Posts Tagged 'Baltic'

Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms

In contrast to clear stimulatory effects of rising temperature, recent studies of the effects of CO2 on planktonic bacteria have reported conflicting results. To better understand the potential impact of predicted climate scenarios on the development and performance of bacterial communities, we performed bifactorial mesocosm experiments (pCO2 and temperature) with Baltic Sea water, during a diatom dominated bloom in autumn and a mixed phytoplankton bloom in summer. The development of bacterial community composition (BCC) followed well-known algal bloom dynamics. A principal coordinate analysis (PCoA) of bacterial OTUs (operational taxonomic units) revealed that phytoplankton succession and temperature were the major variables structuring the bacterial community whereas the impact of pCO2 was weak. Prokaryotic abundance and carbon production, and organic matter concentration and composition were partly affected by temperature but not by increased pCO2. However, pCO2 did have significant and potentially direct effects on the relative abundance of several dominant OTUs; in some cases, these effects were accompanied by an antagonistic impact of temperature. Our results suggest the necessity of high-resolution BCC analyses and statistical analyses at the OTU level to detect the strong impact of CO2 on specific bacterial groups, which in turn might also influence specific organic matter degradation processes.

Continue reading ‘Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms’

The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment

Seagrasses are distributed across the globe and their communities may play key roles in the coastal ecosystems. Seagrass meadows are expected to benefit from the increased carbon availability which might be used in photosynthesis in a future high CO2 world. The main aim of this study was to examine the effect of elevated pCO2 on the net photosynthesis of seagrass Zostera marina in a brackish water environment. The short-term mesocosm experiments were conducted in Kõiguste Bay (northern part of Gulf of Riga, the Baltic Sea) in June–July 2013 and 2014. As the levels of pCO2 naturally range from ca. 150 μatm to well above 1000 μatm under summer conditions in Kõiguste Bay we chose to operate in mesocosms with the pCO2 levels of ca. 2000, ca. 1000, and ca. 200 μatm. Additionally, in 2014 the photosynthesis of Z. marina was measured outside of the mesocosm in the natural conditions. In the shallow coastal Baltic Sea seagrass Z. marina lives in a highly variable environment due to seasonality and rapid changes in meteorological conditions. This was demonstrated by the remarkable differences in water temperatures between experimental years of ca. 8°C. Thus, the current study also investigated the effect of elevated pCO2 in combination with short-term natural fluctuations of environmental factors, i.e., temperature and PAR on the photosynthesis of Z. marina. Our results show that elevated pCO2 alone did not enhance the photosynthesis of the seagrass. The photosynthetic response of Z. marina to CO2 enrichment was affected by changes in water temperature and light availability.

Continue reading ‘The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment’

Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response

Increased maintenance costs at cellular, and consequently organism level, are thought to be involved in shaping the sensitivity of marine calcifiers to ocean acidification (OA). Yet, knowledge of the capacity of marine calcifiers to undergo metabolic adaptation is sparse. In Kiel Fjord, blue mussels thrive despite periodically high seawater PCO2, making this population interesting for studying metabolic adaptation under OA. Consequently, we conducted a multi-generation experiment and compared physiological responses of F1 mussels from ‘tolerant’ and ‘sensitive’ families exposed to OA for 1 year. Family classifications were based on larval survival; tolerant families settled at all PCO2 levels (700, 1120, 2400 µatm) while sensitive families did not settle at the highest PCO2 (≥99.8% mortality). We found similar filtration rates between family types at the control and intermediate PCO2 level. However, at 2400 µatm, filtration and metabolic scope of gill tissue decreased in tolerant families, indicating functional limitations at the tissue level. Routine metabolic rates (RMR) and summed tissue respiration (gill and outer mantle tissue) of tolerant families were increased at intermediate PCO2, indicating elevated cellular homeostatic costs in various tissues. By contrast, OA did not affect tissue and routine metabolism of sensitive families. However, tolerant mussels were characterised by lower RMR at control PCO2 than sensitive families, which had variable RMR. This might provide the energetic scope to cover increased energetic demands under OA, highlighting the importance of analysing intra-population variability. The mechanisms shaping such difference in RMR and scope, and thus species’ adaptation potential, remain to be identified.

Continue reading ‘Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response’

Impact of environmental factors on bacterioplankton communities

Aquatic bacteria are main drivers of biogeochemical cycles and contribute predominantly to organic matter and nutrient recycling. As a high biodiversity is assumed to stabilize ecosystem functioning, it is necessary to understand the bacterial community dynamics and their structuring factors. It is known that different taxa are dominant across different habitats and seasons. This indicates an occurrence of species sorting by community structuring environmental factors. A first attempt for the understanding of bacterial distribution is to test for a correlation between microbial composition and measured environmental variables. In order to get further insights into the impact of environmental factors on bacterial communities, this thesis assessed the influence of major structuring drivers by using 16S rRNA gene amplicon sequencing, bacterial bulk parameters and interdisciplinary approaches in laboratory experiments and field studies.

In a field study in the Benguela upwelling system, the influence of different levels of primary production and the planktonic succession on bacterial community composition and its development was investigated. Community analysis revealed a clustering of different microbial assemblages along aging upwelled water. This zonation was mainly driven by phytoplankton composition and abundance and the spatial differences were comparable with a temporal succession that occurs during phytoplankton blooms in temperate coastal waters. A dominance of Bacteroidetes and Gammaproteobacteria was observed during algal blooming and high abundance of “Pelagibacterales” was found in regions with low algal abundance. Overall, this study highlightes the strong impact of quality and quantity of phytoplankton and nutrients on the bacterial communities.

A laboratory experiment with Baltic Sea water was performed to better understand the potential impact of rising temperature and CO2 on planktonic bacteria. The development of the bacterial community composition was followed in bifactorial mesocosm experiments during a diatom bloom in autumn and a phytoplankton bloom in summer. The results confirmed that phytoplankton succession and temperature were the major variables structuring the bacterial community. The impact of CO2 on the broad community was weak but high-resolution community analyses revealed a strong effect on specific bacterial groups, which might play important roles in specific organic matter degradation processes.

The response of bacterial communities to a disturbance by a saline intrusion could be investigated during a major Baltic inflow event. Community structuring factors were dominated by mixing of the inflow water with the former bottom water. Although the inflow had a selecting effect on the bacterial community, some immigrated taxa showed increased potential activity and seem to profit from changing environmental conditions. These results suggest a potential impact of inflow events on bacterial functions and therefore on biogeochemical processes.

Altogether, the results confirm the strong structuring effects of environmental conditions on bacterial community composition. Furthermore, high-resolution sequencing enabled an identification of specific affected taxa, which in turn give first clues for the impact of the investigated factors on specific bacterial functions.

Continue reading ‘Impact of environmental factors on bacterioplankton communities’

Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment (update)

Community approaches to investigating ocean acidification (OA) effects suggest a high tolerance of micro- and mesozooplankton to carbonate chemistry changes expected to occur within this century. Plankton communities in the coastal areas of the Baltic Sea frequently experience pH variations partly exceeding projections for the near future both on a diurnal and seasonal basis. We conducted a large-scale mesocosm CO2 enrichment experiment ( ∼  55 m3) enclosing the natural plankton community in Tvärminne–Storfjärden for 8 weeks during June–August 2012 and studied community and species–taxon response of ciliates and mesozooplankton to CO2 elevations expected for this century. In addition to the response to fCO2, we also considered temperature and chlorophyll a variations in our analyses. Shannon diversity of ciliates significantly decreased with fCO2 and temperature with a greater dominance of smaller species. The mixotrophic Myrionecta rubra seemed to indirectly and directly benefit from higher CO2 concentrations in the post-bloom phase through increased occurrence of picoeukaryotes (most likely Cryptophytes) and Dinophyta at higher CO2 levels. With respect to mesozooplankton, we did not detect significant effects for either total abundance or for Shannon diversity. The cladocera Bosmina sp. occurred at distinctly higher abundance for a short time period during the second half of the experiment in three of the CO2-enriched mesocosms except for the highest CO2 level. The ratio of Bosmina sp. with empty to embryo- or resting-egg-bearing brood chambers, however, was significantly affected by CO2, temperature, and chlorophyll a. An indirect CO2 effect via increased food availability (Cyanobacteria) stimulating Bosmina sp. reproduction cannot be ruled out. Although increased regenerated primary production diminishes trophic transfer in general, the presence of organisms able to graze on bacteria such as cladocerans may positively impact organic matter transfer to higher trophic levels. Thus, under increasing OA in cladoceran-dominated mesozooplankton communities, the importance of the microbial loop in the pelagic zone may be temporarily enhanced and carbon transfer to higher trophic levels may be stimulated.

Continue reading ‘Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment (update)’

The adaptive potential of early life-stage Fucus vesiculosus under multifactorial environmental change

Multiple global and local stressors threaten populations of the bladderwrack Fucus vesiculosus (Phaeophyceae). Baltic F. vesiculosus populations presumably have a lower genetic diversity compared to other populations. I investigated the adaptive potential under multifactorial environmental change in F. vesiculosus germlings. Effects of warming and acidification were crossed during one year at the two levels “present” and “future” (according to the year 2110) at the “Kiel Outdoor Benthocosms” by applying delta-treatments. Effects of warming varied with season while acidification showed generally weak effects. The two factors “ocean acidification and warming” (OAW) and nutrients were crossed showing that nutrient enrichment mitigated heat stress. Germlings previously treated under the OAW x nutrient experiment were subsequently exposed to a simulated hypoxic upwelling. Sensitivity to hypoxia was enhanced by the previous OAW conditions. Difference in the performance of genetically different sibling groups and diversity level were observed indicating an increased adaptive potential at higher genetic diversity. Different sibling groups were analysed under multiple factors to test correlations of genotypic sensitivities. Sensitivity towards warming, acidification and nutrient enrichment correlated positively while sensitivities towards OAW and hypoxia showed a negative correlation demonstrating that genotypes previously selected under OAW are sensitive to hypoxic upwelling. In a literature review, responses of marine organisms to climate change were analysed through different levels of biological organisation showing that climate change has different effects on each single level of biological organisation. This study highlights that global change research requires an upscaling approach with regard to multiple factors, seasons, natural fluctuations, different developmental stages and levels of biological organisation in the light of the adaptive potential.

Continue reading ‘The adaptive potential of early life-stage Fucus vesiculosus under multifactorial environmental change’

Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions (update)

The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ∼  55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July–August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria–phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO2-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.

Continue reading ‘Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions (update)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,191 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book