Posts Tagged 'adaptation'

Resilience of the temperate coral Oculina arbuscula to ocean acidification extends to the physiological level

Both juvenile and adult life stages of the temperate scleractinian coral Oculina arbuscula are resilient to the effects of moderate ocean acidification (OA) in contrast to many tropical corals in which growth and calcification rates are suppressed. Here, potential mechanisms of resilience to OA related to photosynthetic physiology and inorganic carbon processing were studied in adult O. arbuscula colonies. After exposing colonies to ambient and elevated carbon dioxide (CO2) treatments for 7 weeks, photosynthetic performance was characterized using photosynthesis versus irradiance experiments, chlorophyll fluorescence kinetics, and algal pigment content. Inorganic carbon-processing capabilities were assessed by measurement of internal and external carbonic anhydrase activity of the coral host, internal carbonic anhydrase activity of symbiotic algae, and the reliance of photosynthesis on external carbonic anhydrase. Photosynthetic physiology was unaffected by OA ruling out the possibility that resilience was mediated by increased photosynthetic energy supply. Carbonic anhydrase activities were maintained at elevated CO2 suggesting no major rearrangements of the inorganic carbon-processing machinery, but this could be a sign of resilience since tropical corals often down-regulate carbonic anhydrases at high CO2. The general lack of effect of ocean acidification on these physiological traits suggests other characteristics, such as maintenance of calcifying fluid pH and ability to acquire energy from heterotrophy, may be more important for the resilience of O. arbuscula to OA.

Continue reading ‘Resilience of the temperate coral Oculina arbuscula to ocean acidification extends to the physiological level’

Estuarine conditions more than pH modulate the physiological flexibility of mussel Perumytilus purpuratus populations


  • Living under estuarine conditions causes physiological stress.
  • Estuarine conditions more than pH modulated the mussel performance and phenotypic plasticity.
  • Environmental variability of the habitat determines the phenotypic plasticity.
  • Environmental conditions of native habitats define the sensibility to climate change stressors.


Coasts and their marine biota are exposed to major environmental heterogeneity as a consequence of natural drivers and anthropogenic stressors. Here, individuals of the mussel Perumytilus purpuratus from two different geographical populations exposed to contrasting environmental conditions (i.e. estuarine versus open coastal conditions) were used in a reciprocal transplant and a laboratory experiment in order to differential levels of local adaptation to their native sites, and sensibility to ocean acidification. After characterizing environmentally the two study sites, a set of life-history traits, as well as an estimated of the level of phenotypic plasticity were determined for both mussel populations. From the reciprocal transplant experiment, we observed that mussels originally coming from the estuarine habitat exhibited a distinctive performance pattern usually associated to physiological stress (i.e. higher metabolic rates, lower calcification and growth rates) leading also to important physiological trade-offs, and higher levels of phenotypic plasticity. Alternatively, mussels originating from the open coastal site showed lower physiological phenotypic plasticity suggesting a high grade of local adaptation. Contrary to expected, both populations responded very similar to lower pH conditions (i.e. increased metabolic rates with no important effects on growth and calcification, and lower physiological phenotypic plasticity). The study results indicated that overall estuarine conditions more than isolated pH would be modulating the performance and the level of phenotypic plasticity of the different P. purpuratus geographical populations studied. Our study also emphasizes the necessity of characterizing phenotypic plasticity under multiple-driver environments in order to cast more accurate predictions about the susceptibility of marine biota to future climate stressors such as the ocean acidification.

Continue reading ‘Estuarine conditions more than pH modulate the physiological flexibility of mussel Perumytilus purpuratus populations’

DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis


  • Low pH stress resulted in hyper- and hypo-methylated genes in the pediveliger larvae of the Hong Kong oyster
  • Differentially methylated loci were concentrated in the exon region within the gene bodies
  • High capability of oyster larvae to acclimate and adapt to low pH condition within single generation despite poor habitat selection for attachment
  • Differential methylation is associated to higher metamorphosis success rate and poor larval substratum selection under low pH stress.


Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Continue reading ‘DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis’

Long-term m5C methylome dynamics parallel phenotypic adaptation in the cyanobacterium Trichodesmium

A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in non-model, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1000+ generations) with the biogeochemically-important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.

Continue reading ‘Long-term m5C methylome dynamics parallel phenotypic adaptation in the cyanobacterium Trichodesmium’

The marine gastropod Crepidula fornicata remains resilient to ocean acidification across two life history stages

Rising atmospheric CO2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO2 continues rising. The common slipper shell snail Crepidula fornicata is a resilient marine gastropod native to eastern North America, which has been a successful invader along the western European coastline and elsewhere. To examine its potential resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e. carryover effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24 and 48 hours) pH treatment (7.5, 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and gene expression responses highlight the role of transcriptome plasticity in OA resilience. Larvae did not exhibit reduced growth under OA until they were at least 4 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely serve as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Delayed metamorphosis was observed for larvae reared at reduced pH. Although juvenile size reflected larval rearing pH conditions, no carryover effects in juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Time course transcriptomic analyses suggest energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity can allow highly resilient organisms, like C. fornicata, acclimate to reduced pH environments.

Continue reading ‘The marine gastropod Crepidula fornicata remains resilient to ocean acidification across two life history stages’

Increased light availability enhances tolerance against ocean acidification stress in Halimeda opuntia

Although the adverse impacts of ocean acidification (OA) on marine calcifiers have been investigated substantially, the anti-stress abilities regulated by increased light availability are unclear. Herein, the interactive effects of three light levels combined with two pCO2 concentrations on the physiological acclimation of the calcifying macroalga Halimeda opuntia were investigated using a pCO2–light coupling experiment. The results indicate that OA exhibits an adverse role in influencing algal growth, calcification, photosynthesis and other physiological performances in H. opuntia. The relative growth rate in elevated pCO2 significantly declined by 13.14%–41.29%, while net calcification rates decreased by nearly three-fold under OA. Notably, increased light availability could enhance stress resistance by the accumulation of soluble organic molecules, especially soluble carbohydrate, soluble protein and free amino acids, and in combination with metabolic enzyme-driven activities alleviated OA stress. Carotenoid content in low light conditions accumulated remarkably and rapid light curves for relative electron transport rate was significantly enhanced by increasing light intensities, indicating that this new organization of the photosynthetic machinery in H. opuntia accommodated light variations and elevated pCO2 conditions. Taken together, the results describe stress resistance by the enhancement of metabolic performance in marine calcifiers to mitigate OA stress.

Continue reading ‘Increased light availability enhances tolerance against ocean acidification stress in Halimeda opuntia’

Cross‐generational effects of climate change on the microbiome of a photosynthetic sponge

Coral reefs are facing increasing pressure from rising seawater temperatures and ocean acidification. Sponges have been proposed as possible winners in the face of climate change; however, little is known about the mechanisms underpinning their predicted tolerance. Here we assessed whether microbiome‐mediated cross‐generational acclimatization could enable the photosynthetic sponge Carteriospongia foliascens to survive under future climate scenarios. To achieve this, we first established the potential for vertical (cross‐generational) transmission of symbionts. Sixty‐four amplicon sequence variants accounting for >90% of the total C. foliascens microbial community were present across adult, larval and juvenile life stages, showing that a large proportion of the microbiome is vertically acquired and maintained. When C. foliascens were exposed to climate scenarios projected for 2050 and 2100, the host remained visibly unaffected (i.e. no necrosis/bleaching) and the overall microbiome was not significantly different amongst treatments in adult tissue, the respective larvae or recruits transplanted amongst climate treatments. However, indicator species analysis revealed that parental exposure to future climate scenarios altered the presence and abundance of a small suite of microbial taxa in the recruits, thereby revealing the potential for microbiome‐mediated cross‐generational acclimatization through both symbiont shuffling and symbiont switching within a vertically acquired microbiome.

Continue reading ‘Cross‐generational effects of climate change on the microbiome of a photosynthetic sponge’

Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture

Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.

Continue reading ‘Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture’

Ocean acidification causes variable trait shifts in a coral species

High pCO2 habitats and their populations provide an unparalleled opportunity to assess how species may survive under future ocean acidification conditions, and help to reveal the traits that confer tolerance. Here we utilize a unique CO2 vent system to study the effects of exposure to elevated pCO2 on trait‐shifts observed throughout natural populations of Astroides calycularis, an azooxanthellate scleractinian coral endemic to the Mediterranean. Unexpected shifts in skeletal and growth patterns were found. Colonies shifted to a skeletal phenotype characterized by encrusting morphology, smaller size, reduced coenosarc tissue, fewer polyps, and less porous and denser skeletons at low pH. Interestingly, while individual polyps calcified more and extended faster at low pH, whole colonies found at low pH site calcified and extended their skeleton at the same rate as did those at ambient pH sites. Transcriptomic data revealed strong genetic differentiation among local populations of this warm water species whose distribution range is currently expanding northward. We found excess differentiation in the CO2 vent population for genes central to calcification, including genes for calcium management (calmodulin, calcium‐binding proteins), pH regulation (V‐type proton ATPase), and inorganic carbon regulation (carbonic anhydrase). Combined, our results demonstrate how coral populations can persist in high pCO2 environments, making this system a powerful candidate for investigating acclimatization and local adaptation of organisms to global environmental change.

Continue reading ‘Ocean acidification causes variable trait shifts in a coral species’

Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma

Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyze gene expression responses across a wide range of life history stages, including the benthic, post‐metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage‐specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.

Continue reading ‘Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,401,571 hits


Ocean acidification in the IPCC AR5 WG II

OUP book