S), mussel farms are grouped in an aquaculture management area and shared the same facilities for post-processing harvested mussels before sending them to the market. The midpoint-based CML-IA method baseline 2000 V 3.01 was employed using SimaPro software. Furthermore, we carried out a Monte Carlo simulation, in order to assess the uncertainty in the results.

Results and discussion

The analysis focused on impact categories related to acidification and global warming potential. We took into account the energy consumptions (electricity and vessel fuel), the rearing infrastructure, including longlines, and a building for stabling, grading, and packing the mussel. Electricity contributes with 38.1 and 31.8 % respectively to global warming potential (GWP) and acidification, while fuel consumption contributes with 19.5 % to GWP and 31.8 % to acidification. Results of this work are compared with other LCA studies recently carried out in France (Aubin and Fontaine 2014) and in Spain (Iribarren et al. 2010c).

Conclusions

The LCA results show that important reductions in environmental impacts could be attained if the mussel farming activity would be operated according to the cooperative scenario here proposed. In this case, the environmental benefits will be a reduction of 3150 MJ and 156 kg CO2 eq per metric tonne of mussel produced, compared with the alternative scenario. The results of this study suggest that LCA should be applied to the seafood production sector in Algeria, in order to identify best management practices.

Continue reading ‘A perspective for reducing environmental impacts of mussel culture in Algeria’

Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities

Anthropogenic modifications of marine environments result from a variety of activities and have effects across social and ecological dimensions. Humans inhabit linked systems, where our actions such as resource extraction, pollution and development influence species in both direct and indirect ways and feedback to influence the human communities dependent on living marine resources. In order to understand the consequences of our actions and develop strategies to plan for future environmental change, we need a diverse set of tools able to incorporate various levels of complexity. This necessitates the improvement and modification of existing tools, development of novel approaches and unique applications of methods from across fields. In this dissertation I address the ways in which we can use and improve existing tools in ecology to advance our understanding and management of marine resources. In the first Chapter I introduce a method to incorporate life stage specific responses to a stressor, ocean acidification, to gain a broader understanding of population level vulnerability. In the second Chapter I extend this work to address ecosystem level change from ocean acidification in the California Current, using an ecosystem model to determine changes in biomass and fisheries catch. In the third chapter, I work to improve our understanding of how multiple stressors acting across life history can be magnified or mitigated, based solely on biological characteristics of populations. Finally, in the fourth Chapter I introduce ecologists and natural scientists to a broader understanding of research on risk in order to improve our methods for approaching ecosystem based fisheries management. My work spans ecological scales from populations to ecosystems and links between social and ecological systems.

Continue reading ‘Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,040,102 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book