Posts Tagged 'adaptation'

Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study

The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.

Continue reading ‘Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study’

Bottom trawling threatens future climate refugia of Rhodoliths globally

Climate driven range shifts are driving the redistribution of marine species and threatening the functioning and stability of marine ecosystems. For species that are the structural basis of marine ecosystems, such effects can be magnified into drastic loss of ecosystem functioning and resilience. Rhodoliths are unattached calcareous red algae that provide key complex three-dimensional habitats for highly diverse biological communities. These globally distributed biodiversity hotspots are increasingly threatened by ongoing environmental changes, mainly ocean acidification and warming, with wide negative impacts anticipated in the years to come. These are superimposed upon major local stressors caused by direct destructive impacts, such as bottom trawling, which act synergistically in the deterioration of the rhodolith ecosystem health and function. Anticipating the potential impacts of future environmental changes on the rhodolith biome may inform timely mitigation strategies integrating local effects of bottom trawling over vulnerable areas at global scales. This study aimed to identify future climate refugia, as regions where persistence is predicted under contrasting climate scenarios, and to analyze their trawling threat levels. This was approached by developing species distribution models with ecologically relevant environmental predictors, combined with the development of a global bottom trawling intensity index to identify heavily fished regions overlaying rhodoliths. Our results revealed the importance of light, thermal stress and pH driving the global distribution of rhodoliths. Future projections showed poleward expansions and contractions of suitable habitats at lower latitudes, structuring cryptic depth refugia, particularly evident under the more severe warming scenario RCP 8.5. Our results suggest that if management and conservation measures are not taken, bottom trawling may directly threaten the persistence of key rhodolith refugia. Since rhodoliths have slow growth rates, high sensitivity and ecological importance, understanding how their current and future distribution might be susceptible to bottom trawling pressure, may contribute to determine the fate of both the species and their associated communities.

Continue reading ‘Bottom trawling threatens future climate refugia of Rhodoliths globally’

Adaptive responses of free‐living and symbiotic microalgae to simulated future ocean conditions

Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2. Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo‐physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species’ climate sensitivity or resilience to managers and policy‐makers but extrapolating these insights to ecosystem and community level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade‐offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.

Continue reading ‘Adaptive responses of free‐living and symbiotic microalgae to simulated future ocean conditions’

The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat

The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioral and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite: calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioral interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed.

Continue reading ‘The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat’

Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs

Highlights

  • Ocean warming is the main driver for the adaptation of a marine diatom
  • The adaptation resulting from warming can be constrained by ocean acidification
  • The adaptations to ocean acidification and warming come with trade-offs

Abstract

Ocean acidification and warming are recognized as two major anthropogenic perturbations of the modern ocean. However, little is known about the adaptive response of phytoplankton to them. Here we examine the adaptation of a marine diatom Thalassiosira weissflogiito ocean acidification in combination with ocean warming. Our results show that ocean warming have a greater effect than acidification on the growth of T. weissflogiiover the long-term selection experiment (~380 generations), as well as many temperature response traits (e.g., optimum temperatures for photosynthesis, maximal net photosynthetic oxygen evolution rates, activation energy) in thermal reaction norm. These results suggest that ocean warming is the main driver for the evolution of the marine diatom T. weissflogii, rather than oceanacidification. However, the evolution resulting fromwarming can be constrained by ocean acidification, where ocean warming did not impose any effects at high CO2level. Furthermore, adaptationsto ocean warming alone or to the combination of ocean acidification and warming comewith trade-offs by inhibiting photochemical performances. The constrains and trade-offs associated with the adaptation to ocean acidification and warming demonstrated in this study, should be considered for parameterizing evolutionary responses in eco-evolutionary models of phytoplankton dynamics in a future ocean.

Continue reading ‘Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs’

Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau

Ocean warming and acidification caused by the increase of atmospheric carbon dioxide are now thought to be major threats to coral reefs on a global scale. Here we evaluated the environmental conditions and benthic community structures in semi-closed Nikko Bay at the inner reef area in Palau, which has high p CO 2 and seawater temperature conditions with high zooxanthellate coral coverage. This bay is a highly sheltered system with organisms showing low connectivity with surrounding environments, making this bay a unique site for evaluating adaptation and acclimatization responses of organisms to warmed and acidified environments. Seawater p CO 2 /Ω arag showed strong graduation ranging from 380 to 982 µatm (Ω arag : 1.79-3.66) and benthic coverage, including soft corals and turf algae, changed along with Ω arag while hard coral coverage did not. In contrast to previous studies, net calcification was maintained in Nikko Bay even under very low mean Ω arag (2.44). Reciprocal transplantation of the dominant coral Porites cylindrica showed that the calcification rate of corals from Nikko Bay did not change when transplanted to a reference site, while calcification of reference site corals decreased when transplanted to Nikko Bay. Corals transplanted out of their origin sites also showed the highest interactive respiration (R) and lower photosynthesis (P) to respiration (P:R). The results of this study give important insights about the potential local acclimatization and adaptation capacity of corals to different environmental conditions including p CO 2 and temperature.

Continue reading ‘Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau’

Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece

Although the rise of antibiotic and multidrug resistant bacteria is one of the biggest current threats to human health, our understanding of the mechanisms involved in antibiotic resistance selection remains scarce. We performed whole genome sequencing of 21 Pseudomonas strains, previously isolated from an active submarine volcano of Greece, the Kolumbo volcano. Our goal was to identify the genetic basis of the enhanced co-tolerance to antibiotics and acidity of these Pseudomonas strains. Pangenome analysis identified 10,908 Gene Clusters (GCs). It revealed that the numbers of phage-related GCs and sigma factors, which both provide the mechanisms of adaptation to environmental stressors, were much higher in the high tolerant Pseudomonas strains compared to the rest ones. All identified GCs of these strains were associated with antimicrobial and multidrug resistance. The present study provides strong evidence that the CO2-rich seawater of the volcano associated with low pH might be a reservoir of microorganisms carrying multidrug efflux-mediated systems and pumps. We, therefore, suggest further studies of other extreme environments (or ecosystems) and their associated physicochemical parameters (or factors) in the rise of antibiotic resistance.

Continue reading ‘Genomic adaptation of Pseudomonas strains to acidity and antibiotics in hydrothermal vents at Kolumbo submarine volcano, Greece’

Greater mitochondrial energy production provides resistance to ocean acidification in “winning” hermatypic corals

Coral communities around the world are projected to be negatively affected by ocean acidification. Not all coral species will respond in the same manner to rising CO2 levels. Evidence from naturally acidified areas such as CO2 seeps have shown that although a few species are resistant to elevated CO2, most lack sufficient resistance resulting in their decline. This has led to the simple grouping of coral species into “winners” and “losers,” but the physiological traits supporting this ecological assessment are yet to be fully understood. Here using CO2 seeps, in two biogeographically distinct regions, we investigated whether physiological traits related to energy production [mitochondrial electron transport systems (ETSAs) activities] and biomass (protein contents) differed between winning and losing species in order to identify possible physiological traits of resistance to ocean acidification and whether they can be acquired during short-term transplantations. We show that winning species had a lower biomass (protein contents per coral surface area) resulting in a higher potential for energy production (biomass specific ETSA: ETSA per protein contents) compared to losing species. We hypothesize that winning species inherently allocate more energy toward inorganic growth (calcification) compared to somatic (tissue) growth. In contrast, we found that losing species that show a higher biomass under reference pCO2 experienced a loss in biomass and variable response in area-specific ETSA that did not translate in an increase in biomass-specific ETSA following either short-term (4–5 months) or even life-long acclimation to elevated pCO2 conditions. Our results suggest that resistance to ocean acidification in corals may not be acquired within a single generation or through the selection of physiologically resistant individuals. This reinforces current evidence suggesting that ocean acidification will reshape coral communities around the world, selecting species that have an inherent resistance to elevated pCO2.

Continue reading ‘Greater mitochondrial energy production provides resistance to ocean acidification in “winning” hermatypic corals’

Acclimation and adaptation to elevated pCO2 increase arsenic resilience in marine diatoms

Arsenic pollution is a widespread threat to marine life, but the ongoing rise pCO2 levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO2 are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutumThalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO2. We found that elevated pCO2 alleviated arsenic toxicity even after short acclimation times but the magnitude of the response decreased after mid and long-term adaptation. When fed with these elevated pCO2 selected diatoms, the scallop Patinopecten yessoensis had significantly lower arsenic content (3.26–52.83%). Transcriptomic and biochemical analysis indicated that the diatoms rapidly developed arsenic detoxification strategies, which included upregulation of transporters associated with shuttling harmful compounds out of the cell to reduce arsenic accumulation, and upregulation of proteins involved in synthesizing glutathione (GSH) to chelate intracellular arsenic to reduce arsenic toxicity. Thus, our results will expand our knowledge to fully understand the ecological risk of trace metal pollution under increasing human activity induced ocean acidification.

Continue reading ‘Acclimation and adaptation to elevated pCO2 increase arsenic resilience in marine diatoms’

Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean

Anthropogenic warming and ocean acidification are predicted to negatively affect marine calcifiers. While negative effects of these stressors on physiology and shell calcification have been documented in many species, their effects on shell mineralogical composition remains poorly known, especially over longer time periods. Here, we quantify changes in the shell mineralogy of a foundation species, Mytilus californianus, under 60 y of ocean warming and acidification. Using historical data as a baseline and a resampling of present-day populations, we document a substantial increase in shell calcite and decrease in aragonite. These results indicate that ocean pH and saturation state, not temperature or salinity, play a strong role in mediating the shell mineralogy of this species and reveal long-term changes in this trait under ocean acidification.

Continue reading ‘Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,426,012 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives